PC UNDERGROUND

PRAXIS

download
. www.pc-magazin.de

Demo-Programmierung unter Windows 95/4?,\IT//

Tuning am

Die 3D-Engine der letzten Ausgabe erweitern Sie diesmal um eine

Grafikausgabe.

CARSTEN DACHSBACHER/
NILS PIPENBRINCK

ie in der letzten Ausgabe von
DPC Magazin (ab S. 234) ent-

wickelte 3D-Engine bewegt
dreidimensionale Objekte in jede belie-
bige Richtung und arbeitet bereits mit
einer imagindren Kamera. Diese steht al-
lerdings starr am Nullpunkt des Koordi-
natensystems und blickt immer in Rich-
tung der z-Achse. Das werden wir nun
andern.

Halten Sie die Kamera dabei aber stets
auf der z-Achse, die auch identisch mit
der Blickrichtung sein sollte. Denn nur
so projizieren Sie die Vertex-Koordina-
ten leicht vom dreidimensionalen Raum
in die zweidimensionale Bildschirm-
ebene.

Zuerst entwickeln Sie die flexible Posi-
tion der Kamera. Dazu miissen Sie etwas
umdenken: Stellen Sie sich vor, Sie sind
die Kamera. Wenn Sie in den Raum se-
hen und einen Schritt nach links machen,
bewegen sich aus Ihrer Sicht alle Dinge
nach rechts. Anders gesagt, verschiebt
sich die ganze Welt vor lhnen nach
rechts. Die Position der Kamera sowie
die Stellungen der Objekte untereinan-
der @ndern sich dabei prinzipiell nicht.

Diese Beobachtung integrieren Sie
recht einfach in das bestehende System.
Da Sie die Verschiebung (Translation)
der Objekte wéhrend der Matrix-Be-
rechnung als letztes bertcksichtigen,
brauchen Sie nur die Position der Kame-
ra von der jeweiligen Objektposition zu
subtrahieren.

Jetzt kénnen Sie Ihre Kamera bewe-
gen, sehen aber nach wie vor nur entlang
der z-Achse. Zusatzlich konnten Sie
noch die komplette 3D-Szene um den
Standpunkt der Kamera drehen. Dies
ginge sehr einfach, da Sie ja nur die Ko-
ordinaten der Objekte modifiziert ha-

232 September 1998 PC Magazin

ben und die Kamera nach wie vor im Ur-
sprung steht. Sie brduchten deshalb nur

ie Objekt-Matrix mit einer Rotations-
Matrix zu multiplizieren.

Az

Objekt

X

¢e—»

BEI EINER KAMERABEWEGUNG beobach-
ten Sie eine Verschiebung der Objekte in
die Gegenrichtung.

Diese Methode ist aber nicht sehr an-
schaulich, weil hier der Rotationswinkel
die Blickrichtung bestimmt. Vorzugs-
weise sollte die Stellung der Kamera
durch ihre eigene Position und durch die
Ausrichtung auf einen bestimmten
Punkt definiert sein. Die Berechnung ei-
ner Matrix, die eine 3D-Szene so rotiert,
daf? die Blickrichtung der Kamera ent-
lang der z-Achse bleibt, erfordert etwas
Vektorarithmetik.

Einen dreidimensionalen Raum span-
nen Sie aus drei senkrecht aufeinander
stehenden Vektoren auf, da diese von-
einander unabhangig sind (kein Vektor
ist durch eine Kombination der beiden
anderen darstellbar). Somit kénnen Sie
jeden Punkt p in diesem Vektorraum
durch eine Kombination

p=ax+ayly+azlz

aus X, y und z beschreiben.

