
232 September 1998 PC Magazin

P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R /
N I L S P I P E N B R I N C K

Die in der letzten Ausgabe von
PC Magazin (ab S. 234) ent-
wickelte 3D-Engine bewegt

dreidimensionale Objekte in jede belie-
bige Richtung und arbeitet bereits mit
einer imaginären Kamera. Diese steht al-
lerdings starr am Nullpunkt des Koordi-
natensystems und blickt immer in Rich-
tung der z-Achse. Das werden wir nun
ändern.

Halten Sie die Kamera dabei aber stets
auf der z-Achse, die auch identisch mit
der Blickrichtung sein sollte. Denn nur
so projizieren Sie die Vertex-Koordina-
ten leicht vom dreidimensionalen Raum
in die zweidimensionale Bildschirm-
ebene.

Zuerst entwickeln Sie die flexible Posi-
tion der Kamera. Dazu müssen Sie etwas
umdenken: Stellen Sie sich vor, Sie sind
die Kamera. Wenn Sie in den Raum se-
hen und einen Schritt nach links machen,
bewegen sich aus Ihrer Sicht alle Dinge
nach rechts. Anders gesagt, verschiebt
sich die ganze Welt vor Ihnen nach
rechts. Die Position der Kamera sowie
die Stellungen der Objekte untereinan-
der ändern sich dabei prinzipiell nicht.

Diese Beobachtung integrieren Sie
recht einfach in das bestehende System.
Da Sie die Verschiebung (Translation)
der Objekte während der Matrix-Be-
rechnung als letztes berücksichtigen,
brauchen Sie nur die Position der Kame-
ra von der jeweiligen Objektposition zu
subtrahieren.

Jetzt können Sie Ihre Kamera bewe-
gen, sehen aber nach wie vor nur entlang
der z-Achse. Zusätzlich könnten Sie
noch die komplette 3D-Szene um den
Standpunkt der Kamera drehen. Dies
ginge sehr einfach, da Sie ja nur die Ko-
ordinaten der Objekte modifiziert ha-

ben und die Kamera nach wie vor im Ur-
sprung steht. Sie bräuchten deshalb nur
die Objekt-Matrix mit einer Rotations-
Matrix zu multiplizieren.

Diese Methode ist aber nicht sehr an-
schaulich, weil hier der Rotationswinkel
die Blickrichtung bestimmt. Vorzugs-
weise sollte die Stellung der Kamera
durch ihre eigene Position und durch die
Ausrichtung auf einen bestimmten
Punkt definiert sein. Die Berechnung ei-
ner Matrix, die eine 3D-Szene so rotiert,
daß die Blickrichtung der Kamera ent-
lang der z-Achse bleibt, erfordert etwas
Vektorarithmetik.

Einen dreidimensionalen Raum span-
nen Sie aus drei senkrecht aufeinander
stehenden Vektoren auf, da diese von-
einander unabhängig sind (kein Vektor
ist durch eine Kombination der beiden
anderen darstellbar). Somit können Sie
jeden Punkt p in diesem Vektorraum
durch eine Kombination

aus x, y und z beschreiben.

 p a x a y a z= ⋅ + ⋅ + ⋅1 2 3

Definieren Sie zuerst ein Koordina-
tensystem für Ihre Kamera, in dem die
Kamera immer entlang der z-Achse
zeigt. In dieses Koordinatensystem dre-
hen – also projizieren – Sie die Objekte
hinein.

tvector forward;
tvector up;
tvector right;

Der Vektor forward entspricht der
Blickrichtung der Kamera. Sie berech-
nen ihn aus der Position und dem Ziel-
punkt (Target) der Kamera. Danach
normalisieren Sie ihn für spätere Berech-
nungen auf die Länge 1:

forward.x = camera.target.x
- camera.position.x;

forward.y = camera.target.y
- camera.position.y;

forward.z = camera.target.z
- camera.position.z;

normvector(forward);

Nun sorgen Sie dafür, daß die Drehung
um die Blickrichtung der Kamera kor-
rekt ist. Dies berechnen Sie mit dem
Vektor up. Er zeigt in die Richtung, die
Sie im Kamerabild als „oben“ bezeich-
nen würden. Da Sie nicht wissen, ob er

Demo-Programmierung unter Windows 95/NT

Tuning am Grafikmotor
Die 3D-Engine der letzten Ausgabe erweitern Sie diesmal um eine
frei bewegliche Kamera. Verschiedene Verfahren verbessern zudem die
Grafikausgabe.

