PC UNDERGROUND

PRAXIS

download
- www.pc-magazin.de

Demo-Programmierung unter Windows 95/![\|T/

\Yi .0@
2 L Q
@FT _(’

Mit Bitmap-Effekten ahmen Sie Regentropfen auf einer Wasseroberflache

nach und berechnen

CARSTEN DACHSBACHER /
NiILS PIPENBRINCK

ach den Ausfliigen der letzten
N beiden Ausgaben in die Welt

der 3D-Grafik kehren wir in
die zweite Dimension zurtick. Um Be-
griffe wie Perspektive oder Projektion
brauchen Sie sich also nicht mehr zu
kimmern. Vielmehr arbeiten Sie mit
einfachen Bitmaps und anderen zweidi-
mensionalen Tabellen.

Die Spielereien mit einzelnen Bild-
punkten sind dabei nicht nur einfach,
sondern auch schon: Mit geringem Auf-
wand programmieren Sie auf diese Wei-
se atemberaubend schdne Sinnesein-
dricke.

Harte Ubergidnge in Bildfolgen
schwéchen Sie durch das sogenannte
Motion Blur ab. Dieser Effekt der Be-
wegungsunscharfe ist sehr einfach zu er-
reichen: Sie mischen das aktuelle Bild ei-
nes Effekts mit dem vorhergehenden,
indem Sie fUr jedes Pixel die Mischfarbe
aus altem und neuem Pixel berechnen.
So erkennen Sie die letzten vier bis finf
Bilder unter dem aktuellen. Die Bewe-
gung sieht weicher aus, da starke Uber-
génge zwischen den Bildern verwischen.

Die Mischfarbe zweier Pixel berech-
nen Sie, indem Sie jeweils die rote, griine
und blaue Komponente addieren und
halbieren. Als Ergebnis erhalten Sie die
Farbkomponenten der neuen Farbe.
Dieses Verfahren ist zwar das nahelie-
gendste, aber auch recht aufwendig.

Mit einem kleinen Trick behandeln Sie
nicht nur alle drei Farbkomponenten,
sondern auch gleich zwei Pixel in einem
Ablauf. Zundchst einmal betrachten Sie
ein Pixel im Highcolor-Format: Es be-
steht aus jeweils 5 Bits fur die Rot- und
Blau-Komponente, 6 Bits sind fiir den
Grun-Anteil reserviert.

232 Oktober 1998 PC Magazin

mit Plasmawolken.

Schieben Sie die Bits um eine Stelle
nach rechts. Dies entspricht einer Divi-
sion durch 2. Nun maskieren Sie mit

0111101111101111
die Bits aus, die durch das Schieben in die
falsche Farbkomponente gerutscht sind.
Wenn Sie zwei derart vorbereitete Pixel
addieren, erhalten Sie wieder ein Pixel im
Highcolor-Format. Da Sie die Division
der Addition vorziehen, verlieren Sie
pro Farbkomponente ein Bit Genauig-
keit. Dies entspricht einem Fehler von
etwa 1,5 Prozent. Sie werden den Unter-
schied jedoch kaum wahrnehmen. Ad-
dieren Sie die Farbkomponenten hinge-
gen vor der Division, verfalscht der nun
entstandene Uberlauf den benachbarten
Farbwert.

Sie sollten immer zwei Pixel gleichzei-
tig mischen, da 32-Bit-Operationen im
32-Bit-Protected-Mode viel schneller
sind. Dieser Code zeigt, wie es geht:

/IZeiger auf das aktuelle Bild
unsigned long *datal;
//Zeiger auf das vorherige Bild
unsigned long *data2;

for (int i=0;i<AnzahlPixel/2;i++)
{
unsigned long a=
(datal[i]>1)&bitmask;
unsigned long b=
(data2[i]>1)&bitmask;
data2[i]=(a+b);

Einfach, aber effektiv. Das gemischte
Bild wird gleich wieder in den Puffer flr

‘BBBBB‘GGGGGG‘RRRRR‘

Blau Griin Rot

SHR

Z‘DBBBB‘BGGGGG‘GRRRR‘

AND‘DllllDlllllDllll‘

:‘UBBBB‘UGGGGG‘URRRR‘

DIE FARBWERTE eines Pixels werden hier
im Highcolor-Format halbiert.

das vorherige Bild geschrieben und ist
einfach darstellbar.