Verschiedene Verfahren verbessern zudem die

Definieren Sie zuerst ein Koordina-
tensystem fur Ihre Kamera, in dem die
Kamera immer entlang der z-Achse
zeigt. In dieses Koordinatensystem dre-
hen — also projizieren — Sie die Objekte
hinein.

tvector forward;

tvector up;
tvector right;

Der Vektor forward entspricht der
Blickrichtung der Kamera. Sie berech-
nen ihn aus der Position und dem Ziel-
punkt (Target) der Kamera. Danach
normalisieren Sie ihn fur spétere Berech-
nungen auf die Lange 1:
forward.x = camera.target.x
- camera.position.x;
forward.y = camera.target.y
- camera.position.y;
forward.z = camera.target.z

- camera.position.z;
normvector(forward);

Nun sorgen Sie dafir, daB die Drehung
um die Blickrichtung der Kamera kor-
rekt ist. Dies berechnen Sie mit dem
Vektor up. Er zeigt in die Richtung, die
Sie im Kamerabild als ,,oben* bezeich-
nen wirden. Da Sie nicht wissen, ob er

X

&——»

BEI EINER KAMERADREHUNG beobachten
Sie eine Rotation der Objekte in die Ge-
genrichtung.

rechtwinklig auf dem Vektor forward
steht oder nicht, korrigieren Sie ihn spa-
ter noch. Vorlaufig soll folgender Vek-
tor fest vorgegeben sein:

up.x = 0;

up.y =1,

up.z = 0;
Durch das Kreuzprodukt von forward
und right erhalten Sie einen Vektor, der
senkrecht auf diesen beiden steht. Dieser
Vektor kann daher im Kamera-Koordi-
natensystem nur derjenige sein, der im
Bild nach ,,rechts* zeigt. Auch diesen
Vektor namens right normalisieren Sie:

crossproduct(up,forward,right);
normvector(right);

derbehandlung, eventuell mit leichter
Korrektur der Blickrichtung.

Zum Abschluf? sollten Sie noch eine
freie Drehung der Kamera um die Ach-
se der Blickrichtung, den sogenannten
Rollwinkel, einbauen. Drehen Sie dazu
den bisher festen Vektor up mit den
Werten <0,1,0> um die z-Achse. Da-
durch erhalten Sie fiir up

up.x = -sin(kamera.roll);

up.y = cos(kamera.roll);

up.z =0;

Stellen Sie die Kamera zum Beispiel auf
den Kopf, dann steht die 3D-Szene
ebenfalls auf dem Kopf.

Benutzen Sie diesen Blickwinkel aber

mit Feingefihl: Wir

Pl PC Magazin Demo

sind es nicht ge-
wohnt, daB sich unser
Sichtfeld dreht und
auf dem Kopf steht.
In Filmen und Ani-
mationen kommt die-
ser Effekt zu Recht
nur sehr sparsam zum
Einsatz.

Aus den drei so-
eben gewonnenen
Vektoren bauen Sie
nun eine Matrix auf,
die das Koordinaten-
system wie ge-
wiinscht abbildet:

BEISPIELSZENE mit Gouraud Shading

Nachdem Sie nun forward und right
kennen, konnen Sie wiederum einen
neuen Vektor up bestimmen. Da dieser
senkrecht auf forward und right steht,
berechnen Sie ihn erneut mit dem
Kreuzprodukt und anschlieBendem
Normalisieren:
crossproduct(forward,right,up);
normvector(up);

Eine kleine Einschrdnkung besteht bei
dieser Art der Kameraberechnung: Sie
sind hier davon ausgegangen, daR das
Kreuzprodukt von forward und up den
Vektor right ergibt, der rechtwinklig auf
diesen beiden steht. Die Blickrichtung
der Kamera kann aber auch genau nach
oben zeigen, also in die gleiche Richtung
wie der Vektor up. In diesem Fall liefert
Ihnen das Kreuzprodukt fur right den
Nullvektor <0,0,0>, und das Normali-
sieren scheitert somit an einer Division
durch 0.

