
228 Juli 1998 PC Magazin

P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R /
N I L S P I P E N B R I N C K

Multimedia ist seit vielen Jahren
ein Schlagwort der Computer-
industrie. Aber nicht nur Kon-

zerne, sondern auch Künstler haben
das Zusammenspiel von Grafik- und
Soundsystem für sich entdeckt. Das Er-
gebnis ihrer Arbeit sind selbstablaufen-
de Multimediapräsentationen, soge-
nannte Demos.

Eine Demo entsteht in einem kreati-
ven Prozeß, bei dem Programmierer,
Grafiker und Musiker ihre Erfahrungen

und ihr Talent einbringen. In dieser neu-
en Rubrik zeigen wir Ihnen das nötige
Handwerkszeug, um mitreißende Mul-
timedia-Clips zu entwickeln.

Dabei will PC Magazin Ihrer kreati-
ven Ader kräftig auf die Sprünge helfen:
Wir bieten Ihnen als Grundlage lauffähi-
ge Listings an, die Sie persönlich weiter-
entwickeln können. Aus Platzgründen
drucken wir nur die wichtigsten Routi-
nen ab. Die kompletten Programme
können Sie sich von der Heft-CD, von
der Databox oder aus dem Internet-An-

gebot des PC Magazin unter
www.pc-magazin.de

auf Ihren Rechner laden.

■ Step by Step
Wie schreiben Sie nun eine professionel-
le Demo? Auf den ersten Blick könnten
Sie versucht sein, eine komplette Ani-
mation zu berechnen, zu vertonen und
das Ergebnis als Video zu speichern. Das
mag zwar funktionieren, aber die Faszi-
nation von Demos liegt eigentlich darin,
den Computer so weit wie möglich aus-
zureizen, keine Ressourcen zu ver-
schwenden und möglichst alles in Echt-
zeit zu berechnen.

Das ist nicht immer
ganz einfach, aber er-
lernbar. Mit PC Un-
derground führen wir
Sie jeden Monat ein
Stück weiter in die
Geheimnisse der Pro-
fis ein. Bereits nach
kurzer Zeit haben Sie
eine komplette Demo
geschrieben. In dieser
Ausgabe des PC Ma-
gazin legen Sie mit ei-
nem Grafiksystem
für die Windows-
95/NT-Plattform den
Grundstein dazu.
Außerdem lernen Sie
anhand eines einfa-

chen Effektes die ersten Tricks der De-
mo-Programmierer kennen.

Sie benötigen lediglich etwas C-
Kenntnisse und für einige zukünftige
Routinen eventuell – aber nicht unbe-
dingt notwendig – Interesse an Assem-
bler-Programmierung. Als Compiler
eignen sich gleichermaßen die Produkt-
te von Borland, Microsoft, Watcom
oder Intel.

Sie können auf Assembler-Code sogar
vollständig verzichten, da die heutigen
C-Compiler durchweg gute Ergebnisse

produzieren. Besonders erwähnenswert
ist hier der Intel-C/C++-Compiler, des-
sen Code qualitativ oft an handopti-
mierten heranreicht. In den Beispielpro-
grammen bietet Ihnen PC Magazin zu
jeder Assembler-Routine auch das ent-
sprechende C-Pendant an.

■ 32-Bit Protected Mode
Als Entwicklungsplattform dient
Win32, die Demo läuft also unter Win-
dows 95 und NT. Im Hinblick auf die
später in dieser Reihe verwendeten As-
sembler-Module ist es sinnvoll, die Ei-
genheiten des Protected Mode und des
Windows-Speichermodells zu erläutern.

Als noch MS-DOS und Windows
3.1x die PC-Welt regierten, liefen Pro-
gramme im 16-Bit-Real-Mode und Pro-
tected Mode. 16 Bit deshalb, weil alle
Prozessorregister 16 Bit breit waren.

Der Nachteil daran war, daß ein 16 Bit
breites Register nur 64 KByte (= 65 536)
Speicherblöcke adressieren konnte. Die
Blöcke wurden daher mit einem Regi-
sterpaar angesprochen, nämlich mit ei-
ner Segment- und einer Offset-Adresse.
Natürlich konnte ein Programm mehre-
re dieser Blöcke anfordern, aber bei
großen Datenstrukturen war dies sehr
unpraktisch.

