
218 August 1998 PC Magazin

P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R /
N I L S P I P E N B R I N C K

Ein komplexer dreidimensionaler
Körper läßt sich nur sehr schwer
im zweidimensionalen Speicher-

bereich Ihres Rechners nachbilden – so
scheint es auf den ersten Blick. Doch im
Prinzip bestehen 3D-Objekte lediglich
aus Punkten (Vertices, Singularform:
Vertex) und Polygonen (Faces).

Zur Vereinfachung beschränkt sich
die 3D-Engine auf die Darstellung von
Dreiecken dieser Ausgabe. Am einfach-
sten ist es, eine Struktur oder ein Objekt
zu erzeugen, das Vertices und Faces
voneinander getrennt in zwei Arrays
speichert.

Ein Vertex ist ein Ortsvektor, der die
Position des Punktes im Raum angibt.
Ein Vektor und ein Vertex sind also von
der Struktur her identisch. Heißt es im
Text Vertices, sind damit Eckpunkte des
3D-Objekts gemeint. Finden Sie den
Ausdruck Vektor, handelt es sich um ei-
nen Wert, mit dem gerechnet wird.

Für ein Face brauchen Sie mehr Infor-
mationen: Neben den Indizes der Verti-
ces, die das Dreieck aufspannen, sind
noch dessen Farbe und ein
paar andere Daten interes-
sant.

3D-Engines sind einfach
aufgebaut: Alle auf Polygo-
nen basierenden Engines ver-
wenden eine nahezu identi-
sche Hauptschleife – im Fach-
jargon „Pipeline“ genannt.
Die Standard-Pipeline arbei-
tet in fünf Schritten.
• Sie transformiert die Ob-
jekt-Geometrie vom Objekt-
in das Welt-Koordinatensy-
stem,
• entfernt nicht sichtbare Po-
lygone (Backface Culling),

• berechnet die Beleuchtung (Shading),
• schneidet den nicht sichtbaren Bereich
ab (Clipping)
• und zeichnet die Polygone (Rende-
ring).

Anfangs ist etwas Grundwissen in li-
nearer Algebra und Matrizen-Rechnung
nötig. In den Formeln beschreibt 3 das
Kreuzprodukt (zweidimensionales
Vektorprojekt) und o das Skalarpro-
dukt (dreidimensionales Vektorpro-
dukt) zweier Vektoren.

■ Transformationen
Da Sie im Moment noch keine frei be-
wegliche Kamera für die Engine benöti-
gen, sind Transformationen wie Dre-
hungen, Größenänderungen und Ver-
schiebungen relativ einfach zu realisie-
ren. Stellen Sie diese Operationen in der
Matrix-Schreibweise dar. Das ist sehr
übersichtlich und spart viel Zeit bei der
Berechnung. Die Rotation eines Vektors
um die z-Achse mit dem Rotationswin-
kel ϕ beschreibt die Matrix

MZ =
+ () − ()
+ () + ()

cos sin

sin cos

ϕ ϕ
ϕ ϕ

0

0
0 0 1

Möchten Sie einen Punkt a um die z-
Achse rotieren lassen, multiplizieren Sie
ihn mit dieser Matrix. Die Koordinaten
des Zielpunktes b erhalten Sie über die
einzelnen Rechenschritte:

b.x=a.x*cos(ϕ)-a.y*sin(ϕ)+a.z*0
b.y=a.x*sin(ϕ)+a.y*cos(ϕ)+a.z*0
b.z=a.x*0+a.y*0+a.z*1

Die Rotationsmatrizen für die y- und x-
Achse sehen ähnlich aus:

Sie brauchen nicht jeden Punkt nachein-
ander mit allen drei Matrizen multipli-
zieren. Wenn Sie zunächst das Produkt
aus den Matrizen bilden, erhalten Sie ei-
ne Matrix für alle drei Transformatio-
nen.

Für wenige Punkte lohnt sich dieser
Aufwand sicherlich nicht, da eine Matri-
zen-Multiplikation sehr viel Rechenauf-
wand benötigt. Bereits einfache Objekte
besitzen aber meist schon über 200 Ver-
tices. Daher beschleunigt die Kombina-
tion der Matrizen die Berechnung er-
heblich.

Die Darstellung der ausmultiplizier-
ten Rotationsmatrix sei Ihnen an dieser
Stelle erspart. Im Code der 3D-Engine
finden Sie eine Routine, die diese Matrix
direkt berechnet.