Vermeiden Sie bei diesem Kameramo-
dell also Kamerafahrten, in denen die
Kamera genau nach oben zeigt. Pro-
grammieren Sie fur diesen Fall eine Son-

Dann liegt forward
entlang der z-Achse,
right entlang der x-
Achse und up entlang der y-Achse.

rightx upx forward.x 0

Kamera - Matrix = r{ght.y upy forwardy 0
rightz upz forward.z 0
1

0 0 0

SchlieBlich kdnnen Sie auch noch den
Offnungswinkel des (virtuellen) Kame-
raobjektivs beeinflussen. Die entspre-
chende Funktion finden Sie im Quelltext
von 3dcamera.cpp. Hier ist die Kamera

Neben Autodesk 3D-Studio gibt es weite-
re Programme, mit denen Sie einfache 3D-
Szenen modellieren und animieren und
als Textdatei speichern, zum Beispiel das
Programm 4D-Builder.

Zur Datenanpassung an das vue-Format
schreiben Sie dann ein kleines Konvertier-
programm. Damit Sie sofort loslegen kén-
nen, finden Sie auf der Heft-CD dieser
Ausgabe neben den kompletten Quell-
codes der Demo auch das Programm 4D-
Builder in der derzeit aktuellen Version

PC UNDERGROUND
PRAXIS

als Klasse tcamera implementiert. Die
darin enthaltene Funktion
tcamera::set_perspective(
const float aPerspective)

setzt die Perspektive bzw. Brennweite
der Kamera. Dazu berechnet sie die Pro-
jektionsfaktoren und das Clipping-Fu-
strum fur das 3D-Clipping neu. Fu-
strum ist der englische Ausdruck fir ei-
ne abgestumpfte Pyramide und bezeich-
net hier das von der Kamera aus sichtba-
re Volumen.

Um die Kamera auf lhre 3D-Objekte
anzuwenden, multiplizieren Sie ledig-
lich die Objekt- mit der Kamera-Matrix.
So erhalten Sie die endguiltige Abbildung
fur Ihre Objekte. In 3dengine.cpp erle-
digt dies die Funktion build_Itm:

void tobject::build_Itm(
tcamera * camera)

{
float temp[16];
matrix_mul(temp, mrot, mscale);
temp[3] +=mtrans[3]
-camera->position.x;
temp[7] +=mtrans[7]
-camera->position.y;
temp[11]+=mtrans[11]
-camera->position.z;
matrix_mul(Iltm, temp,
camera->matrix);
angle_preserving_matrix_inver
O se(ltm, iltm);

Da Sie nun sowohl Kamera- als auch
Objektbewegungen beherrschen, kon-
nen Sie sich an Ihre erste 3D-Animation
wagen. Eine Szene nach Ihren Vorstel-
lungen entwerfen Sie am einfachsten mit
einem 3D-Editor. Neben kommerziel-
len Programmen gibt es hierfir auch
empfehlenswerte Shareware (siehe Text-
box ,,Shareware fiir 3D-Animationen*
unten).

Um eine 3D-Animation zu berech-
nen, missen Sie die Objekte nicht fiir je-
des Einzelbild verschieben. Nur fir ei-
nige sogenannte Keys geben Sie die Po-
sitionen der Kamera und des Ziel- ©

0.96. Unter
www.geocities.com/
0 SiliconValley/Network/5884

bekommen Sie die jeweils neuesten Up-
dates.
Auch fertige Objekte und 3D-Szenen fin-

den Sie im Internet. Die Homepage von
www.meshmart.org

bietet neben fertigen 3D-Objekten im 3D-
Studio-Format auch Texturen und Hilfs-
programme. AuRerdem gibt es hier Doku-
mentationen fur diverse Dateiformate
und Links auf weitere Ressourcen.

PC Magazin September 1998 233

£l

PC UNDERGROUND
PRAXIS

punkts an. Die entsprechenden Werte
der dazwischenliegenden Bilder berech-
nen die meisten Programme durch ein
bestimmtes Interpolationsverfahren
(hdufig werden sogenannte kubische
Splines verwendet).

Nun machen es lhnen viele Hersteller
nicht leicht, an die von Ihrem Programm
erzeugten Daten heranzukommen. Oft
sind Dateiformate undokumentiert,
oder die Beschreibung ist nur in Form
eines—meist sehr teuren — Developer Kit

IM VERGLEICH: die alte 3D-Engine mit Flat Shading und die
neue Version mit Gouraud Shading

erhéltlich. Selbst mit vorliegenden Infor-
mationen ist eine vollstdndige Auswer-
tung meist sehr aufwendig.