Die Listings zu diesem Beitrag enthal-
ten auch eine Assembler-Implementie-
rung dieses Algorithmus. Durch ihre
Einfachheit ist diese Implementierung
ein hervorragendes Beispiel, um sich mit
Assembler-Programmierung vertraut
zu machen.

Viele Programmierer benutzen diese
Technik, um Fehler in ihren Routinen
zu kaschieren. Zum Beispiel treten bei
vielen 3D-Engines — nicht so bei der von
PC Underground verwendeten —an den
Polygonkanten schwarze Punkte auf.
Durch den Motion-Blur-Effekt ver-
schwinden sie zwar nicht vollstandig,
fallen aber immerhin nicht mehr so stark
auf.

Weiche Uberblendungen von Bildern
eignen sich gut, um nahtlos von einem
Effekt in einen anderen zu wechseln. Da
das Mischverhaltnis der zwei Bilder frei
einstellbar sein soll, funktioniert dies
nicht mehr so einfach wie beim Motion
Blur. Die Bilder sollten bei diesem Ef-
fekt in Truecolor (ein Byte pro Farb-
komponente) vorliegen. Mit MM X-Be-
fehlen schreiben Sie zwar auch sehr
schnelle Mischroutinen fiir Highcolor,
aber die meisten C-Compiler unterstit-
zen leider keine MM X-Befehle.

Mischen Sie zwei Farben mit einfacher
linearer Interpolation. Den Mischgrad
geben Sie in Byte an:

Mischwert=

A+((B-A)*Mischgrad)/255

Multiplikationen und Divisionen sind
auf x86-Prozessoren bekanntermafen
sehr langsam. Mischen Sie jedoch Bytes,
konnen Sie alle Ergebnisse der Interpo-
lation in einer kleinen Tabelle vorbe-
rechnen.

Der Ausdruck (B-A) kann Werte zwi-
schen -255 und 255 annehmen. Der
Mischgrad selbst ist bei jedem Aufruf

der Routine konstant. Sie berechnen al-
so alle 512 mdglichen Werte vor:

signed int Mischtabelle[512];

for (int i=0; i<512; i++)

Mischtabelle[i]=
((i-255)*Mischgrad)/255;

AnschlieBend mischen Sie die zwei Bil-
der und ersetzen die Interpolation durch
einen Tabellenzugriff. Gleichzeitig kon-
vertieren Sie das Ergebnis in das High-
color-Format, um das Mischbild dar-
stellen zu kénnen. Da (B-A) auch nega-
tive Werte annehmen kann, gleichen Sie
dies durch eine Addition mit 255 aus.

/IAusgangsbilder, Truecolor 24
1IBit
unsigned char *bild1,bild2;

//Zielbild, Highcolor
unsigned short *mischbild;

for (int i=0;i<AnzahlPixels;i++)

signed long a,b;
unsigned short Pixel;

//IRot-Anteile mischen
a=bild1[i*3+0]
b=bild2[i*3+0]-a+255;
Pixel=Rtab[a+Mischtabelle[b]];

/IGrun-Anteile mischen
a=bild1[i*3+1]
b=bild2[i*3+1]-a+255;
Pixel|=Gtab[a+Mischtabelle[b]];

/IBlau-Anteile mischen
a=bild1[i*3+2]
b=bild2[i*3+2]-a+255;
Pixel|=Btab[a+Mischtabelle[b]];

mischbild[i]=Pixel;

Plasmawolken kommen in Demoeffek-
ten haufig zum Einsatz. Sie eignen sich
hervorragend fur einfache Texturen und
fur Effekte aller Art. Aber auch als kon-
trollierter Zufallszahlengenerator leisten
Sie gute Dienste.