Die zweite, auf Objekte gerichtete
Operation ist die Skalierung. Mit der
Matrix

M
s x

s y
s z

scale =
.

.
.

0 0
0 0
0 0

MX = + () − ()
+ () + ()

1 0 0
0

0

cos sin

sin cos

ϕ ϕ
ϕ ϕ

MY =
+ () + ()

− () + ()

cos sin

sin cos

ϕ ϕ

ϕ ϕ

0
0 1 0

0

Demo-Programmierung unter Windows 95/NT

Begnadete Körper
Mit Drehungen und Streckübungen bringen Sie nicht Ihren, sondern
dreidimensionale Körper in Bewegung. Statt Muskeln trainieren Sie dabei
die mathematischen Grundlagen.

TORUS MIT EINFACHEM Flat Shading

PC Magazin August 1998 219

P C U N D E R G R O U N D
P R A X I S

vergrößern und verkleinern Sie Objekte
um den Skalierungsfaktor s.

Die Translation (Verschiebung) stellt
Sie zunächst vor das Problem, die geeig-
nete Matrix dafür zu finden. Der Trick
besteht darin, die 333-Matrix auf eine
434-Matrix zu erweitern und jeden
Vektor um eine vierte (nicht benutzte)
Komponente zu vergrößern.

Natürlich können Sie keinen 3D-Vek-
tor mit einer 434-Matrix multiplizieren.
Deshalb fügen Sie dem Vektor eine vier-
te Komponente hinzu, die immer den
Wert 1 besitzt.

Auch die alten 333-Matrizen schrei-
ben Sie einfach in 434-Matrizen um:

Im Quelltext von 3dengine.cpp bildet
tobject::build_ltm (void)

die lokale Transformationsmatrix.

■ Backface Culling
In der 3D-Grafik geht man davon aus,
daß Polygone einseitig sind. Sie besitzen
also nur eine Vorder- und eine Rücksei-
te. Dieser kleine Trick spart bereits bis
zu 50 Prozent Rechenzeit ein.

Nehmen Sie als Beispiel einen Würfel.
Von außen betrachtet, sehen Sie nur sei-
ne Außenseiten. Bei der Darstellung als
3D-Objekt wäre es daher sinnlos, die
immer durch eine andere Vorderseite
verdeckten Polygone an der Rückseite
des Würfels zu zeichnen.

Ob ein Polygon sichtbar ist oder
nicht, finden Sie mit einfacher Vektor-
arithmetik heraus. Zunächst ermitteln
Sie den sogenannten Normalenvektor
des Polygons: Er steht im rechten Win-
kel auf dem Polygon. Sind A, B und C
die Vertices der Polygonebene, errech-
nen Sie ihn einfach aus dem Kreuzpro-
dukt

Normalenvektor = [C-A] 3 [C-B]
Das Ergebnis normieren Sie auf die Län-
ge 1, indem Sie jede Komponente durch
die Länge des Vektors dividieren. Da die
Blickrichtung der Kamera der z-Achse
entspricht, finden Sie recht einfach her-
aus, ob das Polygon sichtbar ist oder
nicht: Sobald der z-Anteil des Norma-

4 4

0

0

0
0 0 0 1

3 3× = ×

M

t x
t y
t ztrans =

1 0 0
0 1 0
0 0 1
0 0 0 1

.

.

.

lenvektors positiv ist, kann der Betrach-
ter es nicht mehr sehen. Ein kleines Pro-
blem gibt es bei diesem Verfahren: Das
Objekt wird transformiert. Um Dre-
hung, Skalierung und Verschiebung aus-
zugleichen, müßte man die Transforma-
tion auf die Normalenvektoren anwen-
den oder diese für jedes Bild neu ermit-
teln. Beides kostet sehr viel Rechenzeit.

Berechnen Sie die Sichtbarkeit der
Faces deshalb vor der Drehung der
Punkte. Dazu benötigen Sie zunächst

die Inverse der Transformationsmatrix,
die deren Aktionen wieder rückgängig
macht. Als Beispiel nehmen wir die Ma-
trix M, die zunächst einen Punkt 30
Grad um die z-Achse dreht und dann
um den Vektor <1,2,3> verschiebt. Die
Inverse dieser Matrix verschiebt
zunächst den Punkt um <-1,-2,-3> und
rotiert dann mit -30 Grad um die z-Ach-
se. Wichtig: Die Inverse kehrt nicht nur
die Vorzeichen der Werte um, sondern
auch die Reihenfolge der Operationen.