BEI EINER KAMERABEWEGUNG beobach-
ten Sie eine Verschiebung der Objekte in
die Gegenrichtung.

BEI EINER KAMERADREHUNG beobachten
Sie eine Rotation der Objekte in die Ge-
genrichtung.

PC Magazin September 1998 233

P C U N D E R G R O U N D
P R A X I S

rechtwinklig auf dem Vektor forward
steht oder nicht, korrigieren Sie ihn spä-
ter noch. Vorläufig soll folgender Vek-
tor fest vorgegeben sein:

up.x = 0;
up.y = 1;
up.z = 0;

Durch das Kreuzprodukt von forward
und right erhalten Sie einen Vektor, der
senkrecht auf diesen beiden steht. Dieser
Vektor kann daher im Kamera-Koordi-
natensystem nur derjenige sein, der im
Bild nach „rechts“ zeigt. Auch diesen
Vektor namens right normalisieren Sie:

crossproduct(up,forward,right);
normvector(right);

Nachdem Sie nun forward und right
kennen, können Sie wiederum einen
neuen Vektor up bestimmen. Da dieser
senkrecht auf forward und right steht,
berechnen Sie ihn erneut mit dem
Kreuzprodukt und anschließendem
Normalisieren:

crossproduct(forward,right,up);
normvector(up);

Eine kleine Einschränkung besteht bei
dieser Art der Kameraberechnung: Sie
sind hier davon ausgegangen, daß das
Kreuzprodukt von forward und up den
Vektor right ergibt, der rechtwinklig auf
diesen beiden steht. Die Blickrichtung
der Kamera kann aber auch genau nach
oben zeigen, also in die gleiche Richtung
wie der Vektor up. In diesem Fall liefert
Ihnen das Kreuzprodukt für right den
Nullvektor <0,0,0>, und das Normali-
sieren scheitert somit an einer Division
durch 0.

Vermeiden Sie bei diesem Kameramo-
dell also Kamerafahrten, in denen die
Kamera genau nach oben zeigt. Pro-
grammieren Sie für diesen Fall eine Son-

derbehandlung, eventuell mit leichter
Korrektur der Blickrichtung.

Zum Abschluß sollten Sie noch eine
freie Drehung der Kamera um die Ach-
se der Blickrichtung, den sogenannten
Rollwinkel, einbauen. Drehen Sie dazu
den bisher festen Vektor up mit den
Werten <0,1,0> um die z-Achse. Da-
durch erhalten Sie für up

up.x = -sin(kamera.roll);
up.y = cos(kamera.roll);
up.z = 0;

Stellen Sie die Kamera zum Beispiel auf
den Kopf, dann steht die 3D-Szene
ebenfalls auf dem Kopf.

Benutzen Sie diesen Blickwinkel aber
mit Feingefühl: Wir
sind es nicht ge-
wohnt, daß sich unser
Sichtfeld dreht und
auf dem Kopf steht.
In Filmen und Ani-
mationen kommt die-
ser Effekt zu Recht
nur sehr sparsam zum
Einsatz.

Aus den drei so-
eben gewonnenen
Vektoren bauen Sie
nun eine Matrix auf,
die das Koordinaten-
system wie ge-
wünscht abbildet:
Dann liegt forward
entlang der z-Achse,
right entlang der x-

Achse und up entlang der y-Achse.