Es gibt zahlreiche Algorithmen, um
fraktale Plasmawolken zu erzeugen. Fur
die folgenden Effekte benétigen Sie je-
doch einen ganz speziellen Typ. Die
Plasmen mussen ,,seamless”, also naht-
los sein. Das heif3t, Sie kdnnen die Bilder
wie Kacheln auf dem Bildschirm ausle-
gen und bekommen keine sichtbaren
Nabhtstellen zwischen den Einzelteilen.

Diese Plasmen erzeugt in der Regel ein
rekursiver Algorithmus, der jedes Qua-
drat in vier kleinere Quadrate aufteilt.
Die neu erzeugten Punkte berechnen
Sie, indem Sie die vier umgebenden
Punkte mitteln sowie einen Zufallswert
addieren.

Da die Plasmen in unserem Fall eine
feste Breite und HOhe von 256 Pixeln ha-

‘DBBBB‘DGGGGG‘DRRRR‘

+‘DBBBB‘UGGGGG‘URRRR‘

‘BBBBB‘GGGGGG‘RRRRR‘

DIE FARBWERTE zweier Pixel werden im
Highcolor-Format addiert.

ben, kénnen Sie die Rekursion einfach
durch eine Schleife ersetzen. Dies macht
den Code in der Datei plasma.cpp Uber-
sichtlicher und schneller. Beim Erzeu-
gen der Plasmen kdnnen Sie zusatzlich
den Startwert des Zufallszahlen-Gene-
rators sowie den Grad des Zufalls ange-
ben.

Plasmawolken besitzen eine sehr niitzli-
che Eigenschaft: Nahe beieinander lie-
gende Pixel haben &hnliche Werte, aber
Uber das Plasma selbst sind die Werte
sehr zuféllig verteilt. Diese Eigenschaft
kdnnen Sie fiir einen Demoeffekt nut-
zen, den Sie als Vollbildeffekt sowie als
sehr schonen Texture-Generator einset-
zen koénnen.

Zundchst generieren Sie zwei Plasma-
bilder. Das erste soll Ihr Ausgangsbild
sein, das zweite dient dazu, eben dieses
Ausgangsbild zu verzerren. Nun legen
Sie zwei Tabellen xoffset und yoffset an,

Additives Shading bedeutet, die Farban-
teile eines Pixels auf ein anderes aufzuad-
dieren. Diese Methode benétigen Sie zum
Beispiel fur die Lensflares. Es handelt sich
hier um eine Addition mit Saturation (Sat-
tigung) — das heillt, es gibt fur jeden Farb-
anteil eine maximale Obergrenze.

Diese Obergrenze halten Sie durch einen
Trick ein. Zunachst behandeln Sie die bei-
den ursprunglichen Pixel genauso wie bei
der Transparenz des Motion-Blur-Verfah-
rens. Zusatzlich verwenden Sie eine vor-
berechnete Tabelle, aus der Sie die Farbe
des durch additives Shading entstande-
nen Pixels erhalten. Der Grund: Vor der
Addition haben Sie die Werte halbiert,um
keinen Wert groRer als 16 Bit zu erhalten.
Deshalb muRte nun eigentlich jeder Farb-
anteil den doppelten Wert besitzen. Da
dann aber Farbanteile uber der zulassigen
Obergrenze auftauchen wurden, verwen-
den Sie eine Tabelle mit den korrekt be-
rechneten Werten. Diese Tabelle, in die

PC UNDERGROUND
PRAXIS

die fir einen eingegebenen Wert einen
Verschiebungswert liefern. Zeichnen Sie
das Bild Pixel fur Pixel, und lesen Sie den
Farbwert des entsprechenden Pixels aus
dem zweiten Plasmabild. Diesen Wert
nehmen Sie als Eingabewert der Tabel-
len und erhalten somit eine Verschie-
bung fir die x- und y-Richtung. Diese
Verschiebung gibt an, welches Pixel Sie
aus dem ersten Plasmabild an das aktu-
elle Pixel kopieren.

