PC UNDERGROUND

PRAXIS

y

Demo-Programmierung unter Windows ‘QA{S-/{{BIT%/:?

Grafik mit

Die Programmierung schneller Grafikeffekte unter Windows ist keine
Zauberei. Schaffen Sie mit einer

CARSTEN DACHSBACHER/
NILS PIPENBRINCK

ultimedia ist seit vielen Jahren
IVI ein Schlagwort der Computer-
industrie. Aber nicht nur Kon-
zerne, sondern auch Kiunstler haben
das Zusammenspiel von Grafik- und
Soundsystem fuir sich entdeckt. Das Er-
gebnis ihrer Arbeit sind selbstablaufen-
de Multimediaprésentationen, soge-
nannte Demos.
Eine Demo entsteht in einem Kreati-
ven ProzeR, bei dem Programmierer,
Grafiker und Musiker ihre Erfahrungen

DIE GRAFIK fur unser Beispielprogramm enthalt 256 Farben.

und ihr Talent einbringen. In dieser neu-
en Rubrik zeigen wir lhnen das nétige
Handwerkszeug, um mitreiRende Mul-
timedia-Clips zu entwickeln.

Dabei will PC Magazin lhrer kreati-
ven Ader kréftig auf die Spriinge helfen:
Wir bieten Ihnen als Grundlage lauffahi-
ge Listings an, die Sie personlich weiter-
entwickeln kénnen. Aus Platzgriinden
drucken wir nur die wichtigsten Routi-
nen ab. Die kompletten Programme
koénnen Sie sich von der Heft-CD, von
der Databox oder aus dem Internet-An-

228 Juli1998 PC Magazin

gebot des PC Magazin unter
www.pc-magazin.de
auf Ihren Rechner laden.

Wie schreiben Sie nun eine professionel-
le Demo? Auf den ersten Blick kdnnten
Sie versucht sein, eine komplette Ani-
mation zu berechnen, zu vertonen und
das Ergebnis als Video zu speichern. Das
mag zwar funktionieren, aber die Faszi-
nation von Demos liegt eigentlich darin,
den Computer so weit wie moglich aus-
zureizen, keine Ressourcen zu ver-
schwenden und mdglichst alles in Echt-
zeit zu berechnen.

Das ist nicht immer
ganz einfach, aber er-
lernbar. Mit PC Un-
derground fuhren wir
Sie jeden Monat ein
Stiick weiter in die
Geheimnisse der Pro-
fis ein. Bereits nach
kurzer Zeit haben Sie
eine komplette Demo
geschrieben. In dieser
Ausgabe des PC Ma-
gazin legen Sie mit ei-
nem Grafiksystem
fur die Windows-
95/NT-Plattform den
Grundstein dazu.
AuBerdem lernen Sie
anhand eines einfa-
chen Effektes die ersten Tricks der De-
mo-Programmierer kennen.

Sie bendtigen lediglich etwas C-
Kenntnisse und fur einige zukunftige
Routinen eventuell — aber nicht unbe-
dingt notwendig — Interesse an Assem-
bler-Programmierung. Als Compiler
eignen sich gleichermalen die Produkt-
te von Borland, Microsoft, Watcom
oder Intel.

Sie kdnnen auf Assembler-Code sogar
vollstdndig verzichten, da die heutigen
C-Compiler durchweg gute Ergebnisse

dazu.

produzieren. Besonders erwéhnenswert
ist hier der Intel-C/C++-Compiler, des-
sen Code qualitativ oft an handopti-
mierten heranreicht. In den Beispielpro-
grammen bietet IThnen PC Magazin zu
jeder Assembler-Routine auch das ent-
sprechende C-Pendant an.

Als Entwicklungsplattform dient
Win32, die Demo lauft also unter Win-
dows 95 und NT. Im Hinblick auf die
spater in dieser Reihe verwendeten As-
sembler-Module ist es sinnvoll, die Ei-
genheiten des Protected Mode und des
Windows-Speichermodells zu erldutern.

Als noch MS-DOS und Windows
3.1x die PC-Welt regierten, liefen Pro-
gramme im 16-Bit-Real-Mode und Pro-
tected Mode. 16 Bit deshalb, weil alle
Prozessorregister 16 Bit breit waren.