Schließlich können Sie auch noch den
Öffnungswinkel des (virtuellen) Kame-
raobjektivs beeinflussen. Die entspre-
chende Funktion finden Sie im Quelltext
von 3dcamera.cpp. Hier ist die Kamera

Kamera Matrix

right x up x forward x
right y up y forward y
right z up z forward z

− =

. . .

. . .

. . .

0
0
0

0 0 0 1

als Klasse tcamera implementiert. Die
darin enthaltene Funktion

tcamera::set_perspective(
const float aPerspective)

setzt die Perspektive bzw. Brennweite
der Kamera. Dazu berechnet sie die Pro-
jektionsfaktoren und das Clipping-Fu-
strum für das 3D-Clipping neu. Fu-
strum ist der englische Ausdruck für ei-
ne abgestumpfte Pyramide und bezeich-
net hier das von der Kamera aus sichtba-
re Volumen.

Um die Kamera auf Ihre 3D-Objekte
anzuwenden, multiplizieren Sie ledig-
lich die Objekt- mit der Kamera-Matrix.
So erhalten Sie die endgültige Abbildung
für Ihre Objekte. In 3dengine.cpp erle-
digt dies die Funktion build_ltm:

void tobject::build_ltm(
tcamera * camera)

{
float temp[16];
matrix_mul(temp, mrot, mscale);
temp[3] +=mtrans[3]

-camera->position.x;
temp[7] +=mtrans[7]

-camera->position.y;
temp[11]+=mtrans[11]

-camera->position.z;
matrix_mul(ltm, temp,

camera->matrix);
angle_preserving_matrix_inver

➥se(ltm, iltm);
}

■ Ihre erste 3D-Animation
Da Sie nun sowohl Kamera- als auch
Objektbewegungen beherrschen, kön-
nen Sie sich an Ihre erste 3D-Animation
wagen. Eine Szene nach Ihren Vorstel-
lungen entwerfen Sie am einfachsten mit
einem 3D-Editor. Neben kommerziel-
len Programmen gibt es hierfür auch
empfehlenswerte Shareware (siehe Text-
box „Shareware für 3D-Animationen“
unten).

Um eine 3D-Animation zu berech-
nen, müssen Sie die Objekte nicht für je-
des Einzelbild verschieben. Nur für ei-
nige sogenannte Keys geben Sie die Po-
sitionen der Kamera und des Ziel- q

BEISPIELSZENE mit Gouraud Shading

SHAREWARE FÜR 3D-ANIMATIONEN
Neben Autodesk 3D-Studio gibt es weite-
re Programme, mit denen Sie einfache 3D-
Szenen modellieren und animieren und
als Textdatei speichern, zum Beispiel das
Programm 4D-Builder.
Zur Datenanpassung an das vue-Format
schreiben Sie dann ein kleines Konvertier-
programm. Damit Sie sofort loslegen kön-
nen, finden Sie auf der Heft-CD dieser
Ausgabe neben den kompletten Quell-
codes der Demo auch das Programm 4D-
Builder in der derzeit aktuellen Version

0.96. Unter
www.geocities.com/
➥SiliconValley/Network/5884

bekommen Sie die jeweils neuesten Up-
dates.
Auch fertige Objekte und 3D-Szenen fin-
den Sie im Internet. Die Homepage von

www.meshmart.org

bietet neben fertigen 3D-Objekten im 3D-
Studio-Format auch Texturen und Hilfs-
programme. Außerdem gibt es hier Doku-
mentationen für diverse Dateiformate
und Links auf weitere Ressourcen.

234 September 1998 PC Magazin

P C U N D E R G R O U N D
P R A X I S

punkts an. Die entsprechenden Werte
der dazwischenliegenden Bilder berech-
nen die meisten Programme durch ein
bestimmtes Interpolationsverfahren
(häufig werden sogenannte kubische
Splines verwendet).

Nun machen es Ihnen viele Hersteller
nicht leicht, an die von Ihrem Programm
erzeugten Daten heranzukommen. Oft
sind Dateiformate undokumentiert,
oder die Beschreibung ist nur in Form
eines – meist sehr teuren – Developer Kit

erhältlich. Selbst mit vorliegenden Infor-
mationen ist eine vollständige Auswer-
tung meist sehr aufwendig.