Sie kopieren also nicht 1:1, sondern
verzerren die Punkte des Quellbildes
leicht anhand des zweiten Plasmas. Die
Tabellen xoffset und yoffset fullen Sie da-
bei mit Werten ganz nach Ihrem Ge-
schmack. Auf der Sinusfunktion basie-
rende Kreisbahnen haben sich dabei be-
wabhrt. Sie sehen immer sehr gut aus.

Probieren Sie ruhig einmal an den Pa-
rametern herum. Sie kbnnen damit zum
Beispiel marmorierte Texturen erzeu-
gen. Und wenn Sie bei jedem Bildaufbau
die Parameter leicht andern, bekommen
Sie eine tolle Bewegung ins Bild. Dieser
Effekt eignet sich hervorragend als Hin-
tergrund fiir ein Logo.

Der Algorithmus erzeugt wieder 256
X 256 Pixel groRRe Texturen. Das Bei-
spielprogramm kachelt das Fenster mit
der Textur aus, um einen schwarzen
Rand zu vermeiden.

for (int y=0;y<256;y++)

for (int x=0;x<256;x++)

/IPlasma-Wert lesen
unsigned char plasmawert=

>

Sie nur noch den erhaltenen Farbwert ein-
setzen, berechnen Sie mit

//Alle Farbwerte
for (i=0;i<65536;i++)
{
/[Farbanteile extrahieren
/lund skalieren
int r=((i&ROT_MASKE)>
ROT_POS)*512>ROT_SIZE;
int g=((I&GRUEN_MASKE)>
GRUEN_POS)*512>GRUEN_SIZE;
int b=((i&BLAU_MASKE)>
BLAU_POS)*512>BLAU_SIZE;
/IKorrekten Farbwert berechnen
/lund in Tabelle schreiben
remappalette[i]=
ColorCode(min(255,r),
min(255,9),
min(255,b));
}
Um auf ein Pixel additives Shading anzu-
wenden, benétigen Sie also die Mischfar-
be der zwei entsprechenden Pixel und den

zugehorigen Tabelleneintrag:
additive_Farbe=
remappalette[Mischfarbe];

PC Magazin Oktober 1998 235

~_4

5o

PC UNDERGROUND
PRAXIS

L PC Magazin Demo

HIER WERDEN zwei Bilder uberblendet.

plasma[256*y+x]

//Berechnen der Verschiebung

/laus den Tabellen

unsigned char xx=
x+xoffset[plasmawert];

unsigned char yy=
y+yoffset[plasmawert];

//Kopieren des verschobenen

/IPixels

ziel[256*y+x]=
quelllyy*256+xx];

}

Auf diesem Algorithmus bauen Sie
leicht zahlreiche neue Effekte auf. Ver-
suchen Sie zum Beispiel, ein Bild mit Lo-
go als Verzerrquelle zu benutzen, oder
nehmen Sie als Quelltextur ein gestreif-
tes Bild. So entstehen holz&hnliche Tex-
turen.

Die C-Variante des Algorithmus ist
recht langsam. Zum Vorberechnen von
Texturen ist sie aber allemal geeignet. Im
Code finden Sie deshalb eine schnelle
Assembler-Version.

® Sinusplasmen

Da Sie sich gerade mit Plasmen beschaf-
tigen, wollen wir Ihnen einen Klassiker
der Demo-Programmierung nicht vor-
enthalten: Sinusplasmen. Diese haben
schon immer einen groRen optischen
Reiz ausgelbt.

Sinusplasmen entstehen, wenn Sie
mehrere Uberlagerte Sinusfunktionen
berechnen und als Bitmaps darstellen.
Die Vorgehensweise dhnelt dabei stark
dem Texture Mapping. Da eine Sinus-
Welle jedoch eindimensional ist, fallt der
Code wesentlich kompakter aus. Auch
fillen Sie den ganzen Bildschirm, so daf3
die aufwendige Berechnung der Poly-
gonkanten nicht ndtig ist.

236 Oktober1998 PC Magazin

Der Programm-
code weiter unten be-
rechnet fiir jedes Pixel
das Argument der Si-
nusfunktion. Da Sie
nur am optischen Er-
gebnis des Effekts in-
teressiertsind, ware es
Zeitverschwendung,
diese Funktion fur je-
des Pixel aufzurufen.
Sie sollten sich daher
eine Tabelle anlegen.