Der Nachteil daran war, daf? ein 16 Bit
breites Register nur 64 KByte (= 65 536)
Speicherbldcke adressieren konnte. Die
Blécke wurden daher mit einem Regi-
sterpaar angesprochen, ndmlich mit ei-
ner Segment- und einer Offset-Adresse.
Naturlich konnte ein Programm mehre-
re dieser Blocke anfordern, aber bei
grofRen Datenstrukturen war dies sehr
unpraktisch.

Mit der Einfiihrung des 386-Prozes-
sors von Intel wurden alle Register auf
32 Bit erweitert. Anfangs war es nicht
einfach, diese wirklich effektiv zu ©

Alle Daten (Listings und Bilder) zu un-
serem Beispielprogramm liegen auf der
Homepage des PC Magazin fur Sie be-
reit:
Www.pc-magazin.de

Sie finden diese Daten deshalb in unse-
rem Online-Programm, da wir sie stan-
dig aktualisieren und mit jeder neuen
Ausgabe weiter ausbauen.

Schwer bepackte Jugendliche pilgerten
Karfreitag dieses Jahres nach Fallingbostel
in die Luneburger Heide. Doch nicht, um
BuRe zu tun oder die Ostermesse zu besu-
chen. Ihr Ziel war die Mekka & Symposium
98, Deutschlands bisher wohl gréRte De-
mo-Party.

treffen. Die 72 Stunden dauernde Party bot
den rund 850 fast durchweg mannlichen
Besuchern genug Zeit, um neue Ideen zu
besprechen und Wissen auszutauschen.
Der Blick uber den Tellerrand war erlaubt,
neben der PC-Welt gab sich auch die Com-
modore-Gemeinde der Cé4er und Amigas
die Ehre.

PARTYATMOSPHARE wie im Raumfahrtzentrum

Mit Demos sind hier nicht Testversionen
kommerzieller Software gemeint. Diese
Demos bestehen vielmehr aus einer Mi-
schung verschiedener Effekte und Grafi-
ken, hinterlegt mit Musik. In ihrer Art erin-
nern sie oft an moderne Musikvideos, wie
sie bei MTV oder VIVA laufen.

Das Schreiben von Demos entwickelte sich
in den 90er Jahren zu einer richtigen Ju-
gendkultur mit eigener Szene und eben
auch groRen Partys. Heutige Programme
enthalten mehrere MByte an Code und Da-
ten, weshalb sich verschiedene Speziali-
sten die Arbeit aufteilen.

Grafiker entwerfen kleine Logos und
Schriftsatze sowie hochauflésende Bilder
und Animationen. Handarbeit besitzt
groRen Wert, der Einsatz von Scannern ist
verpont. Elektronische Hilfsmittel wie Fil-
ter oder Raytracer schaffen dafur oft
atemberaubende Effekte.

Zum visuellen Eindruck fagen Musiker
noch das Klangerlebnis hinzu. Sie reihen
Samples zu einzelnen Tracks aneinander
und komponieren daraus ihre Songs.

Die Programmierer — in der Szene Coder
genannt — schreiben den eigentlichen
Quellcode der Demos. Sie implementieren
Laderoutinen fur die Grafiken, entwickeln
immer neue Uberraschende Grafikeffekte
und kampfen dabei um jedes Quentchen
Geschwindigkeit, das dem Prozessor zu
entlocken ist. SchlieBlich sorgen sie auch
dafur, daR die Songs synchron mit dem
selbstablaufenden Grafikspektakel einset-
zen.

Die Mekka & Symposium ‘98 war eine ein-
malige Gelegenheit, Grafikprogrammierer
und Musiker aus dem In- und Ausland zu