Viele Editoren bieten jedoch Funktio-
nen, um Objekt- und Kamerabewegun-
gen für jedes Bild einzeln vorzuberech-
nen und als ASCII-Datei zu speichern.
Eines dieser Programme ist das schon
etwas betagte Programm 3D-Studio R4
der Firma Autodesk. Es speichert bild-
weise für alle Objekte und Kameras die
dazugehörigen Matrizen und Parameter
in einer Datei mit der Endung vue. Auch
die Beschreibung einer 3D-Szene kön-
nen Sie als Textdatei speichern und dann
leicht auslesen. Als Eigenheit dieser
Animationsbeschreibung liegen die
Transformationsmatrizen in den vue-
Dateien nicht als 4×4-Matrix vor: Rota-
tion und Skalierung beschreibt eine 3×3-
Matrix, die Verschiebung gibt ein Vek-
tor an.

In der erweiterten Version unserer
3D-Engine finden Sie eine Routine, um
die Matrix der Objekte direkt zu setzen.
Zum Abspielen von vue-Dateien ist dies
sehr praktisch.

Die Funktion
void tobject::setmatrix (
➥float *matrix, float *trans);

zerlegt die 3×3-Matrix in ihren Rotati-
ons- und Skalierungsanteil und bereitet

die inversen Matrizen für die Lichtbe-
rechnung vor.

■ Flächen realistisch
darstellen
Da Sie sich nun frei in 3D-Welten bewe-
gen können, sollten Sie noch den reali-
stischen Eindruck und die Qualität der
Darstellung erhöhen. In der letzten Aus-
gabe des PC Magazin haben Sie bereits
eine Routine kennengelernt, um Poly-

gone einfarbig und
mit Z-Buffer-Unter-
stützung zu zeichnen.
Nun kommen einfar-
bige Flächen in der
Wirklichkeit aber so
gut wie nie vor. Ent-
weder besitzen sie
durch die Bestrah-
lung einer Lichtquelle
einen Helligkeitsver-
lauf, oder sie sind in
irgendeiner Art und
Weise gekrümmt.

Wie Sie wissen,
werden in der 3D-
Engine auch ge-
krümmte Flächen

durch Polygone angenähert. Um solche
Farbverläufe auf Polygonen zu zeich-
nen, verwenden Sie das sogenannte
Gouraud Shading. Hierzu berechnen Sie
die Helligkeitswerte nicht wie bisher für
das ganze Polygon, sondern für jeden
seiner Eckpunkte.

Die bereits bekannte Formel

zeigt aber, daß Sie für jeden Eckpunkt ei-
ne eigene Normale benötigen. Diese er-
halten Sie, indem Sie für jeden Eckpunkt
die Normalen aller Flächen addieren, die
diesen Eckpunkt enthalten. Den resul-
tierenden Vektor normalisieren Sie an-
schließend.

Die Helligkeitswerte (Gouraud-In-
tensitäten) interpolieren Sie nun genau-
so über das Polygon, wie Sie es mit dem
Kehrwert des Z-Buffer-Werts getan ha-
ben. Dadurch erhalten Sie einen linearen
Farbverlauf auf dem Polygon, der runde
Flächen wie etwa eine Kugel auch wirk-
lich rund erscheinen läßt.

■ Realistische
Oberflächen schaffen
Wenn Sie einen dreidimensionalen Kör-
per aus Holz oder Marmor modellieren,
besitzt jedes Polygon des Körpers neben

Licht Normalenvektor Lichtvektor= ()o

verschiedenen Helligkeitswerten auch
eine für das Material typische Ober-
flächenstruktur. Sie könnten eine solche
Oberfläche in viele kleine Polygone mit
verschiedenen Farben zerlegen, um die
Struktur dieser Materialien nachzuah-
men. Die Zahl der Polygone würde bei
dieser Methode allerdings ins Unermeß-
liche steigen. Deshalb benutzen Sie hier
das sogenannte Texture-Mapping.