Mit der Einführung des 386-Prozes-
sors von Intel wurden alle Register auf
32 Bit erweitert. Anfangs war es nicht
einfach, diese wirklich effektiv zu q

Demo-Programmierung unter Windows 95/NT

Grafik mit System
Die Programmierung schneller Grafikeffekte unter Windows ist keine
Zauberei. Schaffen Sie mit einer Bibliothek die Grundlagen dazu.

DIE GRAFIK für unser Beispielprogramm enthält 256 Farben.

DATEN –
STÄNDIG AKTUELL

Alle Daten (Listings und Bilder) zu un-
serem Beispielprogramm liegen auf der
Homepage des PC Magazin für Sie be-
reit:

www.pc-magazin.de

Sie finden diese Daten deshalb in unse-
rem Online-Programm, da wir sie stän-
dig aktualisieren und mit jeder neuen
Ausgabe weiter ausbauen.

PC Magazin Juli 1998 229

P C U N D E R G R O U N D
P R A X I S

PILGERFAHRT NACH FALLINGBOSTEL
Schwer bepackte Jugendliche pilgerten
Karfreitag dieses Jahres nach Fallingbostel
in die Lüneburger Heide. Doch nicht, um
Buße zu tun oder die Ostermesse zu besu-
chen. Ihr Ziel war die Mekka & Symposium
98, Deutschlands bisher wohl größte De-
mo-Party.

Mit Demos sind hier nicht Testversionen
kommerzieller Software gemeint. Diese
Demos bestehen vielmehr aus einer Mi-
schung verschiedener Effekte und Grafi-
ken, hinterlegt mit Musik. In ihrer Art erin-
nern sie oft an moderne Musikvideos, wie
sie bei MTV oder VIVA laufen.
Das Schreiben von Demos entwickelte sich
in den 90er Jahren zu einer richtigen Ju-
gendkultur mit eigener Szene und eben
auch großen Partys. Heutige Programme
enthalten mehrere MByte an Code und Da-
ten, weshalb sich verschiedene Speziali-
sten die Arbeit aufteilen.
Grafiker entwerfen kleine Logos und
Schriftsätze sowie hochauflösende Bilder
und Animationen. Handarbeit besitzt
großen Wert, der Einsatz von Scannern ist
verpönt. Elektronische Hilfsmittel wie Fil-
ter oder Raytracer schaffen dafür oft
atemberaubende Effekte.
Zum visuellen Eindruck fügen Musiker
noch das Klangerlebnis hinzu. Sie reihen
Samples zu einzelnen Tracks aneinander
und komponieren daraus ihre Songs.
Die Programmierer – in der Szene Coder
genannt – schreiben den eigentlichen
Quellcode der Demos. Sie implementieren
Laderoutinen für die Grafiken, entwickeln
immer neue überraschende Grafikeffekte
und kämpfen dabei um jedes Quentchen
Geschwindigkeit, das dem Prozessor zu
entlocken ist. Schließlich sorgen sie auch
dafür, daß die Songs synchron mit dem
selbstablaufenden Grafikspektakel einset-
zen.
Die Mekka & Symposium ‘98 war eine ein-
malige Gelegenheit, Grafikprogrammierer
und Musiker aus dem In- und Ausland zu

treffen. Die 72 Stunden dauernde Party bot
den rund 850 fast durchweg männlichen
Besuchern genug Zeit, um neue Ideen zu
besprechen und Wissen auszutauschen.
Der Blick über den Tellerrand war erlaubt,
neben der PC-Welt gab sich auch die Com-
modore-Gemeinde der C64er und Amigas

die Ehre.
Im Gepäck durfte ein
gutbestückter Rech-
ner natürlich nicht
fehlen, und so bot die
angemietete Mehr-
zweckhalle bald das
Bild eines Raumfahrt-
Kontrollzentrums.
Per Ethernet ent-
stand ein großes
Partynetzwerk, über
das Daten und Pro-
gramme, aber auch
schon mal das eine
oder andere Netz-
werkspiel flossen.
Den allgemeinen
Lärmpegel steigerten