Viele Editoren bieten jedoch Funktio-
nen, um Objekt- und Kamerabewegun-
gen fir jedes Bild einzeln vorzuberech-
nen und als ASCII-Datei zu speichern.
Eines dieser Programme ist das schon
etwas betagte Programm 3D-Studio R4
der Firma Autodesk. Es speichert bild-
weise fir alle Objekte und Kameras die
dazugehdrigen Matrizen und Parameter
in einer Datei mitder Endung vue. Auch
die Beschreibung einer 3D-Szene kén-
nen Sie als Textdatei speichern und dann
leicht auslesen. Als Eigenheit dieser
Animationsbeschreibung liegen die
Transformationsmatrizen in den vue-
Dateien nicht als 4x4-Matrix vor: Rota-
tion und Skalierung beschreibt eine 3x3-
Matrix, die Verschiebung gibt ein Vek-
tor an.

In der erweiterten Version unserer
3D-Engine finden Sie eine Routine, um
die Matrix der Objekte direkt zu setzen.
Zum Abspielen von vue-Dateien ist dies
sehr praktisch.

Die Funktion

void tobject::setmatrix (

[float *matrix, float *trans);
zerlegt die 3x3-Matrix in ihren Rotati-
ons- und Skalierungsanteil und bereitet

234 September 1998 PC Magazin

die inversen Matrizen fiir die Lichtbe-
rechnung vor.

Da Sie sich nun frei in 3D-Welten bewe-
gen konnen, sollten Sie noch den reali-
stischen Eindruck und die Qualitat der
Darstellung erhdhen. In der letzten Aus-
gabe des PC Magazin haben Sie bereits
eine Routine kennengelernt, um Poly-
gone einfarbig und
mit Z-Buffer-Unter-
stiitzung zu zeichnen.
Nun kommen einfar-
bige Flachen in der
Wirklichkeit aber so
gut wie nie vor. Ent-
weder besitzen sie
durch die Bestrah-
lung einer Lichtquelle
einen Helligkeitsver-
lauf, oder sie sind in
irgendeiner Art und
Weise gekrimmt.

Wie Sie wissen,
werden in der 3D-
Engine auch ge-
krimmte Flachen
durch Polygone angenahert. Um solche
Farbverlaufe auf Polygonen zu zeich-
nen, verwenden Sie das sogenannte
Gouraud Shading. Hierzu berechnen Sie
die Helligkeitswerte nicht wie bisher fur
das ganze Polygon, sondern fir jeden
seiner Eckpunkte.

Die bereits bekannte Formel

Licht= (Normalenvektor oLichtvektor)

zeigtaber, daf? Sie fur jeden Eckpunkt ei-
ne eigene Normale bengtigen. Diese er-
halten Sie, indem Sie fiir jeden Eckpunkt
die Normalen aller Flachen addieren, die
diesen Eckpunkt enthalten. Den resul-
tierenden Vektor normalisieren Sie an-
schlief3end.

Die Helligkeitswerte (Gouraud-In-
tensitdten) interpolieren Sie nun genau-
so Uber das Polygon, wie Sie es mit dem
Kehrwert des Z-Buffer-Werts getan ha-
ben. Dadurch erhalten Sie einen linearen
Farbverlauf auf dem Polygon, der runde
Flachen wie etwa eine Kugel auch wirk-
lich rund erscheinen I43t.

Wenn Sie einen dreidimensionalen Kor-
per aus Holz oder Marmor modellieren,
besitzt jedes Polygon des Kérpers neben

verschiedenen Helligkeitswerten auch
eine fUr das Material typische Ober-
flachenstruktur. Sie kdnnten eine solche
Oberflache in viele kleine Polygone mit
verschiedenen Farben zerlegen, um die
Struktur dieser Materialien nachzuah-
men. Die Zahl der Polygone wiirde bei
dieser Methode allerdings ins UnermeR-
liche steigen. Deshalb benutzen Sie hier
das sogenannte Texture-Mapping.