Stellen Sie sich vor, Sie schneiden aus
einer flexiblen Tapete ein Stück heraus,
dehnen es auf die richtige Größe aus und
kleben es auf eine Fläche. Genauso ver-
fahren Sie beim Texture-Mapping: Sie
nehmen die sogenannte Texture-Map
und projizieren sie auf das Polygon.

Verwenden Sie als Texture-Map das
Bild einer Marmorplatte, erhalten Sie ein
marmoriertes 3D-Objekt. Damit die
Polygonroutine weiß, welcher Teil des
Bilds auf ein Polygon projiziert werden
soll, speichern Sie diese Information in
den sogenannten Texture-Mapping-Ko-
ordinaten u und v. Zwei Koordinaten
reichen deshalb aus, weil die Texture-
Map zweidimensional ist. Jeder Eck-
punkt eines Polygons erhält diese beiden
Koordinaten.

Beim Zeichnen der Polygone mit Tex-
turen interpolieren Sie die Koordinaten
u und v über das Polygon – analog der
Helligkeitsinterpolation beim Gouraud
Shading. Immer wenn Sie ein Pixel
zeichnen, lesen Sie den entsprechenden
Bildpunkt der Texture-Map (Texel) aus

und setzen ihn dann unter Berücksichti-
gung der Gouraud-Intensität.

In dieser Implementation verwenden
Sie nur Texturen mit 256 Farben und ei-
ner Auflösung von 256 x 256 Pixeln. In
den meisten Fällen ist das mehr als ge-
nug, außerdem gewinnen Sie dadurch an
Geschwindigkeit: Sie können nun eine
Shading-Tabelle für die Texturen ver-
wenden und mit dem Farbwert des Bild-
punkts und der Helligkeit einfach die re-
sultierende Farbe auslesen. Die Auflö-
sung der Textur wurde so gewählt, daß
ein Texel möglichst schnell und einfach

IM VERGLEICH: die alte 3D-Engine mit Flat Shading und die
neue Version mit Gouraud Shading

SO PROJIZIEREN SIE die Texture-Map auf
ein Polygon.

PC Magazin September 1998 235

P C U N D E R G R O U N D
P R A X I S

im Speicher zu adressieren ist. Die hori-
zontalen und vertikalen Inkremente be-
rechnen Sie also wie folgt:

d=((double)(x0-x2)/65536.0*
➥(double)(y1-y2)/65536.0-
➥(double)(x1-x2)/65536.0*
➥(double)(y0-y2)/65536.0);

if (d==0.0) return;

id=1.0/d;

double y12=
➥(double)(y1-y2)/65536.0;
double y02=
➥(double)(y0-y2)/65536.0;

tex_delta_u=
➥(((double)(u0-u2)*y12-
➥(double)(u1-u2)*y02)*id);
tex_delta_v=

(((double)(v0-v2)*y12-
(double)(v1-v2)*y02)*id);

gouraud_delta=
➥(((double)(g0-g2)*y12-
➥(double)(g1-g2)*y02)*id);

Die innere Schleife zum Zeichnen der
Scanlines sieht inzwischen folgender-
maßen aus:

for (i=0; i<breite; i++)
{

// Z-Buffer Vergleich
if ((z>16)>zbuffer[i+x1])
{

// Pixel zeichnen
vbuffer[i + x1] =
// Lesen der Shading-Tabelle
// mit Gouraud-Intensität
palette[((g>8)&65280) +
// und Texelfarbwert
*(texture+(u>16)

+((v>16)<<8))];
// Z-Buffer-Wert aktualisie-
// ren
zbuffer[i + x1] = (z>16);

}
// horizontale Werte
// aktualisieren
u += tex_delta_u;
v += tex_delta_v;
g += gouraud_delta;
z += zbuffer_d;

}

■ Subpixel-Genauigkeit
Um die Bewegung der Polygone auf
dem Bildschirm weicher und weniger
sprunghaft erscheinen zu lassen, ver-
wenden Sie das sogenannte Subpixel-
Verfahren. Hierbei verschieben Sie die
Startwerte der an den Polygonkanten zu
interpolierenden Werte ein wenig. Da
Sie diese Startwerte nur an den Eck-
punkten der Polygone setzen und an-
sonsten interpolieren, verlangen auch
nur die Eckpunkte eine Subpixel-Kor-
rektur.