einige Teilnehmer zusätzlich mit einer Ste-
reoanlage oder einem Synthesizer.
Gelegentlich führte der hohe Energiever-
brauch der mitgebrachten Kaffeemaschi-
nen, Mikrowellen und Waffeleisen zu
Stromausfällen, die
zu kurzen Pausen an
der Pommes-Bude
vor der Halle genutzt
wurden.
Hauptereignisse der
Party waren Wettbe-
werbe, zu denen je-
der Besucher seine
Demos, Spiele, Grafi-
ken und Musikstücke
einreichen konnte.
Die Ergebnisse wur-
den dann auf eine
8 x 6 Meter große
Leinwand projeziert
und von einer baß-
kräftigen Sound-An-
lage unterstützt. Je-
der im Saal konnte so
die Präsentation ver-
folgen, und wer sich
im benachbarten Schlafzelt zur Ruhe ge-
legt hatten, spürte noch die Bässe in den
Knochen.
Ab und zu ging ein bewunderndes Raunen
durch die Halle, manchmal tobte der Ap-
plaus. So auch bei der Siegergrafik von Cy-
clone/Abyss mit dem geheimnisvollen Ti-
tel Hänsel und Gretel im Paradies des blu-
tigen Todes.
Bei den PC-Demos trug die Gruppe Matrix
mit dem aufwendig gestalteten Fulcrum
einen überragenden Sieg davon. Die Wahl

der Gewinner erfolgte in bester Basisde-
mokratie durch alle Anwesenden.
Auf der Heft-CD finden Sie neben den bei-
den Gewinnern weitere Demos, Spiele,
Grafiken und Sounddateien im mod-For-
mat der Mekka & Symposium ‘98. Auf mehr
Material verweist die von den Veranstal-
tern betriebene WWW-Seite

http://ms.demo.org

Eine sehr gute Übersicht über international
anstehende Partytermine bietet

www.hornet.org/ha/pages/
➥calendar.html

Eine kleine Kuriosität am Rande war die er-
ste Demo für den Nintendo Gameboy,
welche auf einem Emulator lief. Auf der Vi-
deo-Leinwand sorgte die sehr pixelige Dar-
stellung aber eher für eine anerkennende
Würdigung als für gebanntes Staunen.
Der geplante Demo-Wettbewerb für Win-
dows 95 fiel mangels Beteiligung aus. Das
mag vor allem daran liegen, daß viele Co-
der die Hardware gerne direkt unter MS-
DOS ansprechen, was Windows nun mal
nicht zuläßt. Windows bietet dafür andere
Annehmlichkeiten für die Programmierer,
und moderne Prozessoren halten längst
die geforderte Leistung bereit. So ist es
wohl nur eine Frage der Zeit, wann auch an-
spruchsvolle Demos für Windows 95/NT
das Licht der Welt erblicken.

Vielleicht sind Sie einer der ersten, die ei-
ne Demo für Windows 95/NT produzie-
ren. Denn PC Magazin startet in dieser Aus-
gabe die neue Rubrik PC Underground, die
an die Stelle des 1000-Zeilen-Wettbe-
werbs tritt. In den ersten Folgen erfahren
Sie von zwei Codern der Gruppe Cu-
bic&$een Tricks zur Grafikprogrammie-
rung unter 32-Bit-Windows. Dabei ent-
wickeln Sie schrittweise eine komplette
Demo mit allem, was dazugehört.

RÜDIGER PEIN/BM

PARTYATMOSPHÄRE wie im Raumfahrtzentrum

HÄNSEL UND GRETEL im Paradies des blutigen Todes

230 Juli 1998 PC Magazin

P C U N D E R G R O U N D
P R A X I S

nutzen: Weder MS-DOS noch Win-
dows 3.1x waren darauf ausgelegt, Pro-
gramme im 32-Bit-Protected-Mode aus-
zuführen. Seit Win32s, Windows 95 und
NT stellt dies kein Problem mehr dar.
Auch unter DOS umgehen Sie dieses
Problem mit dem Einsatz sogenannte
DOS-Extender.