Ein Vorteil der Ta-
belle ist, da3 Sie nicht
mehr auf die Sinus-
funktionen festgelegt
sind. Probieren Sie
einmal andere Tabel-
leneintrdge aus. Die
Bewegung in diesem Effekt entsteht, in-
dem Sie die Startwerte der Plasmabe-
rechnung von Bild zu Bild variieren.

/IZeiger auf Highcolor-Zielbild
short *picture;

/IZeiger auf Highcolor-Palette
short *palette;

/IZeiger auf Sinus-Tabelle

int *sinetable;

/IGeschwindigkeit der
/IWellen vorberechnen

int speed_x=3000*sin(time);
int speed_y=3000*cos(time);

/[Startwert der Welle setzen
int wave_y=0;

/ISchleife Uber die Hohe
/ldes Bitmaps

for (int y=0;y<height;y++)
{

/IAktuellen Wellen-Wert sichern
int wave_x=wave_y;

/leine Scanline zeichnen
for (int x=0;x<width;x++)

//IPunkt setzen
*(picture++)=

palette[sinta-
ble[wave_x %

Tabellen_Groes
Ose]l;
/IGeschwin
O digkeit in
/IX-Richtung
0 addieren

wave_x+=speed_x;
}
/IGeschwindig
Okeit in

/IX-Richtung
O addieren

wave_y+=speed_y;

Diese Programmzei-
len berechnen nur ei-
ne einzelne Welle.
Fur ein wirklich hib-

.

n Demo

sches Sinusplasma brauchen Sie mehrere
davon. Die entsprechende Erweiterung
ist sehr einfach, macht den Code aber
undbersichtlich. Den vollen Quelltext
sehen Sie in der Datei sinplas.cpp bzw.
sinplas.h.

B 2D-Bumpmapping

Im ersten PC-Underground-Artikel
(Ausgabe 7/98, ab S. 228) haben Sie be-
reits eine Lichtquelle Gber ein Bild be-
wegt. An dieser Stelle werden Sie diesem
Bild noch eine dreidimensionale Struk-
tur hinzufiigen, die sich dann in der
Schattierung durch die Lichtquelle be-
merkbar macht. Bei dieser Art der Schat-
tierung spricht man von Bumpmapping
(der englische Begriff Bump bedeutet
Beule). DaR diese Ubersetzung treffend
ist, sehen Sie am Beispielprogramm.

Die dreidimensionale Struktur erhal-
ten Sie, indem Sie jedem Pixel des Bildes
eine Hohe zuweisen und so héhere und
tiefere Bereiche (Beulen) fir das Bild er-
halten. Die Hohe eines Pixels bestim-
men Sie zum Beispiel anhand von ma-
thematischen Funktionen. Einfacher be-
rechnen Sie die H6he anhand der Hel-
ligkeit eines Pixels, was meistens auch in
einem sehr interessanten Effekt resul-
tiert. Die Helligkeit entspricht der Sum-
me der Rot-, Griin- und Blau-Anteile ei-
nes Pixels.

Wenn Sie die Bitmap-Laderoutinen
der Grafikbibliothek verwenden, be-
rechnen Sie die Helligkeit wie folgt:

for (j=0;j<SCREEN_Y;j++)

for (i=0;i<SCREEN_X;i++)
E)ixel=bi|d[i+j*SCREEN_X];

helligkeit=

(bmpheader.cColors[pixel*4]+
O bmpheader.cColors[pixel*4+1]+
O bmpheader.cColors[pixel*4+2]);

o
2

ANIMIERTE VERZERRUNGEN mit Plasmen

heightmapli+j*SCREEN_X]=

) helligkeit;
Nachdem Sie die Hohe eines jeden Pi-
xels berechnet haben, ermitteln Sie fir
jedes Pixel die ,,Neigung* des Bildes an
dieser Stelle. Dazu bilden Sie an einem
Punkt (X/Y) fir die horizontale Nei-
gung die Differenz aus der Hohe des
Punkts links und des Punkts rechts da-
von. Analog erhalten Sie die vertikale
Neigung durch die Differenz des dari-
ber- und des darunterliegenden Punkts.