Mit der inversen Matrix multiplizie-
ren Sie jetzt die Position der Kamera, die
bei festem Kamerastandpunkt im Ur-
sprung <0,0,0> liegt:

Lokale Kamera := (<0,0,0> * Inverse
Matrix)

So erhalten Sie die vom Objekt aus gese-
hene Position der Kamera.

Diese recht aufwendige Matrix-Inver-
sion berechnet die Funktion angle_per-
serving_matrix_inverse in 3dmath.cpp.
Die dort benutzte Implementation von
Kevin Wu1 ist für die in der 3D-Grafik
vorkommenden Matrizen optimiert und
sehr schnell. Sie funktioniert jedoch aus-
schließlich mit aus Rotationen, Skalie-
rungen und Translation berechneten
4x4-Matrizen.

Da Sie die Kameraposition rückwärts
transformiert haben, brauchen Sie für

den Sichtbarkeitstest die Transformati-
on des Objekts nicht mehr zu beachten.
Das Polygon zeigt mit seiner Vordersei-
te dann zum Betrachter, wenn gilt:

(Normalenvektor o Lokale Kamera)
>= (Normalenvektor o a)

Dabei ist a ein beliebiger, nichttransfor-
mierter Vertex des Face.

Der Normalenvektor und somit auch
der Normalenvektor o a ist für jedes
Polygon konstant. Daher berechnet die
Routine tobject::calc_ facenormals() die-

se Werte vor dem ersten
Zeichnen des Objekts und
speichert sie in der Polygon-
struktur.

■ Es werde Licht
Die 3D-Engine dieser Ausga-
be beherrscht vorläufig ledig-
lich Flat-Shading: die ein-
fachste Art der Beleuchtung.
Den Anteil des einfallenden
Lichts berechnen Sie direkt
aus dem Normalenvektor des
Polygons und dem Vektor
der Einfallsrichtung des
Lichts (Lichtvektor).

Um sich die Arbeit zu er-
leichtern, gehen Sie davon

aus, daß die Lichtquelle unendlich weit
vom Objekt entfernt ist. Dann können
Sie das Licht als Einfallsvektor definie-
ren und brauchen ihn nicht für jede
Fläche neu zu berechnen. Den Beleuch-
tungswert ermitteln Sie mit der Formel

Die Normalenvektoren sind schon
während der Objektinitialisierung auf
die Länge 1 eingestellt. Ist auch der
Lichtvektor normalisiert, können Sie die
Beleuchtungsformel vereinfachen, in-
dem Sie den Nenner entfernen:

Licht = Normalenvektor o
Lichtvektor.

Bleibt noch ein Problem: Sie müssen
wieder die Transformation des Objekts
in Betracht ziehen, sonst rotiert die
Lichtquelle mit dem Objekt. Wie bei der
Entfernung der unsichtbaren Faces kür-
zen Sie den Prozeß ab und transformie-
ren den Lichtvektor einmal mit der in-
versen Rotationsmatrix. Mit der so be-
rechneten Lichtintensität schattieren Sie
– wie bereits in PC Underground der
letzten Ausgabe (ab S. 228) beschrieben
– den Farbwert des Polygons. Dieses
einfache Beleuchtungsmodell ist schon
sehr effektiv und bringt eine Menge Le-
ben in die 3D-Szene. q

Licht

Normalenvektor Lichtvektor

Normalenvektor Lichtvektor
=

•
o

KORREKTE SCHNITTFLÄCHEN mit Z-Buffer

220 August 1998 PC Magazin

P C U N D E R G R O U N D
P R A X I S

■ Clipping

Nun haben Sie zwar eine Menge Be-
rechnungen durchgeführt, aber noch
immer ist der Bildschirm leer. Haben Sie
noch etwas Geduld, eine Hürde ist noch
zu überwinden: das Clipping. Gerade in
diesem Bereich gibt es viele verschiede-
ne Lösungsansätze. Wir stellen Ihnen
das elegante 3D-Clipping-Verfahren
vor.

Was bedeutet Clipping? Stellen Sie
sich vor, Sie haben ein Polygon transfor-
miert und möchten es jetzt zeichnen.
Die z-Koordinate eines Punkts könnte
den Wert 0 bekommen. Da aber die Po-
sition des Betrachters genau auf der Ebe-
ne mit dem z-Anteil 0 liegt, wären er-
hebliche Darstellungsfehler die Folge.