Mit 32 Bit breiten Registern adressie-
ren Sie nun einen Adreßbereich von 4
GByte linear. Das bedeutet, daß Sie
mehr als 64 KByte Speicher an einem
Stück anfordern und ansprechen kön-
nen. Programme werden dadurch einfa-
cher und übersichtlicher.

■ Windows-
Programmierung
Beim Schreiben einer Demo möchten
Sie sich nicht jedesmal um die Initialisie-
rung eines Fensters kümmern. Diese
Aufgaben und häufig gebrauchte Funk-
tionen fassen Sie deshalb in einer Biblio-
thek zusammen.

Ihre Aufgabe ist es nun, solch ein Ba-
sissystem auf der Grundlage der Win-
dows-GDI (Graphics Device Interface)
zu schreiben. Diese Schnittstelle kann
Grafiken laden, Farbmanipulationen an
Bildern durchführen und berechnete
Bilder entweder in einem Fenster oder
im Vollbildmodus darstellen. Zudem
kann sie den Ablauf einer Demo unab-
hängig von der Geschwindigkeit des
Rechners steuern.

Zunächst einmal sind Demos keine in-
teraktiven Programme. Windows selbst
ist aber darauf ausgelegt, nicht nur In-
halte in Fenstern darzustellen, sondern
auch auf Eingaben des Benutzers zu rea-
gieren. Da Sie in unserem Fall nicht auf
spezielle Benutzereingaben achten müs-
sen, genügt ein einfacher Windows-
Startup, der für die eigentliche Demo al-
les unsichtbar erledigt.

Dieser Startup ist so allgemein und
unabhängig, daß man ihn durch einen
anderen ersetzen könnte. Somit wäre ein
und dieselbe Demo auf anderen Be-
triebssystemen lauffähig.

Eine normale Anwendung erzeugt
prinzipiell ein Fenster mit einem Event
Handler, also einer Prozedur, die auf
Eingaben des Anwenders reagiert. Da-
nach arbeitet die Anwendung bis zum
Schließen des Fensters eine Hauptschlei-
fe ab.

Diese Schleife wartet auf Benutzerein-
gaben oder Nachrichten und leitet diese
dann an das zuständige Fenster bezie-
hungsweise dessen Event Handler wei-

ter. Diese führen dann vom Program-
mierer bestimmte Routinen aus. Da die
Interaktion des Benutzers bei einer De-
mo auf das vorzeitige Beenden des Pro-
gramms beschränkt sein soll, ist der
Event Handler sehr einfach.

Da Windows ein Multitasking-Be-
triebssystem ist, können mehrere Pro-
gramme gleichzeitig ablaufen. Die Ver-
waltung der einzelnen Programme und
Programmabläufe (Threads) übernimmt
dabei der Windows-Kernel (Betriebssy-
stemkern). Sie brauchen sich also als
Programmierer darüber keine Gedan-
ken zu machen. Bei der Verwendung
mehrerer Threads spricht man von Mul-
tithreading.

Für eine Demo ist Multithreading die
ideale Lösung. Sie teilen das Programm
einfach in zwei Threads auf: Der erste
Thread ist für die Windows-Messages
zuständig, während der zweite die ei-
gentliche Demo und deren Ablauf dar-
stellt.

■ Aufbau des Basissystems
Das Basissystem der Demo sollte so un-
abhängig vom Betriebssystem sein, daß
Sie sich als Programmierer nicht mehr
im geringsten mit der Windows-Pro-
grammierung beschäftigen müssen. Sie
werden bei der Entwicklung Ihrer De-
mos nur noch zwei Funktionen imple-
mentieren:
• Die Funktion

BOOL demoinit(void)

enthält Initialisierungs-Routinen, zum
Beispiel, um Grafiken zu laden oder
Musik zu starten. Nach erfolgreicher
Ausführung geben Sie in demoinit den
Wert 1 (für true) zurück.
• In die Funktion

void demomain(void)

schreiben Sie den Ablauf der Demo, al-
so den eigentlichen Programmcode. Da-
bei stehen Ihnen verschiedene Biblio-
theksfunktionen zur Verfügung:

unsigned long GetDemoTime(void)