Diese beiden Werte verwenden Sie
spater bei der Berechnung des Bildes.
Deshalb speichern Sie sie in der soge-
nannten Bumpmap. Eine Bumpmap
verfiigt immer Uber doppelt so viele Ein-
trage, wie die Auflésung des Bildes be-
tragt. Jeweils zwei aufeinanderfolgende
Werte enthalten die zusammengehori-
gen Neigungen eines Pixels. Die Berech-
nung erfolgt dann mit Hilfe dieser
Bumpmap:

for (j=1;j<SCREEN_Y-1;j++)

for (i=1;i<SCREEN_X-1;i++)

horizontal=
heightmapli+j*SCREEN_X-1]-
heightmap[i+j*SCREEN_X+1];
vertikal=
heightmap[i+j*SCREEN_X-
SCREEN_X]-
heightmapl[i+j*SCREEN_X+
SCREEN_X];

bumpmap((i+j*SCREEN_X)*2]=
horizontal;
bumpmap[(i+j*SCREEN_X)*2+1]=
vertikal;
}
Die Berechnung des endgiiltigen Bildes
unterscheidet sich nur in einer Kleinig-
keit von der Berechnung der Lichtquel-
le in der ersten Ausgabe. Sie bendtigen
wie dort eine Shading-Tabelle und eine
Lightmap.

Bevor Sie jedoch die Helligkeit fiir ein
Pixel aus der Lightmap auslesen, modi-
fizieren Sie die Koordinaten des Light-
map-Pixels durch Addition mit den ho-
rizontalen und vertikalen Neigungen
der zu zeichnenden Pixel des Bildes. In
C-Pseudocode wiirde das folgender-
mafen aussehen:

for (j=0;j<SCREEN_Y;j++)

for (i=0;i<SCREEN_X;i++)

/IWie bisher: addiere Bewe-
Ogung

/lder Lichtquelle

xpos=i+horizontale_bewegung;

ypos=j+vertikale_bewegung;

/IDer Unterschied:

xpos=xpos+horizontale_nei
Ogung;

ypos=ypos+vertikale_neigung;

screen[i+j*SCREEN_X]=
palette[lightmap[xpos+
ypos*SCREEN_X*2]]
[bild[i+j*SCREEN_X][;

Sie mussen bei der Modifikation der Ko-
ordinaten nur darauf achten, dal} Sie
stets in einem gultigen Wertebereich
bleiben und nicht Speicher auBerhalb
der Lightmap adressieren.

Wenn Sie mit einer Videokamera gegen
grelles Licht oder die Sonne filmen, kén-
nen Sie hellere bunte Kreise oder n-Ecke

PC UNDERGROUND
PRAXIS

B

steht ein realistischer Effekt.
Doch zunéchst definieren Sie einen
Variablentyp:

typedef struct

int sizebit, size;
float faktor;
bitmaptype bmp;
int *map;
} lensflare;
Dabei ist size die Kantenldnge des qua-
dratischen Bildes. Es sollen nur Zweier-
potenzen als Gréfe mdglich sein, also
size = 2/\sizebit
Den Faktor fir den Richtungsvektor
enthédlt faktor, die

PC Magazin Demo

-~
N

Zeiger auf das Bild
sind bmp bzw. *map.

Die Bilder der
Lensflares zeichnen
Sie am besten in
Graustufen. Die Far-
be erhalten die Lens-
flares dann beim La-
den des Bildes. Dabei
gibt ein Faktor fur
Rot, Griin und Blau
die Intensitat des ent-
sprechenden Farbka-
nals an.

Die Stelle, an der
Sie den Lensflare
zeichnen, erhalten Sie

aus der Position der

SINUSPLASMEN uben einen besonderen optischen Reiz aus.

im Bild beobachten. Diese Linsenfehler
(Lensflares) entstehen durch Reflexion
von sehr hellem Licht an den Linsen des
Kameraobjektivs. Es ist unméglich, sol-
che Spiegelungen mathematisch und
physikalisch korrekt in Echtzeit zu be-
rechnen.