„Schneiden“ Sie deshalb zunächst ein-
mal alle Teile des Polygons ab, die vor
der Z-Near-Clipping-Grenze liegen.
Diese frei wählbare (positive) Grenze
gibt die Entfernung an, bis zu der Poly-
gone sichtbar sind. Teile, die näher am
Betrachter liegen, werden „geclipped“.

Um die berechneten 3D-Welten auf
den zweidimensionalen Monitor zu
projizieren, verwenden Sie die beiden
Gleichungen

Bild.x = (Vektor.x * Projektions
➥faktor) / Vektor.z + Bildbreite/2
Bild.y = (Vektor.y * Projektions
➥faktor) / Vektor.z + Bildhöhe/2

Diese Formeln zeigen, daß z-Werte
nicht gleich 0 sein dürfen. Eine Division
durch 0 würde unweigerlich zum Pro-
grammabsturz führen.

Diese Gleichungen erzeugen auch
Koordinaten, die außerhalb des Bildbe-
reichs liegen. Sie könnten jetzt eine Po-
lygonroutine zum Zeichnen benutzen,
die mit nicht geclippten Polygonen um-
gehen kann. Das wäre jedoch nicht sehr

effizient. Sinnvoll und sauberer ist es, die
Polygone schon vor dem Zeichnen auf
den sichtbaren Bildschirmbereich zu-
rechtzustutzen.

Der für den Betrachter sichtbare Be-
reich ist eine viereckige Pyramide, die
vom Kamerastandpunkt aus aufge-
spannt wird. Aus der Projektionsformel
berechnen Sie direkt die Ebenen, die die-
se Pyramide bilden. Das erledigt die
Funktion Setup_Fustrum() in der Datei
3dclip.cpp.

Für das Clipping an einer Ebene
benötigen Sie den zugehörigen Norma-
lenvektor und den Abstand der Ebene
Z-Near vom Ursprung – alle anderen
Ebenen gehen durch den Ursprung und
haben daher den Abstand 0.

Berechnen Sie zunächst für jeden
Punkt des Face den Abstand zur Ebene:

Abstand = (Ebenennormale oVertex)
- (Ebenenabstand zum Ursprung)

Anschließend können Sie in einer Schlei-
fe alle Punkte und die Linie vom aktuel-
len zum nächsten Punkt betrachten.
Punkt A in der Beispielskizze liegt in-
nerhalb des Sichtbereichs – Clipping ist
nicht erforderlich. Mit Punkt C sieht das
anders aus. Berechnen Sie die Schnitt-
punkte der Verbindungsstrecke von A
nach C sowie von B nach C mit der Ebe-
ne, und fügen Sie diese zusätzlichen
Punkte anstelle von C in Ihr Polygon
ein.

Wie Sie sehen, hat das fertige Polygon
jetzt vier Eckpunkte. Das stellt jedoch
kein Problem dar, da Sie das Polygon
vor dem Zeichnen wieder in Dreiecke
zerlegen können. Nachdem Sie das Po-
lygon mit der ersten Ebene geschnitten
haben, fahren Sie an der nächsten Ebene
fort.

Wiederholen Sie diesen Vorgang für
alle Ebenen. Taucht dabei ein „degene-
riertes“ Polygon mit weniger als drei
Eckpunkten auf, brechen Sie den Vor-
gang für dieses Polygon ab und ignorie-
ren es einfach. Dieser Fall tritt dann ein,
wenn ein Polygon komplett auf der un-
sichtbaren Seite einer Ebene liegt, aber
einer oder zwei der Eckpunkte auf einer
Clipping-Ebene.

■ Rendering
Zeichnen Sie ein Polygon zeilenweise.
Für jede Bildschirmzeile berechnen Sie
den linken und den rechten Rand des
Polygons und setzen die Pixel dazwi-
schen (Scanline) mit den eingestellten
Parametern. Diese Parameter sagen zum
Beispiel aus, ob das Polygon einfarbig,
mit Helligkeitswerten oder mit einer

Textur belegt sein soll. Momentan be-
schränken wir uns auf das Grundgerüst
einer einfachen 3D-Engine und zeich-
nen nur Polygone mit einer einheitlichen
Farbe.