GetDemoTime gibt die seit dem De-
mostart verstrichene Zeit in Millisekun-
den wieder. Dies ist notwendig, wenn
ein Effekt unabhängig von der Rechner-
geschwindigkeit ablaufen soll. Im Bei-
spiel dieser Ausgabe ist es die Lichtquel-
le, deren Position abhängig von der ver-
strichenen Zeit bestimmt wird.

unsigned short ColorCode(
int r,int g,int b)

ColorCode liefert für das Wertetripel (r,
g und b) den Farbwert des in der Demo
verwendeten Farbmodells.

void BlitGraphic(void *buf)

Mit BlitGraphic übergeben sie einen
Zeiger auf ein darzustellendes Bild.

int bmp_load(char *name,
bitmaptype &bitmap)

Mit bmp_load laden Sie bmp-Dateien
für den Gebrauch in Ihre Demo. Der
Typ bitmaptype ist selbstdefiniert und
enthält Breite, Höhe und Zeiger auf die
Bilddaten. Den genauen Aufbau entneh-
men Sie dem Quelltext.

void bmp_make16bitpalette(
bitmaptype &bitmap)

bmp_make16bitpalette konvertiert im
Falle einer 256-Farben-Bitmap die Farb-
palette in das in der Demo verwendete
Farbmodell (siehe Textbox oben).

void bmp_free(
bitmaptype &bitmap)

bmp_free gibt den Speicher einer gela-
denen Bitmap-Datei wieder frei.

Außerdem stellt die Bibliothek noch
einige Tabellen und Konstanten bereit,
deren Bedeutung Sie anhand des Bei-
spiels erfahren. q

DAS VERWENDETE FARBMODELL
Das in diesem Projekt verwendete Farb-
modell entspricht jenem, das die meisten
Grafikkarten in HiColor-Modi verwenden.
Dazu steht für jedes Pixel ein 16 Bit breiter
Wert zur Verfügung, in dem jeweils ein Be-
reich der Bits den Rot-, Grün- und Blauan-
teil (RGB) einer Farbe darstellt.
Die Bereichsgrößen sind jeweils 5 Bit für
Rot und Blau und 6 Bit für Grün. Der Auf-
bau sieht also folgendermaßen aus:

RRRRRGGGGGGBBBBB

Drei Tabellen – für jede Primärfarbe eine
– mit jeweils 256 Einträgen vereinfachen
die Handhabung. Das sind natürlich mehr
als notwendig: Mit 5 Bit lassen sich maxi-
mal 25 = 32 verschiedene Abstufungen er-
zeugen. Viele der 256 Einträge enthalten

daher den gleichen Wert. Dennoch sind
diese Tabellen sehr nützlich, sie vereinfa-
chen und beschleunigen grafische Effekte
mit Farbmanipulationen.
Den Farbwert eines satten Orangetons er-
halten Sie etwa durch Auslesen der Ein-
träge 230, 100 und 20 aus den Tabellen
und einer bitweisen Oder-Verknüpfung:

unsigned short farbwert =
➥Rtab[230] | Gtab[100] |
➥Btab[20];

Die Farben ergeben sich durch additive
Farbmischung, das heißt größere Werte
(bis einschließlich 255) ergeben einen hel-
leren Anteil der Primärfarbe. Das Werte-
tripel (255,255,255) ergibt also Reinweiß,
(0,0,0) die Farbe Schwarz.

232 Juli 1998 PC Magazin

P C U N D E R G R O U N D
P R A X I S

■ Implementierung des
Basissystems
Jedes Windows-Programm startet mit
der Routine WinMain. Diese soll nun ei-
ne Bitmap-Info erzeugen, um eine Gra-
fik mit einem bestimmten – vom Pro-

grammierer festgelegten – Aufbau in ei-
nem Fenster darzustellen. Außerdem
soll sie ein Fenster öffnen, in dem die
Demo angezeigt wird.

Die Prozedur InitGraphic(void) er-
zeugt diese Bitmap-Info. Sie fordert da-
zu eine Variable des Typs BITMAPIN-
FO an und trägt Breite und Höhe des
Fensters sowie das verwendete Farbmo-
dell ein.