Stellen Sie sich vor, Sie schneiden aus
einer flexiblen Tapete ein Stiick heraus,
dehnen es auf die richtige GroRe aus und
kleben es auf eine Flache. Genauso ver-
fahren Sie beim Texture-Mapping: Sie
nehmen die sogenannte Texture-Map
und projizieren sie auf das Polygon.

Verwenden Sie als Texture-Map das
Bild einer Marmorplatte, erhalten Sie ein
marmoriertes 3D-Objekt. Damit die
Polygonroutine weif3, welcher Teil des
Bilds auf ein Polygon projiziert werden
soll, speichern Sie diese Information in
den sogenannten Texture-Mapping-Ko-
ordinaten u und v. Zwei Koordinaten
reichen deshalb aus, weil die Texture-
Map zweidimensional ist. Jeder Eck-
punkt eines Polygons erhélt diese beiden
Koordinaten.

Beim Zeichnen der Polygone mit Tex-
turen interpolieren Sie die Koordinaten
u und v Uber das Polygon — analog der
Helligkeitsinterpolation beim Gouraud
Shading. Immer wenn Sie ein Pixel
zeichnen, lesen Sie den entsprechenden
Bildpunkt der Texture-Map (Texel) aus

Bildschirm Texturemap

etiulvl)

e0(udvd)y

e2iu2vd)

SO PROJIZIEREN SIE die Texture-Map auf
ein Polygon.

und setzen ihn dann unter Berticksichti-
gung der Gouraud-Intensitat.

In dieser Implementation verwenden
Sie nur Texturen mit 256 Farben und ei-
ner Auflésung von 256 x 256 Pixeln. In
den meisten Fallen ist das mehr als ge-
nug, auBerdem gewinnen Sie dadurch an
Geschwindigkeit: Sie kénnen nun eine
Shading-Tabelle fur die Texturen ver-
wenden und mit dem Farbwert des Bild-
punkts und der Helligkeit einfach die re-
sultierende Farbe auslesen. Die Aufl6-
sung der Textur wurde so gewahlt, dald
ein Texel moglichst schnell und einfach

im Speicher zu adressieren ist. Die hori-
zontalen und vertikalen Inkremente be-
rechnen Sie also wie folgt:

d=((double)(x0-x2)/65536.0*
0 (double)(y1-y2)/65536.0-
0 (double)(x1-x2)/65536.0*
O (double)(y0-y2)/65536.0);

if (d==0.0) return;
id=1.0/d;

double y12=
0 (double)(y1-y2)/65536.0;
double y02=
0 (double)(y0-y2)/65536.0;

tex_delta_u=
O (((double)(u0-u2)*y12-
0 (double)(ul-u2)*y02)*id);
tex_delta_v=
(((double)(v0-v2)*y12-
(double)(v1-v2)*y02)*id);

gouraud_delta=
0 (((double)(g0-g2)*y12-
O (double)(g1-g2)*y02)*id);
Die innere Schleife zum Zeichnen der
Scanlines sieht inzwischen folgender-
mal3en aus:
for (i=0; i<breite; i++)
/I Z-Buffer Vergleich
if (z>16)>zbuffer[i+x1])
{

/I Pixel zeichnen

vbuffer[i + x1] =

/I Lesen der Shading-Tabelle

/I mit Gouraud-Intensitat

palette[((g>8)&65280) +

/I und Texelfarbwert

*(texture+(u>16)
+((v>16)<<8))];

/I Z-Buffer-Wert aktualisie-

Il ren

zbuffer[i + x1] = (z>16);

/I horizontale Werte
/I aktualisieren

u +=tex_delta_u;

v +=tex_delta_v;

g += gouraud_delta;
z += zbuffer_d;

Um die Bewegung der Polygone auf
dem Bildschirm weicher und weniger
sprunghaft erscheinen zu lassen, ver-
wenden Sie das sogenannte Subpixel-
Verfahren. Hierbei verschieben Sie die
Startwerte der an den Polygonkanten zu
interpolierenden Werte ein wenig. Da
Sie diese Startwerte nur an den Eck-
punkten der Polygone setzen und an-
sonsten interpolieren, verlangen auch
nur die Eckpunkte eine Subpixel-Kor-
rektur.