Fir Demoeffekte nutzen Sie die Ei-
genschaften aus, die Sie in der Realitét
beobachten. Sie kénnen einfach die Bild-
bereiche, an denen solche Linsenfehler
auftreten, mit der Farbe dieser Erschei-
nung aufhellen. Die Lensflares liegen
immer auf der Gerade, die vom Mittel-
punkt des Bildes und der Position der
Lichtquelle bestimmt werden. Die Posi-
tion berechnen Sie aus dem Richtungs-
vektor der Position der Lichtquelle zum
Bildmittelpunkt und einem konstanten
Faktor fur jeden Linsenfehler.

Programmieren Sie diesen Effekt als
Zusatz zum Bumpmapping-Effekt. Da-
zu benétigen Sie gezeichnete (oder von
einem Bildbearbeitungsprogramm be-
rechnete) Bilder von Lensflares. Diese
Bilder zeichnen Sie dann Pixel fur Pixel
auf den Bumpmapping-Effekt — so ent-

Lichtquelle auf dem
Bild:
licht_x-=SCREEN_X/2;
licht_y-=SCREEN_Y/2;

lensflare_x=licht_x*faktor+
SCREEN_X/2-size/2;

lensflare_y=licht_y*faktor+
SCREEN_Y/2-size/2;

Setzen Sie den Lensflare an die berech-
nete Position. Dabei verwenden Sie die
Technik des additiven Shadings (siehe
Textbox, S. xxx) mit folgenden Befehlen:

/lofs ist die Adresse
/ldes Pixels im Bild
pixel=(screen[ofs]>1) & bitmask;

/Imappos ist die Adresse
/ldes Lensflare-Pixels
flarepixel=flare.map[mappos];

screen[ofs]=
remappalette[pixel+flarepixel];

Besonders faszinierend wirkt oft der
Eindruck einer bewegten Wasserober-
flache zwischen dem Bild und dem Be-
trachter. Dabei bertcksichtigen Sie ne-
ben der Lichtbrechung durch das Was-
ser auch die Reflexion des Lichts einer
beliebigen Lichtquelle. Dabei kann ©

PC Magazin Oktober 1998 237

PC UNDERGROUND
PRAXIS

: PC Magazin Demo

2D-BUMPMAPPING mit Lensflares

die Umsetzung auf einen in Echtzeit be-
rechneten Effekt nicht physikalisch kor-
rekt sein.

Zunachst bendtigen Sie eine Repré-
sentation des Wassers. Hier bietet sich
eine sogenannte Heightmap an, in der
Sie fur jedes Pixel den Wert fir die Was-
serhdhe speichern. Simulieren Sie nun
die Schwingungen, die das Wasser voll-
zieht. Sie kénnen sich dabei einen Was-
sertropfen vorstellen, der auf eine glatte
Wasserflache fallt. Sie sehen konzentri-
sche Kreise, die sich langsam ausbreiten.
Die Intensitat der Schwingung laRt dabei
mit der Zeit nach.

In lThrem Programm verwenden Sie
die beiden Heightmaps heightl und
height2, mit deren Hilfe Sie ein Bild aus
den vorhergehenden berechnen. Den
Wert eines neuen Heightmap-Eintrags
in heightl fur die Position (X/Y) be-
stimmen Sie mit height2: Sie addieren die
an diese Position in height2 anliegenden
Hoheninformationen, teilen das Ergeb-
nis durch 2 und subtrahieren die zu
(X7Y) gehdrende Hohe.