Das Erzeugen des Fensters ist Aufga-
be der Prozedur InitDemoWindow. Da-
zu registriert sie eine neue Fensterklasse,
legt mit CreateWindowEx eine Instanz
davon an und stellt sie mit ShowWindow
dar. Die Definition einer Fensterklasse
enthält zum Beispiel das Erscheinungs-
bild eines Fensters mit den vorhandenen
Buttons, dem Icon und dem Mauscur-
sor. Zudem speichert sie einen Verweis
auf die Funktion, die die Nachrichten
dieses Fensters verarbeitet.

Wenn das Fenster sichtbar ist, wird
noch der Device Context in einer Varia-
ble gesichert. Um Grafiken im Fenster
darzustellen, beziehen Sie sich von nun
an auf diesen Verweis.

Außerdem setzt InitDemoWindow
die Priorität des ersten Threads, der die
Nachrichten an das Fenster verarbeitet,
auf den niedrigsten Wert. Dadurch kön-
nen Sie dem zweiten Thread, der nach
InitDemoWindow startet, eine hohe Pri-
orität geben. Sie gewähren somit dem
Programmcode für die Demo mehr Re-
chenzeit. Nach den Initialisierungsar-

beiten geht WinMain in die Message-
Schleife über, die die Nachrichten an die
Message-Funktion weiterleitet und das
Programmende abwartet.

Die Message-Funktion des Demofen-
sters ist wie bereits erwähnt sehr einfach.
Diese Funktion wird immer aufgerufen,

wenn eine Nachricht
an das Fenster ge-
sandt wird. Die
Nachrichten stam-
men entweder vom
Windows-System
selbst oder vom Be-
nutzer.

Für das Demofen-
ster sind nun zwei
Nachrichten interes-
sant: WM_DEST-
ROY zeigt an, daß
das Fenster geschlos-
sen werden soll,
WM_KEYDOWN
signalisiert einen Ta-
stendruck. In beiden
Fällen soll die Demo

beendet werden. Dazu geben Sie den
Device Context wieder frei und teilen
der Message-Schleife über PostQuit-
Message mit, daß das Programm beendet
werden soll.

Alle anderen Nachrichten, die nicht
speziell behandelt werden müssen, über-
geben Sie an DefWindowProc. Diese
Prozedur verwaltet Nachrichten wie das
Verschieben des Fensters oder das Öff-
nen des System-Menüs und enthält
Standardbehand-
lungsroutinen für die
meisten Nachrichten.

Der BlitGraphic-
Funktion übergeben
Sie einen Zeiger auf
eine Bitmap, deren
Farbwerte dem ver-
wendeten Farbmo-
dell entsprechen. Sie
ruft die benötigten
Windows-GDI-
Funktionen auf, um
eine Device Indepen-
dent Bitmap in einem
Fenster darzustellen.
Dabei handelt es sich
um eine Bitmap, die
unabhängig vom
Bildschirmmodus ist, in dem sich die
Grafikkarte befindet. Muß das Bild
nicht skaliert werden, kommt dafür Set-
DIBitsToDevice in Frage, für alle ande-
ren Fälle erledigt dies die Funktion
StretchDIBits.

■ Der erste Demoeffekt

Bevor Sie den ersten Demoeffekt pro-
grammieren, zeigt Ihnen folgendes Bei-
spiel den Umgang mit der Grafikbiblio-
thek:

#include „demo.h“

bitmaptype bmp;

BOOL demoinit(void)
{

bmp_load(„BACK256.BMP“, bmp);
bmp_make16bitpalette(bmp);
return 1;

}

void demomain(void)
{

unsigned short screen[
SCREEN_X*SCREEN_Y];

for (int i=0;
i<SCREEN_X*SCREEN_Y;
i++)

screen[i]=bmp.sColors[
bmp.cBitmap[i]];

BlitGraphic(screen);
while (DemoRunning);

}

Die Funktion demoinit lädt eine 256-
Farben-Bitmap in Fenstergröße und be-
reitet eine Palette fürs Farbmodell vor.