Im Gepack durfte ein
gutbestuckter Rech-
ner natirlich nicht
fehlen, und so bot die
angemietete Mehr-
zweckhalle bald das
Bild eines Raumfahrt-
Kontrollzentrums.
Per Ethernet ent-
stand ein groRes
Partynetzwerk, uber
das Daten und Pro-
gramme, aber auch
schon mal das eine
oder andere Netz-
werkspiel flossen.
Den allgemeinen
Larmpegel steigerten
einige Teilnehmer zusatzlich mit einer Ste-
reoanlage oder einem Synthesizer.
Gelegentlich fuhrte der hohe Energiever-
brauch der mitgebrachten Kaffeemaschi-
nen, Mikrowellen und Waffeleisen zu
Stromausfillen, die
zu kurzen Pausen an
der Pommes-Bude
vor der Halle genutzt
wurden.
Hauptereignisse der
Party waren Wettbe-
werbe, zu denen je-
der Besucher seine
Demos, Spiele, Grafi-
ken und Musiksticke
einreichen konnte.
Die Ergebnisse wur-
den dann auf eine
8x6 Meter groRe
Leinwand projeziert
und von einer baR-
kraftigen Sound-An-
lage unterstitzt. Je-
der im Saal konnte so
die Prasentation ver-
folgen, und wer sich
im benachbarten Schlafzelt zur Ruhe ge-
legt hatten, spurte noch die Basse in den
Knochen.

Ab und zu ging ein bewunderndes Raunen
durch die Halle, manchmal tobte der Ap-
plaus. So auch bei der Siegergrafik von Cy-
clone/Abyss mit dem geheimnisvollen Ti-
tel Hansel und Gretel im Paradies des blu-
tigen Todes.

Bei den PC-Demos trug die Gruppe Matrix
mit dem aufwendig gestalteten Fulcrum
einen Uberragenden Sieg davon. Die Wahl

PC UNDERGROUND
PRAXIS

der Gewinner erfolgte in bester Basisde-
mokratie durch alle Anwesenden.
Auf der Heft-CD finden Sie neben den bei-
den Gewinnern weitere Demos, Spiele,
Grafiken und Sounddateien im mod-For-
mat der Mekka & Symposium ‘98. Auf mehr
Material verweist die von den Veranstal-
tern betriebene WWW-Seite

http://ms.demo.org
Eine sehr gute Ubersicht tber international
anstehende Partytermine bietet

www.hornet.org/ha/pages/

0 calendar.html
Eine kleine Kuriositat am Rande war die er-
ste Demo fur den Nintendo Gameboy,
welche auf einem Emulator lief. Auf der Vi-
deo-Leinwand sorgte die sehr pixelige Dar-
stellung aber eher fur eine anerkennende
Wirdigung als fur gebanntes Staunen.
Der geplante Demo-Wettbewerb fur Win-
dows 95 fiel mangels Beteiligung aus. Das
mag vor allem daran liegen, daB viele Co-
der die Hardware gerne direkt unter MS-
DOS ansprechen, was Windows nun mal
nicht zulaBt. Windows bietet dafur andere
Annehmlichkeiten fur die Programmierer,
und moderne Prozessoren halten langst
die geforderte Leistung bereit. So ist es
wohl nur eine Frage der Zeit, wann auch an-
spruchsvolle Demos fur Windows 95/NT
das Licht der Welt erblicken.

HANSEL UND GRETEL im Paradies des blutigen Todes

Vielleicht sind Sie einer der ersten, die ei-
ne Demo fur Windows 95/NT produzie-
ren. Denn PC Magazin startet in dieser Aus-
gabe die neue Rubrik PC Underground, die
an die Stelle des 1000-Zeilen-Wettbe-
werbs tritt. In den ersten Folgen erfahren
Sie von zwei Codern der Gruppe Cu-
bic&Seen Tricks zur Grafikprogrammie-
rung unter 32-Bit-Windows. Dabei ent-
wickeln Sie schrittweise eine komplette
Demo mit allem, was dazugehort.

RUDIGER PEIN/BM

PC Magazin Juli1998 229

»

PC UNDERGROUND
PRAXIS

nutzen: Weder MS-DOS noch Win-
dows 3.1x waren darauf ausgelegt, Pro-
gramme im 32-Bit-Protected-Mode aus-
zufihren. Seit Win32s, Windows 95 und
NT stellt dies kein Problem mehr dar.
Auch unter DOS umgehen Sie dieses
Problem mit dem Einsatz sogenannte
DOS-Extender.

Mit 32 Bit breiten Registern adressie-
ren Sie nun einen AdreRbereich von 4
GByte linear. Das bedeutet, dal? Sie
mehr als 64 KByte Speicher an einem
Stuck anfordern und ansprechen kén-
nen. Programme werden dadurch einfa-
cher und Ubersichtlicher.