Um einen sinnvollen Wert für diese
Verschiebung zu berechnen, ermitteln
Sie den Betrag, der der y-Koordinate des
entsprechenden Eckpunkts auf die
nächste ganze Zahl fehlt. Sie berechnen
diesen Korrekturwert prestep aus

prestep = ceil(Y) - Y;

Da Y in Fixpunktarithmetik vorliegt,
verwendet die Polygonroutine statt der
C-Funktion ceil zum Aufrunden eine ei-
gene Routine. Die korrigierten Werte
erhalten Sie, indem Sie das Produkt aus
prestep und x_inkrement auf den ent-
sprechenden Wert addieren, bevor Sie
das Polygon zeichnen:

x_startwert = x_startwert
+ prestep * x_inkrement;

Dasselbe gilt auch für alle anderen Inter-
polationswerte.

■ Subtexel-Genauigkeit
Nun haben Sie eine Korrektur für die
Polygonkanten durchgeführt. Eine wei-
tere Optimierung, die eine Fortführung
von Subpixel darstellt und darauf auf-
baut, ist das Subtexel-Verfahren. Wie
der Name schon vermuten läßt, vermin-
dern Sie damit Sprünge in der Textur.
Hier korrigieren Sie die horizontalen
Startwerte für die innere Schleife.

Da Sie die horizontalen Startwerte für
jede Scanline neu berechnen, müssen Sie
die Subtexel-Korrektur vor dem Zeich-
nen jeder Scanline durchführen. Abgese-
hen davon berechnen Sie die Korrektur
analog – den Korrekturfaktor leiten Sie
aus der x-Koordinate der Scanline her:

prestep = ceil(X) - X;
u_startwert = u_startwert

+ prestep * u_inkrement;
v_startwert = v_startwert

+ prestep * v_inkrement;

Diese beiden Verfahren verwenden Sie
genauso beim Gouraud Shading und Z-
Buffering, um auch hier eine möglichst
flüssige Animation zu berechnen.

Nun haben Sie eine schnelle Polygon-
routine mit vielen Features geschrieben.
Die Verbesserungen zeigt eindrucksvoll
das Bild auf der vorhergehenden Seite.
Links sehen Sie Ludwig van Beethoven
mit dem Flat Shading der letzten Ausga-
be, rechts die optimierte Darstellung mit
Gouraud Shading. Diese gerenderte Sze-
ne besteht aus knapp 5000 Einzelpoly-
gonen!

Um mehr aus Ihrem PC herauszuho-
len, ersetzen Sie die innere Schleife zum
Zeichnen der Scanlines durch eine ent-
sprechende Assembler-Routine. Diese
ist in der Polygonroutine tpolygon.cpp
optional enthalten. Wenn Sie selbständig
Erweiterungen an der 3D-Engine vor-
nehmen möchten, haben wir noch ein
paar Vorschläge für Sie.

■ Korrekte Perspektive
Wie Sie bereits aus dem PC-Under-
ground-Beitrag der letzten Ausgabe

wissen, interpolieren Sie beim Z-Buffe-
ring statt z dessen Kehrwert, um eine
perspektivisch korrekte Darstellung zu
erhalten. Beim Texture-Mapping und
Gouraud Shading können Sie ähnlich
verfahren: Statt u und v sowie der Gou-
raud-Intensität verwenden Sie einfach
die Werte u/z, v/z und Gouraud/z. Da
Sie mit Fixpunktarithmetik arbeiten,
müssen Sie auf einen korrekten Zahlen-
bereich achten.