Mit Hilfe dieser in bmp.sColors ge-
speicherten Palette setzt nun demomain
jedes Pixel in den virtuellen Bildschirm
screen. Die Funktion BlitGraphic stellt
das fertige Bild im Fenster dar, die nach-
folgende While-Schleife wartet, bis das
Demosystem das Ende signalisiert. In
diesem Fall enthält die Variable De-
moRunning den Wert 0 (für false).

Als Beispiel für die Nutzung des Ba-
sissystems der Demo laden Sie eine bmp-
Datei und stellen sie mit einer darüber
schwebenden Lichtquelle dar. Die fol-
genden Schritte implemetieren Sie in der
Funktion demoinit:

DIESE LIGHTMAP erzeugt den Lichteffekt.

DIE ÜBERLAGERUNG von Bitmap und Lightmap sieht so aus.

PC Magazin Juli 1998 233

P C U N D E R G R O U N D
P R A X I S

Zunächst laden Sie mit bmp_load eine
Bitmap mit 320 x 240 Bildpunkten und
256 Farben in den Speicher. Nun soll ei-
ne Lichtquelle über das Bild wandern.
Die Bitmap soll nahe der Lichtquelle hell
sein und mit zunehmender Entfernung
dunkler werden.

Sie arbeiten im folgenden mit 32 Hel-
ligkeitsstufen, und für alle 256 Farben
des Bildes berechnen Sie in einer soge-
nannten Shading-Tabelle die 32 Abstu-
fungen vor. Dazu multiplizieren Sie die
Rot-, Grün- und Blauwerte mit der Hel-
ligkeitsstufe und teilen das Ergebnis
durch 12. Ist die Helligkeitsstufe größer
als 24, so addieren Sie noch einen Wert
hinzu. Durch eigene Versuche bestim-
men Sie ähnlich geeignete Werte – diese
bewirken dann ein leicht geändertes Er-
scheinungbild.

Nun berechnen Sie noch eine soge-
nannte Lightmap. Das ist eine Bitmap,
die viermal so groß ist wie das Original,
also 640 x 480 Bildpunkte. Jeder Bild-
punkt der Lightmap enthält den Hellig-
keitswert, der von seiner Entfernung
zum Mittelpunkt (320,240) der Light-
map abhängt. Diesen Wert bestimmen
Sie durch den Sinus des Abstands. Auch
diese Formel entstammt empirischen

Versuchen und erlaubt leichte Modifika-
tionen.

Die Berechnung der Einzelbilder er-
folgt nun in der demomain-Funktion:
Ein neues Bild berechnen Sie, indem Sie
die Lightmap über der Bitmap verschie-
ben und dann beide überlagern.

Bei diesem Verfahren führen zu große
Verschiebungen der Lightmap zu Stel-
len, an denen sie nicht mehr mit der Bit-
map überlappt. Diese Bereiche sind aber
ohnehin sehr weit von der Lichtquelle
entfernt, die sich ja in der Mitte der
Lightmap befindet. Deswegen dürfen
Sie dort getrost den gleichen Hellig-
keitswert wie am Rand der Lightmap an-
nehmen.

Da die X-Koordinaten der Lightmap
für alle Spalten des Endbildes gleich sind
(dasselbe gilt für die Y-Koordinaten be-
züglich der Zeilen), berechnen Sie sie vor
dem eigentlichen Zeichnen vor und spei-
chern sie in pos_x[] (bzw. pos_y[]). Für
jedes Pixel des Endbildes lesen Sie den
entsprechenden Wert der Lightmap und
den Pixel des Originalbildes aus und be-
stimmen mit Hilfe der Shading-Tabelle
den neuen Farbwert. Diese neuen Farb-
werte stehen dann in screen und gelan-
gen mit BlitGraphic zur Darstellung.

Sie sehen, wie die verschiedenen vor-
berechneten Tabellen (Lightmap, Sha-
ding-Tabelle und pos_x[] bzw. pos_y[])
dazu beitragen, die Animation flüssig
laufen zu lassen. Natürlich könnten Sie
auch in der Hauptschleife für jeden Pixel
den Abstand zur Lichtquelle und damit
den Helligkeitswert bestimmen, dann
die Farbe des Pixels der Bitmap auslesen
und anhand dieser RGB-Werte eine
neue Farbe bestimmen. Nur würde das
Ergebnis nicht mehr einer Bewegung,
sondern mehr einer Slideshow ähnlich
sehen.