Beim Schreiben einer Demo mdchten
Sie sich nicht jedesmal um die Initialisie-
rung eines Fensters kiimmern. Diese
Aufgaben und hdufig gebrauchte Funk-
tionen fassen Sie deshalb in einer Biblio-
thek zusammen.

lhre Aufgabe ist es nun, solch ein Ba-
sissystem auf der Grundlage der Win-
dows-GDI (Graphics Device Interface)
zu schreiben. Diese Schnittstelle kann
Grafiken laden, Farbmanipulationen an
Bildern durchfiihren und berechnete
Bilder entweder in einem Fenster oder
im Vollbildmodus darstellen. Zudem
kann sie den Ablauf einer Demo unab-
héngig von der Geschwindigkeit des
Rechners steuern.

Zuné&chst einmal sind Demos keine in-
teraktiven Programme. Windows selbst
ist aber darauf ausgelegt, nicht nur In-
halte in Fenstern darzustellen, sondern
auch auf Eingaben des Benutzers zu rea-
gieren. Da Sie in unserem Fall nicht auf
spezielle Benutzereingaben achten mus-
sen, genugt ein einfacher Windows-
Startup, der fiir die eigentliche Demo al-
les unsichtbar erledigt.

Dieser Startup ist so allgemein und
unabhéngig, dal? man ihn durch einen
anderen ersetzen kdnnte. Somit ware ein
und dieselbe Demo auf anderen Be-
triebssystemen lauffahig.

Eine normale Anwendung erzeugt
prinzipiell ein Fenster mit einem Event
Handler, also einer Prozedur, die auf
Eingaben des Anwenders reagiert. Da-
nach arbeitet die Anwendung bis zum
SchlielRen des Fensters eine Hauptschlei-
fe ab.

Diese Schleife wartet auf Benutzerein-
gaben oder Nachrichten und leitet diese
dann an das zustdndige Fenster bezie-
hungsweise dessen Event Handler wei-

230 Juli1998 PC Magazin

Das in diesem Projekt verwendete Farb-
modell entspricht jenem, das die meisten
Grafikkarten in HiColor-Modi verwenden.
Dazu steht fur jedes Pixel ein 16 Bit breiter
Wert zur Verfugung, in dem jeweils ein Be-
reich der Bits den Rot-, Grun- und Blauan-
teil (RGB) einer Farbe darstellt.

Die BereichsgroRen sind jeweils 5 Bit fur
Rot und Blau und 6 Bit fur Grun. Der Auf-

bau sieht also folgendermaRen aus:
RRRRRGGGGGGBBBBB

Drei Tabellen — fur jede Primarfarbe eine
— mit jeweils 256 Eintragen vereinfachen
die Handhabung. Das sind naturlich mehr
als notwendig: Mit 5 Bit lassen sich maxi-
mal 25 = 32 verschiedene Abstufungen er-
zeugen. Viele der 256 Eintrage enthalten

ter. Diese fuhren dann vom Program-
mierer bestimmte Routinen aus. Da die
Interaktion des Benutzers bei einer De-
mo auf das vorzeitige Beenden des Pro-
gramms beschrankt sein soll, ist der
Event Handler sehr einfach.

Da Windows ein Multitasking-Be-
triebssystem ist, kbnnen mehrere Pro-
gramme gleichzeitig ablaufen. Die Ver-
waltung der einzelnen Programme und
Programmabldufe (Threads) Ubernimmt
dabei der Windows-Kernel (Betriebssy-
stemkern). Sie brauchen sich also als
Programmierer dartber keine Gedan-
ken zu machen. Bei der Verwendung
mehrerer Threads spricht man von Mul-
tithreading.

Fir eine Demo ist Multithreading die
ideale Ldsung. Sie teilen das Programm
einfach in zwei Threads auf: Der erste
Thread ist fur die Windows-Messages
zusténdig, wéhrend der zweite die ei-
gentliche Demo und deren Ablauf dar-
stellt.