Sie erhalten einen neuen Héhenwert,
den Sie nur noch abschwéachen mussen,
damit die Wellen auf dem Wasser tosen:

/ISchwingung des Wassers

height1[X][Y]=

((height2[X][Y-1]+
height2[X][Y+1]+
height2[X-1][Y]+
height2[X+1][Y])/2)-
heightl[offset];

/IAbschwéchung

height1[X][Y]=height1[X][Y]*0.875

heightl enthélt den aktuellen ,,Wasser-
stand*, mit dem Sie das fertige Bild
zeichnen. Um die Reflexion und Licht-
brechung an einem Pixel zu berechnen,
bendtigen Sie eine Art Oberflachennor-

238 Oktober 1998 PC Magazin

male oder Ablenkung
flir das Wasser an die-
sem Punkt. Diese Ab-
lenkung erhalten Sie
getrennt fur die Hori-
zontale und die Verti-
kale:
ablenkung_h=
height[X-1][Y]-
height1[X+1][Y];
ablenkung_v=
height[X][Y-1]-
height1[X][Y+1];
Addieren Sie diese
beiden Werte und ei-
ne Konstante, erhal-
ten Sie einen Hellig-
keitswert fUir eine von
links oben scheinende
Lichtquelle. Andern
Sie die Vorzeichen bei
dieser Addition, ergibt sich eine andere
Richtung des Lichts. Fur einen Lichtein-
fall aus beliebiger Richtung multiplizie-
ren Sie vor der Addition den einen Wert
mit dem Sinus und

Was lhnen jetzt noch fehlt, ist die Be-
wegung des Wassers. Dazu setzen Sie
einfach an der Stelle, an der ein Tropfen
auftreffen soll, den Wert in heightl auf
einen festen Wert:

waterl[X][Y]=-1500;

Sie sollten die Anzahl der Bilder pro Se-
kunde so reduzieren, daf} alle Rechner
damit fertig werden.

Sie haben nun eine Reihe von Bitmap-
Effekten kennengelernt, die auf ver-
schiedenen Techniken basieren. Bewe-
gungsunschérfe, Uberblendeffekte, ani-
mierte Plasmawolken, Linsen- und
Wassereffekte — damit lassen sich schon
auf ganz einfache Art beeindruckende
Effekte in eigenen Programmen erzeu-
gen.

Es gibt allerdings noch weitere Mog-
lichkeiten: In der ndchsten Ausgabe
werden Sie zwei weitere Arten kennen-
lernen, die durch geeignete Parameter-

den anderen mit dem
Cosinus des Einfalls-
winkels. Da Sie diese
Operation allerdings
fur jedes Pixel bendti-
gen, kostet das sehr
viel Zeit.

Fur die Beleuch-
tung zeichnen Sie je-
des einzelne Pixel des
Hintergrundbildes
mit der berechneten
Helligkeit anhand ei-
ner Shading-Tabelle.
Um die Lichtbre-
chung zu simulieren,
addieren Sie zur X-

PC Magazin Demo

Koordinaten die ho-
rizontale Ablenkung.
Analog dazu rechnen
Sie zur Y-Koordinaten die vertikale Ab-
lenkung. Auf diese Weise erhalten Sie die
Koordinaten des Pixels, das Sie auslesen
und auf den Bildschirm schreiben:
helligkeit=

ablenkung_h+ablenkung_v;
helligkeit+=128;

Xneu=X+(ablenkung_h);
Yneu=Y+(ablenkung_v);

screen[X][Y]=palette[helligkeit]
[bild[Xneu][Yneul];

Nachdem das Bild gezeichnet ist, mus-
sen Sie nur noch die Speicherbereiche
von heightl und height2 vertauschen,
damit die Berechnung des Wassers rich-
tig funktioniert.

HIER WIRD der Wassereffekt deutlich.

wabhl eine Vielzahl verschiedener Effek-
te zulassen.

Ihnen und lhrer Kreativitat sind bei
der Arbeit keinerlei Grenzen gesetzt, da
Sie durch leichtes Abandern der Algo-
rithmen und durch Kombination ver-
schiedener Verfahren spielend einfach
neue, unglaubliche Effekte erzeugen.

PEI
Alle Programme, Routinen und eine lauffahige De-
mo finden Sie auf der Heft-CD zu dieser Ausgabe,
oder Sie laden sie aus dem Internet-Angebot des
PC Magazin unter
www.pc-magazin.de/magazin/

[extras.htm
herunter. Klicken Sie in der Tabelle Online Extras

unter Praxis auf das entsprechende rote Down-
load-Feld.