■ Ausblick
Den ersten Teil mit der Vorstellung des
Grafiksystems und den ersten Ein-
blicken in die Demoprogrammierung
haben Sie nun gemeistert. In den näch-
sten beiden Ausgaben des PC Magazin
entwickeln Sie eine 3D-Engine, mit der
Sie komplexe animierte Szenen in Echt-
zeit berechnen.

Fertige Demos der beiden Autoren
können Sie im Internet unter

www.cubic.org

herunterladen. Dort finden Sie im Ab-
schnitt Gallery Demos für DOS und
Windows. s P E I / B M

1 Ausschnitt aus Demosys.cpp

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:

static BOOL InitGraphic(void)
{

// Vorbereiten eines BitmapInfoHeaders fÅr
// alle Grafikausgaben.
int bisize = sizeof(BITMAPINFOHEADER);
bitmapinfo = (BITMAPINFO *)malloc(bisize + 12);
ZeroMemory(&bitmapinfo->bmiHeader, bisize);

// BitmapInfoHeader eines normalen 16-Bit-Bitmaps,
// wie wir es brauchen, erzeugen
bitmapinfo->bmiHeader. biSize = bisize;
bitmapinfo->bmiHeader. biWidth = SCREEN_X;
bitmapinfo->bmiHeader. biHeight = -SCREEN_Y;
bitmapinfo->bmiHeader. biPlanes = 1;
bitmapinfo->bmiHeader. biBitCount = 16;
bitmapinfo->bmiHeader. biCompression = BI_BITFIELDS;
// Farb-Felder des 16-Bit Bitmaps setzen.
((long*) &bitmapinfo->bmiColors)[0] = 0xF800;
((long*) &bitmapinfo->bmiColors)[1] = 0x07E0;
((long*) &bitmapinfo->bmiColors)[2] = 0x001F;

// Berechnen der 16 Bit Farbtabelle
for (int i = 0; i < 256; i++)
{

Rtab[i] = ColorCode(i, 0, 0);
Gtab[i] = ColorCode(0, i, 0);
Btab[i] = ColorCode(0, 0, i);

}
return 1;

}

void BlitGraphic(void *buf)
{

if (! DemoHDC) return;

switch (Fenster_Modus)
{
case FENSTER:
SetDIBitsToDevice(DemoHDC, 0, 0, SCREEN_X, SCREEN_Y,

0, 0, 0, SCREEN_Y, buf, bitmapinfo,
DIB_RGB_COLORS);

break;
default:

44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:

RECT r;
GetClientRect(DemoHWND, &r);
StretchDIBits(DemoHDC, 0, 0, r. right, r. bottom, 0, 0,

SCREEN_X, SCREEN_Y, buf, bitmapinfo,
DIB_RGB_COLORS, SRCCOPY);

break;
}

}

long CALLBACK WindowProc(HWND hWnd, UINT message,
WPARAM wParam, LPARAM lParam)

{
// Dies ist die Message Funktion des Demo-Fensters.
// Da das Fenster selbst sogut wie keine FunktionalitÑt
// haben mu·, ist diese Funktion sehr kurz
switch (message)
{

case WM_DESTROY:
case WM_KEYDOWN:

ReleaseDC(DemoHWND, DemoHDC);
DemoHDC = 0;
DemoRunning = 0;
PostQuitMessage(0);
break;

}
return DefWindowProc(hWnd, message, wParam, lParam);

}

int PASCAL WinMain(HINSTANCE hInstance, HINSTANCE hPrevInst,
LPSTR lpCmdLine, int nCmdShow)

{
unsigned long ThreadID;
MSG message;

// Tabellen und Strukturen der Bibliothek initialisieren
if (! InitGraphic()) return 0;

// Hier darf das Demo sich erst einmal initialisieren
if (! demoinit()) return 0;

// Fenster Erzeugen und Zeigen
if (! InitDemoWindow(nCmdShow, hInstance)) return 0;

// Jetzt kann nichts mehr schiefgehen
// der Haupt-Thread des Demos kann gestartet werden