Das Basissystem der Demo sollte so un-
abhé&ngig vom Betriebssystem sein, dal
Sie sich als Programmierer nicht mehr
im geringsten mit der Windows-Pro-
grammierung beschaftigen miissen. Sie
werden bei der Entwicklung lhrer De-
mos nur noch zwei Funktionen imple-
mentieren:
« Die Funktion

BOOL demoinit(void)
enthélt Initialisierungs-Routinen, zum
Beispiel, um Grafiken zu laden oder
Musik zu starten. Nach erfolgreicher
Ausfuihrung geben Sie in demoinit den
Wert 1 (fUr true) zurick.
< In die Funktion

void demomain(void)

daher den gleichen Wert. Dennoch sind
diese Tabellen sehr nutzlich, sie vereinfa-
chen und beschleunigen grafische Effekte
mit Farbmanipulationen.

Den Farbwert eines satten Orangetons er-
halten Sie etwa durch Auslesen der Ein-
trage 230, 100 und 20 aus den Tabellen
und einer bitweisen Oder-Verknupfung:

unsigned short farbwert =
[Rtab[230] | Gtab[100] |
O Btab[20];

Die Farben ergeben sich durch additive
Farbmischung, das heiflt groBere Werte
(bis einschlieBlich 255) ergeben einen hel-
leren Anteil der Primarfarbe. Das Werte-
tripel (255,255,255) ergibt also Reinweil,
(0,0,0) die Farbe Schwarz.

schreiben Sie den Ablauf der Demo, al-
so den eigentlichen Programmcode. Da-
bei stehen Ihnen verschiedene Biblio-
theksfunktionen zur Verflgung:
unsigned long GetbemoTime(void)
GetDemoTime gibt die seit dem De-
mostart verstrichene Zeit in Millisekun-
den wieder. Dies ist notwendig, wenn
ein Effekt unabhéngig von der Rechner-
geschwindigkeit ablaufen soll. Im Bei-
spiel dieser Ausgabe ist es die Lichtquel-
le, deren Position abhéangig von der ver-
strichenen Zeit bestimmt wird.
unsigned short ColorCode(
int r,int g,int b)
ColorCode liefert fur das Wertetripel (r,
g und b) den Farbwert des in der Demo
verwendeten Farbmodells.
void BlitGraphic(void *buf)
Mit BlitGraphic Ubergeben sie einen
Zeiger auf ein darzustellendes Bild.
int bmp_load(char *name,
bitmaptype &bitmap)
Mit bmp_load laden Sie bmp-Dateien
fur den Gebrauch in Ihre Demo. Der
Typ bitmaptype ist selbstdefiniert und
enthalt Breite, Hohe und Zeiger auf die
Bilddaten. Den genauen Aufbau entneh-
men Sie dem Quielltext.
void bmp_make16bitpalette(
bitmaptype &bitmap)
bmp_makel6bitpalette konvertiert im
Falle einer 256-Farben-Bitmap die Farb-
palette in das in der Demo verwendete
Farbmodell (siehe Textbox oben).
void bmp_free(
bitmaptype &bitmap)
bmp_free gibt den Speicher einer gela-
denen Bitmap-Datei wieder frei.
AufRerdem stellt die Bibliothek noch
einige Tabellen und Konstanten bereit,
deren Bedeutung Sie anhand des Bei-
spiels erfahren. (>

5-E]

PC UNDERGROUND
PRAXIS

Jedes Windows-Programm startet mit
der Routine WinMain. Diese soll nun ei-
ne Bitmap-Info erzeugen, um eine Gra-
fik mit einem bestimmten — vom Pro-

DIESE LIGHTMAP erzeugt den Lichteffekt.

grammierer festgelegten — Aufbau in ei-
nem Fenster darzustellen. AuRerdem
soll sie ein Fenster 6ffnen, in dem die
Demo angezeigt wird.

Die Prozedur InitGraphic(void) er-
zeugt diese Bitmap-Info. Sie fordert da-
zu eine Variable des Typs BITMAPIN-
FO an und tragt Breite und Hbhe des
Fensters sowie das verwendete Farbmo-
dell ein.

Das Erzeugen des Fensters ist Aufga-
be der Prozedur InitDemoWindow. Da-
zu registriert sie eine neue Fensterklasse,
legt mit CreateWindowEX eine Instanz
davon an und stellt sie mit ShowWindow
dar. Die Definition einer Fensterklasse
enthalt zum Beispiel das Erscheinungs-
bild eines Fensters mit den vorhandenen
Buttons, dem Icon und dem Mauscur-
sor. Zudem speichert sie einen Verweis
auf die Funktion, die die Nachrichten
dieses Fensters verarbeitet.