Um wieder die reinen Werte zu erhal-
ten, erfordert diese Methode allerdings
für jedes Pixel eine Division dieser drei
Werte durch 1/z (diesen Kehrwert ha-
ben Sie bereits vom Z-Buffering). Da
dies sehr viel Rechenzeit benötigt, wen-
den Sie die perspektivische Korrektur
nur alle 4, 8, oder 16 Pixel einer Scanline
an und interpolieren dazwischen – wie
bisher – linear.

■ Environment-Mapping
Beim sogenannten Environment-Map-
ping können Sie die Umgebung eines
Objekts relativ leicht auf den Polygonen
spiegeln. Der Trick dabei ist, daß es sich
hier auch „nur“ um eine Variante des
Texture-Mapping handelt. Die Koordi-
naten u und v werden vor jedem Zeich-
nen des Objekts anhand der Eckpunkt-
normalen des Polygons neu berechnet.
Als Texture-Map verwenden Sie ein Bild
der Umgebung dieses Objekts – etwa ein
vorberechnetes Bild der 3D-Szene aus
der Sicht des Objekts in Richtung des
Betrachters. Ebenfalls sehr interessante
Effekte ergibt ein beliebiges Bild mit
verschiedenen helleren und dunkleren
Bereichen.

Die Texture-Mapping-Koordinaten
berechnen Sie aus den gedrehten Eck-
punktnormalen mit

u=normale.x/normale.z+128;
v=normale.y/normale.z+128;

Achten Sie darauf, daß die resultieren-
den Werte u und v im Bereich zwischen
0 und 255 liegen, um nicht über den
Rand der Textur zu springen.

■ Phong Shading
Als nächste Erweiterung können Sie als
Environment-Map einen Farbverlauf
wie im ersten Artikel von PC Under-
ground (Ausgabe 7/98, ab S. 228) für die
Lichtquelle benutzen. Dadurch erhalten
Sie eine Lichtschattierung, die dem so-
genannten Phong Shading (ein aufwen-
digeres Shading-Verfahren für Polygo-
ne) sehr nahe kommt. Dabei stellen Sie
mit dem entsprechenden Farbverlauf so-
wohl Helligkeitsübergänge als auch q

236 September 1998 PC Magazin

P C U N D E R G R O U N D
P R A X I S

3 Ausschnitt aus tpolygon.cpp

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:

#ifdef ASSEMBLER_INNER_LOOP
__asm {
mov eax, breite
mov ecx, x1

mov edi, v

add eax, ecx

mov esi, z

mov end_of_line, eax

mov ebx, zbuffer

spalte:
// Diese Variante ist nicht 100%ig korrekt:

2 Ausschnitt aus 3dengine.cpp

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:

void tobject: : calc_facenormals(void)
{
int i;

for (i = 0; i < nvertices; i++)
{
normale[i]. x = 0. 0f;
normale[i]. y = 0. 0f;
normale[i]. z = 0. 0f;

}

for (i=0; i<nfaces; i++)
{
polygon_normal(vertice[face[i]. a],

vertice[face[i]. b],
vertice[face[i]. c],
face[i]. normal);

normale[face[i]. a]. x += face[i]. normal. x;
normale[face[i]. a]. y += face[i]. normal. y;
normale[face[i]. a]. z += face[i]. normal. z;
normale[face[i]. b]. x += face[i]. normal. x;
normale[face[i]. b]. y += face[i]. normal. y;
normale[face[i]. b]. z += face[i]. normal. z;
normale[face[i]. c]. x += face[i]. normal. x;
normale[face[i]. c]. y += face[i]. normal. y;
normale[face[i]. c]. z += face[i]. normal. z;

face[i]. cullpoint = dotproduct(
face[i]. normal, vertice[face[i]. a]);

}

for (i = 0; i < nvertices; i++)
{
normvector(normale[i]);

}
}

Die Funktion calc_facenormals berechnet die Normalen der Eck-
punkte.