Um einen sinnvollen Wert fur diese
Verschiebung zu berechnen, ermitteln
Sie den Betrag, der der y-Koordinate des
entsprechenden Eckpunkts auf die
néachste ganze Zahl fehlt. Sie berechnen
diesen Korrekturwert prestep aus

prestep = ceil(Y) - Y;
Da Y in Fixpunktarithmetik vorliegt,
verwendet die Polygonroutine statt der
C-Funktion ceil zum Aufrunden eine ei-
gene Routine. Die korrigierten Werte
erhalten Sie, indem Sie das Produkt aus
prestep und x_inkrement auf den ent-
sprechenden Wert addieren, bevor Sie
das Polygon zeichnen:

X_startwert = x_startwert

+ prestep * x_inkrement;

Dasselbe gilt auch fiir alle anderen Inter-
polationswerte.

Nun haben Sie eine Korrektur fur die
Polygonkanten durchgefiihrt. Eine wei-
tere Optimierung, die eine Fortfuhrung
von Subpixel darstellt und darauf auf-
baut, ist das Subtexel-Verfahren. Wie
der Name schon vermuten 1ait, vermin-
dern Sie damit Springe in der Textur.
Hier korrigieren Sie die horizontalen
Startwerte fur die innere Schleife.

Da Sie die horizontalen Startwerte fiir
jede Scanline neu berechnen, missen Sie
die Subtexel-Korrektur vor dem Zeich-
nen jeder Scanline durchfiihren. Abgese-
hen davon berechnen Sie die Korrektur
analog — den Korrekturfaktor leiten Sie
aus der x-Koordinate der Scanline her:

prestep = ceil(X) - X;
u_startwert = u_startwert

+ prestep * u_inkrement;
v_startwert = v_startwert

+ prestep * v_inkrement;

Diese beiden Verfahren verwenden Sie
genauso beim Gouraud Shading und Z-
Buffering, um auch hier eine méglichst
fliissige Animation zu berechnen.

Nun haben Sie eine schnelle Polygon-
routine mit vielen Features geschrieben.
Die Verbesserungen zeigt eindrucksvoll
das Bild auf der vorhergehenden Seite.
Links sehen Sie Ludwig van Beethoven
mit dem Flat Shading der letzten Ausga-
be, rechts die optimierte Darstellung mit
Gouraud Shading. Diese gerenderte Sze-
ne besteht aus knapp 5000 Einzelpoly-
gonen!

Um mehr aus Ihrem PC herauszuho-
len, ersetzen Sie die innere Schleife zum
Zeichnen der Scanlines durch eine ent-
sprechende Assembler-Routine. Diese
ist in der Polygonroutine tpolygon.cpp
optional enthalten. Wenn Sie selbstandig
Erweiterungen an der 3D-Engine vor-
nehmen mdochten, haben wir noch ein
paar VVorschlage fur Sie.

Wie Sie bereits aus dem PC-Under-
ground-Beitrag der letzten Ausgabe

PC UNDERGROUND
PRAXIS

E]

wissen, interpolieren Sie beim Z-Buffe-
ring statt z dessen Kehrwert, um eine
perspektivisch korrekte Darstellung zu
erhalten. Beim Texture-Mapping und
Gouraud Shading kénnen Sie dhnlich
verfahren: Statt u und v sowie der Gou-
raud-Intensitat verwenden Sie einfach
die Werte u/z, v/z und Gouraud/z. Da
Sie mit Fixpunktarithmetik arbeiten,
mussen Sie auf einen korrekten Zahlen-
bereich achten.

Um wieder die reinen Werte zu erhal-
ten, erfordert diese Methode allerdings
fir jedes Pixel eine Division dieser drei
Werte durch 1/z (diesen Kehrwert ha-
ben Sie bereits vom Z-Buffering). Da
dies sehr viel Rechenzeit bendtigt, wen-
den Sie die perspektivische Korrektur
nur alle 4, 8, oder 16 Pixel einer Scanline
an und interpolieren dazwischen — wie
bisher — linear.