Wenn das Fenster sichtbar ist, wird
noch der Device Context in einer Varia-
ble gesichert. Um Grafiken im Fenster
darzustellen, beziehen Sie sich von nun
an auf diesen Verweis.

Aullerdem setzt InitDemoWindow
die Prioritét des ersten Threads, der die
Nachrichten an das Fenster verarbeitet,
auf den niedrigsten Wert. Dadurch kén-
nen Sie dem zweiten Thread, der nach
InitDemoWindow startet, eine hohe Pri-
oritat geben. Sie gewdhren somit dem
Programmcode fiir die Demo mehr Re-
chenzeit. Nach den Initialisierungsar-

232 Juli1998 PC Magazin

beiten geht WinMain in die Message-
Schleife Gber, die die Nachrichten an die
Message-Funktion weiterleitet und das
Programmende abwartet.

Die Message-Funktion des Demofen-
sters ist wie bereits erwahnt sehr einfach.
Diese Funktion wird immer aufgerufen,
wenn eine Nachricht
an das Fenster ge-
sandt wird. Die
Nachrichten stam-
men entweder vom
Windows-System
selbst oder vom Be-
nutzer.

Fir das Demofen-
ster sind nun zwei
Nachrichten interes-
sant. WM_DEST-
ROY zeigt an, da
das Fenster geschlos-
sen werden soll,
WM_KEYDOWN
signalisiert einen Ta-
stendruck. In beiden
Féllen soll die Demo
beendet werden. Dazu geben Sie den
Device Context wieder frei und teilen
der Message-Schleife Uber PostQuit-
Message mit, daR das Programm beendet
werden soll.

Alle anderen Nachrichten, die nicht
speziell behandelt werden missen, Uber-
geben Sie an DefWindowProc. Diese
Prozedur verwaltet Nachrichten wie das
Verschieben des Fensters oder das Off-
nen des System-Menis und enthalt
Standardbehand-
lungsroutinen fir die
meisten Nachrichten.

Der BlitGraphic-
Funktion Ubergeben
Sie einen Zeiger auf
eine Bitmap, deren
Farbwerte dem ver-
wendeten Farbmo-
dell entsprechen. Sie
ruft die bendtigten
Windows-GDI-
Funktionen auf, um
eine Device Indepen-
dent Bitmap in einem
Fenster darzustellen.
Dabei handelt es sich
um eine Bitmap, die
unabhéngig vom
Bildschirmmodus ist, in dem sich die
Grafikkarte befindet. Muf3 das Bild
nicht skaliert werden, kommt daftir Set-
DIBitsToDevice in Frage, fur alle ande-
ren Falle erledigt dies die Funktion
StretchDIBits.

Bevor Sie den ersten Demoeffekt pro-
grammieren, zeigt Ihnen folgendes Bei-
spiel den Umgang mit der Grafikbiblio-
thek:

#include ,demo.h"
bitmaptype bmp;
BOOL demoinit(void)

bmp_load(,BACK256.BMP*, bmp);
bmp_makel6bitpalette(bmp);
return 1;

}
void demomain(void)

unsigned short screen[
SCREEN_X*SCREEN_Y];

for (int i=0;
i<SCREEN_X*SCREEN_Y;
i++)
screen[i]=bmp.sColors[
bmp.cBitmap]i]];

BlitGraphic(screen);
while (DemoRunning);

}

Die Funktion demoinit 1adt eine 256-
Farben-Bitmap in Fenstergrofie und be-
reitet eine Palette fiirs Farbmodell vor.
Mit Hilfe dieser in bmp.sColors ge-
speicherten Palette setzt nun demomain
jedes Pixel in den virtuellen Bildschirm
screen. Die Funktion BlitGraphic stellt
das fertige Bild im Fenster dar, die nach-
folgende While-Schleife wartet, bis das
Demosystem das Ende signalisiert. In
diesem Fall enthélt die Variable De-
moRunning den Wert 0 (fur false).

DIE UBERLAGERUNG von Bitmap und Lightmap sieht so aus.