Der erste Schritt besteht darin, den
obersten und den untersten Eckpunkt
herauszufinden. Dazu suchen Sie ein-
fach nach den Punkten mit minimalem
und maximalem y-Wert. Als Beispiel
soll folgendes Polygon dienen, dessen
Eckpunkte zum Zeichnen gegen den
Uhrzeigersinn angeordnet sein müssen:

Hier ist e1 der oberste Eckpunkt und
e2 der unterste. Nach dem Setzen von e1
suchen Sie an der linken Kante des Poly-
gons den nächsten Startpunkt der Scan-
line. Dazu betrachten Sie die Eckpunkte
mit steigendem Index (hier e2). Auf der
rechten Seite gilt es, den Punkt mit dem
nächstniedrigeren Index zu finden (hier
zuerst e0, dann e2). Beachten Sie, daß der
nächsthöhere Punkt zu e2 wieder e0 ist
und analog dazu e2 der nächstniedrigere
zu e0.

Für das Beispielpolygon ergeben sich
zwei Kantenzüge:

Beginnend beim obersten Eck berech-
nen Sie die Steigung der x-Komponente
für den rechten Kantenzug (von e1 nach
e0) – also die Zahl der Pixel, um die sich
die x-Koordinate der Kante pro Zeile
verschiebt. Kantenabschnitte der Höhe
0 ignorieren Sie einfach. Die Steigung für
den ersten rechten Kantenzug ist also

e1 e1

e0

e2 e2

linke

Kante rechte

Kante

e1 (x1,y1)

e0 (x0,y0)

e2 (x2,y2)

CLIPPING-EBENE mit Normalenvektor

PC Magazin August 1998 221

P C U N D E R G R O U N D
P R A X I S

dx = (x0 - x1) / (y0 - y1)

Diese Steigung addieren Sie bei jedem
Sprung in eine neue Scanline zum aktu-
ellen x-Wert. Dadurch erreichen Sie eine
enorme Geschwindigkeitssteigerung ge-
genüber der direkten Berechnung der
Kanten anhand der Eckpunktkoordina-
ten.

Berechnen Sie dann die Steigung für
den ersten Teil der linken Kante. Besit-
zen alle Kantenabschnitte die Höhe 0, ist
die Gesamthöhe ebenfalls gleich 0 und
das Polygon somit unsichtbar. Beginnen
Sie damit, die x-Werte entlang der Kan-
ten zu interpolieren und die Scanlines zu
zeichnen.

Ist das Ende eines Abschnitts erreicht,
suchen Sie den nächsten mit einer Höhe
größer als 0, berechnen die Steigungen
und zeichnen die verbleibenden Scan-
lines. Sind Sie beim untersten Punkt an-
gelangt, ist das Polygon vollständig ge-
zeichnet.

e1

e0

■ Der Z-Buffer

Bei der Anzeige am Bildschirm darf kein
Polygon ein zuvor gezeichnetes über-
decken, das dem Betrachter näher steht.
Am einfachsten stellt dies der sogenann-
te Maler-Algorithmus sicher. Er sortiert
alle Polygone nach der Entfernung zum
Betrachter und zeichnet dann die weiter
entfernten zuerst. Körper, die sich über-
schneiden oder räumlich gesehen so-
wohl vor als auch hinter anderen liegen,
verursachen bei diesem Verfahren aller-
dings grobe Darstellungsfehler.

3D-Grafikkarten greifen deshalb auf
den Z-Buffer-Algorithmus zurück. Er
berechnet für jedes zu zeichnende Pixel
die Entfernung des aktuellen Polygons
zu eventuell vorher gezeichneten Poly-
gonen an dieser Stelle. Ein neuer Pixel
erscheint nur, wenn er näher am Be-
trachter liegt.

Wenn Sie die Polygonroutine mit ei-
ner Z-Buffer-Implementierung pro-
grammieren, belegen Sie einen Speicher-
bereich (Z-Buffer), der für jeden Bild-
punkt eine 16 Bit große Entfernungsva-
riable reserviert.

Wie aber bestimmen Sie die Entfer-
nung eines Polygons zum Betrachter an
einem bestimmten Punkt innerhalb des
Polygons? Ganz einfach: Diesen Wert
interpolieren Sie genauso wie die x-Ko-
ordinate der Polygonkante entlang einer
Kante. Dann benötigen Sie nur noch ein
Inkrement, das die Änderung der Ent-
fernung entlang einer Scanline be-
stimmt.

Aus zwei Gründen ist es sinnvoll,
nicht die Entfernung direkt zu interpo-

lieren, sondern mit ihrem Kehrwert zu
arbeiten:
• Zum einen ist der Kehrwert perpekti-
visch korrekt (anderenfalls können bei
sich schneidenden Polygonen Darstel-
lungsfehler auftreten).
• Zum anderen liegt dieser Wert immer
im Bereich zwischen 0 und 1, was die
Verwendung von Fixpunkt-Arithmetik
nahelegt (siehe Textbox unten).