Beim sogenannten Environment-Map-
ping kénnen Sie die Umgebung eines
Objekts relativ leicht auf den Polygonen
spiegeln. Der Trick dabei ist, daf? es sich
hier auch ,,nur* um eine Variante des
Texture-Mapping handelt. Die Koordi-
naten u und v werden vor jedem Zeich-
nen des Objekts anhand der Eckpunkt-
normalen des Polygons neu berechnet.
Als Texture-Map verwenden Sie ein Bild
der Umgebung dieses Objekts —etwa ein
vorberechnetes Bild der 3D-Szene aus
der Sicht des Objekts in Richtung des
Betrachters. Ebenfalls sehr interessante
Effekte ergibt ein beliebiges Bild mit
verschiedenen helleren und dunkleren
Bereichen.

Die Texture-Mapping-Koordinaten
berechnen Sie aus den gedrehten Eck-
punktnormalen mit

u=normale.x/normale.z+128;

v=normale.y/normale.z+128;
Achten Sie darauf, dal? die resultieren-
den Werte u und v im Bereich zwischen
0 und 255 liegen, um nicht Uber den
Rand der Textur zu springen.

Als néchste Erweiterung kénnen Sie als
Environment-Map einen Farbverlauf
wie im ersten Artikel von PC Under-
ground (Ausgabe 7/98, ab S. 228) fir die
Lichtquelle benutzen. Dadurch erhalten
Sie eine Lichtschattierung, die dem so-
genannten Phong Shading (ein aufwen-
digeres Shading-Verfahren fir Polygo-
ne) sehr nahe kommt. Dabei stellen Sie
mit dem entsprechenden Farbverlauf so-
wohl Helligkeitstibergange als auch @

PC Magazin September 1998 235

5-E)

PC UNDERGROUND
PRAXIS

sogenannte Specular Highlights dar.
Diese Highlights sind Spiegelungen ei-
ner Lichtquelle auf einem Objekt.

Sie kennen sicher die kleinen, sehr hel-
len Punkte auf beleuchteten Billardku-
geln, die nichts anderes als das Spiegel-
bild einer Lampe sind. Diese Highlights
erhalten Sie, indem Sie einen sehr hohen
Helligkeitsanstieg um die Mitte der En-
vironment-Map erzeugen.

Diese Phong-Shading-Approximati-
on konnen Sie nach Wunsch auch wie-
der mit Texture-Mapping kombinie-
ren.

Echtes Phong Shading ist hingegen et-
was komplizierter. Im Gegensatz zum
Gouraud Shading interpolieren Sie hier
statt der Intensitaten die Normalenvek-

a

toren. Diese normieren Sie noch und be-
rechnen erst daraus die Helligkeitswerte
der entsprechenden Pixel. Dabei bestim-
men Sie durch lineare Interpolation zu-
erst die normierten Normalen entlang
der Kanten. Anschliel3end berechnen Sie
alle tbrigen im Polygon-Inneren entlang
jeder Scanline.

Da Sie dieses Verfahren explizit auf je-
den einzelnen Punkt anwenden miissen,
beansprucht es viel Rechenzeit. Daflr
erhalten Sie damit sehr realistische Er-
gebnisse.

Unser Ausflug in die Welt der 3D-
Grafik ist hier nun vorerst zu Ende. Mit
Ihrem erlernten Wissen kénnen Sie die
3D-Engine selbstandig erweitern und ei-
gene Animationen berechnen — oder ei-

ne komplett neue Grafik-Engine pro-
grammieren.

In der ndchsten Ausgabe dreht sich al-
les um die sogenannten Bitmap-Effekte.
Damit verzerren und rotieren Sie Grafi-
ken in Echtzeit und programmieren Ef-
fekte wie Wasseroberflachen und Tun-
nel. PEI

Alle Programme, Routinen und eine lauffahige De-
mo finden Sie auf der Heft-CD zu dieser Ausgabe
und kénnen Sie aus dem Internet-Angebot des PC
Magazin unter

www.pc-magazin.de/magazin/
[extras.htm

herunterladen. Klicken Sie in der Tabelle Online
Extras unter Praxis auf das entsprechende rote
Download-Feld.