Als Beispiel fur die Nutzung des Ba-
sissystems der Demo laden Sie eine bmp-
Datei und stellen sie mit einer dartiber
schwebenden Lichtquelle dar. Die fol-
genden Schritte implemetieren Sie in der
Funktion demoinit:

Zunéachst laden Sie mit bmp_load eine
Bitmap mit 320 x 240 Bildpunkten und
256 Farben in den Speicher. Nun soll ei-
ne Lichtquelle Gber das Bild wandern.
Die Bitmap soll nahe der Lichtquelle hell
sein und mit zunehmender Entfernung
dunkler werden.

Sie arbeiten im folgenden mit 32 Hel-
ligkeitsstufen, und fir alle 256 Farben
des Bildes berechnen Sie in einer soge-
nannten Shading-Tabelle die 32 Abstu-
fungen vor. Dazu multiplizieren Sie die
Rot-, Griin- und Blauwerte mit der Hel-
ligkeitsstufe und teilen das Ergebnis
durch 12. Ist die Helligkeitsstufe groRer
als 24, so addieren Sie noch einen Wert
hinzu. Durch eigene Versuche bestim-
men Sie dhnlich geeignete Werte — diese
bewirken dann ein leicht gedndertes Er-
scheinungbild.

Nun berechnen Sie noch eine soge-
nannte Lightmap. Das ist eine Bitmap,
die viermal so grof? ist wie das Original,
also 640 x 480 Bildpunkte. Jeder Bild-
punkt der Lightmap enthalt den Hellig-
keitswert, der von seiner Entfernung
zum Mittelpunkt (320,240) der Light-
map abhdngt. Diesen Wert bestimmen
Sie durch den Sinus des Abstands. Auch
diese Formel entstammt empirischen

Versuchen und erlaubt leichte Modifika-
tionen.

Die Berechnung der Einzelbilder er-
folgt nun in der demomain-Funktion:
Ein neues Bild berechnen Sie, indem Sie
die Lightmap Uber der Bitmap verschie-
ben und dann beide Uberlagern.

Bei diesem Verfahren fiihren zu grofRe
Verschiebungen der Lightmap zu Stel-
len, an denen sie nicht mehr mit der Bit-
map Uberlappt. Diese Bereiche sind aber
ohnehin sehr weit von der Lichtquelle
entfernt, die sich ja in der Mitte der
Lightmap befindet. Deswegen dirfen
Sie dort getrost den gleichen Hellig-
keitswert wie am Rand der Lightmap an-
nehmen.

Da die X-Koordinaten der Lightmap
fur alle Spalten des Endbildes gleich sind
(dasselbe gilt fir die Y-Koordinaten be-
zuglich der Zeilen), berechnen Sie sie vor
dem eigentlichen Zeichnen vor und spei-
chern sie in pos_x[] (bzw. pos_y[]). Fur
jedes Pixel des Endbildes lesen Sie den
entsprechenden Wert der Lightmap und
den Pixel des Originalbildes aus und be-
stimmen mit Hilfe der Shading-Tabelle
den neuen Farbwert. Diese neuen Farb-
werte stehen dann in screen und gelan-
gen mit BlitGraphic zur Darstellung.

PC UNDERGROUND
PRAXIS

—®

Sie sehen, wie die verschiedenen vor-
berechneten Tabellen (Lightmap, Sha-
ding-Tabelle und pos_x[] bzw. pos_y[])
dazu beitragen, die Animation flussig
laufen zu lassen. Naturlich kénnten Sie
auch in der Hauptschleife fur jeden Pixel
den Abstand zur Lichtquelle und damit
den Helligkeitswert bestimmen, dann
die Farbe des Pixels der Bitmap auslesen
und anhand dieser RGB-Werte eine
neue Farbe bestimmen. Nur wirde das
Ergebnis nicht mehr einer Bewegung,
sondern mehr einer Slideshow &hnlich
sehen.

Den ersten Teil mit der Vorstellung des
Grafiksystems und den ersten Ein-
blicken in die Demoprogrammierung
haben Sie nun gemeistert. In den néach-
sten beiden Ausgaben des PC Magazin
entwickeln Sie eine 3D-Engine, mit der
Sie komplexe animierte Szenen in Echt-
zeit berechnen.