1 Ausschnitt aus 3dcamera.cpp

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:

void tcamera: : build_matrix (void)
{
tvector forward;
tvector up;
tvector right;

// temporÑre Matrix fÅr die Roll-Z-Rotation
float zmatrix[16];

// Matrizen initialisieren
for (int i=0; i<15; i++)
{
zmatrix[i] = 0. 0f;
matrix [i] = 0. 0f;

}

// Berechnen des Kamera-Koordinatensystems
forward. x = target. x - position. x;
forward. y = target. y - position. y;
forward. z = target. z - position. z;
normvector (forward);

up. x = 0. 0f;
up. y = 1. 0f;
up. z = 0. 0f;

crossproduct(forward, up, right);
normvector (right);

crossproduct(forward, right, up);
normvector (up);

matrix[0] = right. x;
matrix[1] = right. y;
matrix[2] = right. z;

matrix[4] = up. x;
matrix[5] = up. y;
matrix[6] = up. z;

matrix[8] = forward. x;
matrix[9] = forward. y;
matrix[10] = forward. z;

matrix[15] = 1. 0f;

// Z-Rotationsmatrix erstellen:
float sinz=(float)sin(-roll*3. 14/180. 0);
float cosz=(float)cos(-roll*3. 14/180. 0);

zmatrix[0] = cosz;
zmatrix[1] = sinz;

zmatrix[4] = -sinz;
zmatrix[5] = cosz;

zmatrix[10] = 1. 0f;
zmatrix[15] = 1. 0f;
// Roll-Rotation auf die Kameramatrix multiplizieren
matrix_mul (matrix, zmatrix);

}

Die Funktion build_matrix berechnet die Kamera-Matrix.

sogenannte Specular Highlights dar.
Diese Highlights sind Spiegelungen ei-
ner Lichtquelle auf einem Objekt.

Sie kennen sicher die kleinen, sehr hel-
len Punkte auf beleuchteten Billardku-
geln, die nichts anderes als das Spiegel-
bild einer Lampe sind. Diese Highlights
erhalten Sie, indem Sie einen sehr hohen
Helligkeitsanstieg um die Mitte der En-
vironment-Map erzeugen.

Diese Phong-Shading-Approximati-
on können Sie nach Wunsch auch wie-
der mit Texture-Mapping kombinie-
ren.

Echtes Phong Shading ist hingegen et-
was komplizierter. Im Gegensatz zum
Gouraud Shading interpolieren Sie hier
statt der Intensitäten die Normalenvek-

toren. Diese normieren Sie noch und be-
rechnen erst daraus die Helligkeitswerte
der entsprechenden Pixel. Dabei bestim-
men Sie durch lineare Interpolation zu-
erst die normierten Normalen entlang
der Kanten. Anschließend berechnen Sie
alle übrigen im Polygon-Inneren entlang
jeder Scanline.

Da Sie dieses Verfahren explizit auf je-
den einzelnen Punkt anwenden müssen,
beansprucht es viel Rechenzeit. Dafür
erhalten Sie damit sehr realistische Er-
gebnisse.

Unser Ausflug in die Welt der 3D-
Grafik ist hier nun vorerst zu Ende. Mit
Ihrem erlernten Wissen können Sie die
3D-Engine selbständig erweitern und ei-
gene Animationen berechnen – oder ei-

ne komplett neue Grafik-Engine pro-
grammieren.

In der nächsten Ausgabe dreht sich al-
les um die sogenannten Bitmap-Effekte.
Damit verzerren und rotieren Sie Grafi-
ken in Echtzeit und programmieren Ef-
fekte wie Wasseroberflächen und Tun-
nel. s P E I

Alle Programme, Routinen und eine lauffähige De-
mo finden Sie auf der Heft-CD zu dieser Ausgabe
und können Sie aus dem Internet-Angebot des PC
Magazin unter

www.pc-magazin.de/magazin/
➥extras.htm

herunterladen. Klicken Sie in der Tabelle Online
Extras unter Praxis auf das entsprechende rote
Download-Feld.