Die Interpolationsdifferenzen (Del-
tas) ermitteln Sie entlang der Polygon-
kanten wie die x-Steigung. Die Hori-
zontalschritte bleiben für das ganze Po-
lygon konstant, Sie brauchen sie also nur
einmal vor dem Zeichnen zu berechnen:

d = ((double)(x0-x2) / 65536.0 *
(double)(y1-y2) / 65536.0 -
(double)(x1-x2) / 65536.0 *
(double)(y0-y2) / 65536.0);

if (d==0.0) return;

id = 1.0 / d;
double y12 = (double)(y1-y2) /
65536.0;
double y02 = (double)(y0-y2) /
65536.0;
dz = ((double)(z0-z2) * y12 -

(double)(z1-z2) * y02)*id;

Diese Vorgehensweise setzt voraus, daß
alle Werte als Fixpunktzahlen 16:16 vor-
liegen. Die übrigen Deltas berechnen Sie
analog zu dz.

Zum Zeichnen einer Scanline arbeiten
Sie so viele Pixel ab, wie die Linie breit
ist. Dabei ändern sich ständig die Werte
im Z-Buffer. Ist der aktuelle Pixel drei-
dimensional gesehen näher am Betrach-
ter als bisher gezeichnete, oder fehlt an
dieser Stelle ein Pixel, setzen Sie ihn mit
der angegebenen Farbe.

Abschließend eine einfache Schleife
für Polygone mit einheitlicher Farbe:

for (i=0; i<breite ; i++)
{

if ((z>16)>zbuffer[i+x1])
{

vbuffer[i+x1]=farbe;
zbuffer[i+x1]=(z>16);

}
// horizontale Werte
// aktualisieren
z+=zbuffer_d;

} s P E I / W R

FIXPUNKT-ARITHMETIK
Berechnungen mit Gleitkommazahlen
laufen auf den meisten Prozessoren sehr
langsam. Alternativ verwenden Sie bei
festem (fixem) Zahlenbereich die soge-
nannte Fixpunkt-Arithmetik.
Dabei reservieren Sie innerhalb eines In-
teger-Werts (hier 32 Bit) eine bestimmte
Anzahl von Bits für die Vor- und Nach-
kommastellen (hier jeweils 16 Bit, also
16:16). So können Sie den Zahlenbereich
von – 32 768 bis 32 767 mit einer Genauig-
keit von 1/65 536 darstellen. Eine Gleit-
kommazahl wandeln Sie durch Multipli-
kation mit dem Faktor 65 536.0 in eine Fix-
punktzahl um.
Bei der Polygonroutine erzielen Sie damit
eine große Leistungssteigerung, weil Sie
Fixpunktzahlen so schnell wie Integer-
Zahlen addieren und subtrahieren. Multi-
plikation und Division verlangen aller-

dings eine Sonderbehandlung, die Zeiter-
sparnis ist dennoch enorm.
Die Multiplikation zweier 32-Bit-Zahlen
kann den Wertebereich sprengen und ei-
ne 64-Bit-Zahl als Ergebnis liefern. Wei-
chen Sie deshalb kurzfristig auf Integer-
Zahlen mit größerem Zahlenbereich aus.
In Assembler-Routinen umgehen Sie die-
ses Problem elegant, indem Sie register-
übergreifend programmieren.
Multiplizieren Sie vor einer Division
zunächst die zu teilende Zahl mit 65 536.
Andernfalls findet ein Unterlauf statt und
das Ergebnis ist 0. Weichen Sie auch hier
auf größere Integer-Werte aus. Zudem
darf der Teiler nicht kleiner als 1 sein (Fix-
punktwert: 65 536), da sonst ein Überlauf
auftritt. Statt dessen multiplizieren Sie
einfach mit dem Kehrwert mit 14 Bit
Nachkommagenauigkeit.

Alle Programme, Routinen und eine lauffähige De-
mo können Sie aus dem Internet-Angebot des PC
Magazin unter

www.pc-magazin.de/magazin/
➥extras.htm

herunterladen. In der Tabelle Online Extras finden
Sie unter Praxis den Beitrag Demo-Programmie-
rung. Klicken Sie auf das rote Download-Feld.

1Details lesen Sie nach in
Kevin Wu: Fast Inversion of Length- and Angle-Pre-
serving Matrices, erschienen in: Graphic Gems IV,
Academic Press, ISBN 0-12-33-6155-0