Fertige Demos der beiden Autoren
koénnen Sie im Internet unter

www.cubic.org
herunterladen. Dort finden Sie im Ab-
schnitt Gallery Demos fir DOS und
Windows. PEI/BM

44: RECT r;
45: Getd i ent Rect (DemoHWND, &r);
1: static BOCL InitGaphic(void) 46: StretchDIBits(DemoHDC, 0, O, r.right, r.bottom 0, O,
2: { 47; SCREEN X, SCREEN Y, buf, bit mapinfo,
3: Il Vorbereiten eines BitmaplnfoHeaders fur 483 DI B_RGB_ OOLCRS, SROCCPY);
4: /1 alle & afikausgaben. 49: br eak;
52 int bisize = sizeof (Bl TMAPI NFGHEADER) ; 50z }
6 bi t mapi nfo = (Bl TMAPI NFO *) mal | oc(bi size + 12); 51: }
7 Zer oMenor y(&bi t mapi nf o- >bni Header, bi size); 52:
8: 533 | ong CALLBACK W ndowPr oc(HWD hwid, U NT nessage,
9: /1 Bitmapl nf oHeader eines normal en 16-Bit - Bit maps, 54; WPARAM wPar am LPARAM | Par am)
10: I/ wie wir es brauchen, erzeugen 55: {
11: bi t mapi nf o- >bni Header . bi Si ze = bi si ze; 563 /]l Dies ist die Message Funktion des Deno-Fensters.
123 bi t mapi nf o- >bni Header . bi Wdt h = SCREEN X; 57: /1 Da das Fenster selbst sogut w e kei ne Funktionalitat
13z bi t mapi nf o- >bni Header . bi Hei ght = -SCREEN Y; 58z /1 haben mugp, ist diese Funktion sehr kurz
143 bi t mapi nf o- >bni Header . bi Pl anes =1 593 swi tch (nessage)
153 bi t mapi nf o- >bni Header . bi Bi t Count = 16; 603
16: bi t mapi nf o- >bni Header . bi Conpr essi on = Bl _Bl TFI ELDS; 61: case WV DESTROY:
17: Il Farb-Felder des 16-Bit Bitmaps setzen. 62: case W KEYDOME
18: ((l ong*) &bit mapi nf o->bmi Col ors)[0] = OxF800; 63: Rel easeDQ(DemoHWAD, DenmoHDC) ;
19: ((l ong*) &bitmapinfo->bmi Col ors)[1] = 0x07ED; 64: DemoHDC = 0;
203 ((1 ong*) &bi t mapi nf o- >bmi Col ors)[2] = Ox001F; 653 DempRunni ng = 0;
213 663 Post Qui t Message(0);
22; /1 Berechnen der 16 Bit Farbtabelle 673 br eak;
23: for (int i =0; i < 256; i++) 68: }
24: { 69: return Def WndowProc(hwid, message, wParam | Param);
25: Rab[i] = ColorCode(i, 0, 0); 70: }
263 Gab[i] = ColorCode(0, i, 0); 71
273 Btab[i] = ColorCode(O, O, i); 72: j nt PASCAL W nMai n(H NSTANCE hl nst ance, H NSTANCE hPrevl nst,
28: } 73: LPSTR | pQrdLi ne, int nCrdShow)
29: return 1; 74: {
30: } 75: unsi gned 1 ong Threadl D;
31: 76: MBG nmessage;
32: void BlitGaphic(void *buf) 77
33: { 783 // Tabellen und Strukturen der Bibliothek initialisieren
34: if (!DenoHDC) return; 79: if (!lnitGaphic()) return 0;
35: 80:
36: switch (Fenster_Mdus) 81: I/ Her darf das Demo sich erst einmal initialisieren
37z { 82: if (!demoinit()) return O;
38; case FENSTER 833
39: Set DI Bi t sToDevi ce(DemoHDC, 0, 0, SCREEN X, SCREEN Y, 84: I/ Fenster Erzeugen und Zei gen
40: 0, 0, 0, SCREEN Y, buf, bitmpinfo, 85: if (!lnitDemoWndow(nCmiShow, hinstance)) return O;
41 D B_RGB COLCRS); 86:
42: br eak; 87: /1 Jetzt kann nichts mehr schiefgehen
43: defaul t: gg /1 der Haupt-Thread des Denos kann gestartet werden

PC Magazin Juli1998 233