1: void tcamera::buil d_matrix (void) 1: void tobject::cal c_facenormal s(void)

2: { 2; {

3: tvector forward; 3z int i;

4: tvector up; 4:

5: tvector right; 5: for (i =0; i <nvertices; i++)

6: 6: {

7: Il tenporare Matrix fur die Roll-Z-Rotation V] normale[i].x = 0.0f;

8: float zmatrix[16]; 8: normale[i].y = 0.0f;

)) normale[i].z = 0.0f;

10: // Matrizen initialisieren 10:

11: for (int i=0; i<15; i++) 11:

12: 12: for (i=0; i<nfaces; i++)

13: zmatrix[i] = 0.0f; 13: {

14: matrix [i] = 0.0f; 14: pol ygon_nornal (vertice[face[i].a],

15: } alsis vertice[face[i].b],

16: 16: vertice[face[i].c],

17: I/ Berechnen des Kamera- Koor di nat ensyst ens 17: face[i].normal);

18: forward.x = target.x - position.Xx; 18:

19: forward.y = target.y - position.y; 19:; normal e[face[i].a].x += face[i].normal.x;
20: forward.z = target.z - position.z; 20: normale[face[i].a].y +=face[i].normal.y;
21: nornvector (forward); 21; normale[face[i].a].z += face[i].normal.z;
22: 22: normale[face[i].b].x += face[i].normal.x;
23: up.x = 0.0f; 23: normale[face[i].b].y += face[i].normal.y;
24: up.y = 1.0f; 24: normale[face[i].b].z += face[i].normal.z;
25: up.z = 0.0f; 25; normale[face[i].c].x += face[i].normal.x;
26: 26: normale[face[i].c].y +=face[i].normal.y;
27: crossproduct(forward, up, right); 27: normale[face[i].c].z += face[i].normal.z;
28: nornvector (right); 28:

29: 29: face[i].cullpoint = dotproduct (

30: crossproduct(forward, right, up); 30: face[i].normal, vertice[face[i].a]);
31: nornvector (up); 31z

32:; 32:

33: mtrix[0] =right.x; 33: for (i =0; i < nvertices; i++)

34: matrix[1] =right.y; 34:

35: matrix[2] =right.z; B5x nornvector(normale[i]);

36:; 36:

37: matrix[4] = up.Xx; 37: }

38: matrix[5] = up.y;

39: mtrix[6] = up.z;

40: Die Funktion calc_facenormals berechnet die Normalen der Eck-
41: matrix[8] = forward.x; punkte

42: matrix[9] = forward.y; :

43: matrix[10] = forward. z;

44

45: matrix[15] = 1.0f;

46:

47: |/ Z-Rotationsmatrix erstellen:

48: float sinz=(float)sin(-roll*3.14/180.0); 1: #i f def ASSEMBLER | NNER LOCP

49: float cosz=(float)cos(-roll*3.14/180.0); 2: __asm{ - -

50: 3: nov eax, breite

51: zmatrix[O] = cosz; 4: pov ecx, x1

52: zmatrix[1] = singz; 5

53: 6: mov edi, v

54: zmatrix[4] = -sinz; 7

55: zmatrix[5] = cosz; 8: add eax, ecx

56: 9:

57: zmatrix[10] = 1.0f; 10: nmov esi, z

58: zmatrix[15] = 1.0f; 11:

59: // Roll-Rotation auf die Kanmeramatrix mul tiplizieren 12: mov end_of |ine, eax

60: matrix_mul (matrix, zmatrix); 13: -

61: } 14: mov ebx, zbuffer

1L5g
Die Funktion build_matrix berechnet die Kamera-Matrix. 16: spal te: . .)
- 17: [/ Diese Variante ist nicht 100%g korrekt:

236 September 1998 PC Magazin

