
232 Oktober 1998 PC Magazin

P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R /
N I L S P I P E N B R I N C K

Nach den Ausflügen der letzten
beiden Ausgaben in die Welt
der 3D-Grafik kehren wir in

die zweite Dimension zurück. Um Be-
griffe wie Perspektive oder Projektion
brauchen Sie sich also nicht mehr zu
kümmern. Vielmehr arbeiten Sie mit
einfachen Bitmaps und anderen zweidi-
mensionalen Tabellen.

Die Spielereien mit einzelnen Bild-
punkten sind dabei nicht nur einfach,
sondern auch schön: Mit geringem Auf-
wand programmieren Sie auf diese Wei-
se atemberaubend schöne Sinnesein-
drücke.

■ Einfaches Motion Blur
Harte Übergänge in Bildfolgen
schwächen Sie durch das sogenannte
Motion Blur ab. Dieser Effekt der Be-
wegungsunschärfe ist sehr einfach zu er-
reichen: Sie mischen das aktuelle Bild ei-
nes Effekts mit dem vorhergehenden,
indem Sie für jedes Pixel die Mischfarbe
aus altem und neuem Pixel berechnen.
So erkennen Sie die letzten vier bis fünf
Bilder unter dem aktuellen. Die Bewe-
gung sieht weicher aus, da starke Über-
gänge zwischen den Bildern verwischen.

Die Mischfarbe zweier Pixel berech-
nen Sie, indem Sie jeweils die rote, grüne
und blaue Komponente addieren und
halbieren. Als Ergebnis erhalten Sie die
Farbkomponenten der neuen Farbe.
Dieses Verfahren ist zwar das nahelie-
gendste, aber auch recht aufwendig.

Mit einem kleinen Trick behandeln Sie
nicht nur alle drei Farbkomponenten,
sondern auch gleich zwei Pixel in einem
Ablauf. Zunächst einmal betrachten Sie
ein Pixel im Highcolor-Format: Es be-
steht aus jeweils 5 Bits für die Rot- und
Blau-Komponente, 6 Bits sind für den
Grün-Anteil reserviert.

Schieben Sie die Bits um eine Stelle
nach rechts. Dies entspricht einer Divi-
sion durch 2. Nun maskieren Sie mit

0111101111101111

die Bits aus, die durch das Schieben in die
falsche Farbkomponente gerutscht sind.
Wenn Sie zwei derart vorbereitete Pixel
addieren, erhalten Sie wieder ein Pixel im
Highcolor-Format. Da Sie die Division
der Addition vorziehen, verlieren Sie
pro Farbkomponente ein Bit Genauig-
keit. Dies entspricht einem Fehler von
etwa 1,5 Prozent. Sie werden den Unter-
schied jedoch kaum wahrnehmen. Ad-
dieren Sie die Farbkomponenten hinge-
gen vor der Division, verfälscht der nun
entstandene Überlauf den benachbarten
Farbwert.

Sie sollten immer zwei Pixel gleichzei-
tig mischen, da 32-Bit-Operationen im
32-Bit-Protected-Mode viel schneller
sind. Dieser Code zeigt, wie es geht:

//Zeiger auf das aktuelle Bild
unsigned long *data1;
//Zeiger auf das vorherige Bild
unsigned long *data2;

for (int i=0;i<AnzahlPixel/2;i++)
{

unsigned long a=
(data1[i]>1)&bitmask;

unsigned long b=
(data2[i]>1)&bitmask;

data2[i]=(a+b);
}

Einfach, aber effektiv. Das gemischte
Bild wird gleich wieder in den Puffer für

das vorherige Bild geschrieben und ist
einfach darstellbar.

Die Listings zu diesem Beitrag enthal-
ten auch eine Assembler-Implementie-
rung dieses Algorithmus. Durch ihre
Einfachheit ist diese Implementierung
ein hervorragendes Beispiel, um sich mit
Assembler-Programmierung vertraut
zu machen.

Viele Programmierer benutzen diese
Technik, um Fehler in ihren Routinen
zu kaschieren. Zum Beispiel treten bei
vielen 3D-Engines – nicht so bei der von
PC Underground verwendeten – an den
Polygonkanten schwarze Punkte auf.
Durch den Motion-Blur-Effekt ver-
schwinden sie zwar nicht vollständig,
fallen aber immerhin nicht mehr so stark
auf.

■ Zwei Bilder überblenden
Weiche Überblendungen von Bildern
eignen sich gut, um nahtlos von einem
Effekt in einen anderen zu wechseln. Da
das Mischverhältnis der zwei Bilder frei
einstellbar sein soll, funktioniert dies
nicht mehr so einfach wie beim Motion
Blur. Die Bilder sollten bei diesem Ef-
fekt in Truecolor (ein Byte pro Farb-
komponente) vorliegen. Mit MMX-Be-
fehlen schreiben Sie zwar auch sehr
schnelle Mischroutinen für Highcolor,
aber die meisten C-Compiler unterstüt-
zen leider keine MMX-Befehle.

Mischen Sie zwei Farben mit einfacher
linearer Interpolation. Den Mischgrad
geben Sie in Byte an:

Mischwert=
A+((B-A)*Mischgrad)/255

Multiplikationen und Divisionen sind
auf x86-Prozessoren bekanntermaßen
sehr langsam. Mischen Sie jedoch Bytes,
können Sie alle Ergebnisse der Interpo-
lation in einer kleinen Tabelle vorbe-
rechnen.

Der Ausdruck (B-A) kann Werte zwi-
schen -255 und 255 annehmen. Der
Mischgrad selbst ist bei jedem Aufruf

Demo-Programmierung unter Windows 95/NT

Punktspiele
Mit Bitmap-Effekten ahmen Sie Regentropfen auf einer Wasseroberfläche
nach und berechnen animierte Verzerrungen mit Plasmawolken.

DIE FARBWERTE eines Pixels werden hier
im Highcolor-Format halbiert.

PC Magazin Oktober 1998 235

P C U N D E R G R O U N D
P R A X I S

der Routine konstant. Sie berechnen al-
so alle 512 möglichen Werte vor:

signed int Mischtabelle[512];

for (int i=0; i<512; i++)
Mischtabelle[i]=

((i-255)*Mischgrad)/255;

Anschließend mischen Sie die zwei Bil-
der und ersetzen die Interpolation durch
einen Tabellenzugriff. Gleichzeitig kon-
vertieren Sie das Ergebnis in das High-
color-Format, um das Mischbild dar-
stellen zu können. Da (B-A) auch nega-
tive Werte annehmen kann, gleichen Sie
dies durch eine Addition mit 255 aus.

//Ausgangsbilder, Truecolor 24
//Bit
unsigned char *bild1,bild2;

//Zielbild, Highcolor
unsigned short *mischbild;

for (int i=0;i<AnzahlPixels;i++)
{

signed long a,b;
unsigned short Pixel;

//Rot-Anteile mischen
a=bild1[i*3+0]
b=bild2[i*3+0]-a+255;
Pixel=Rtab[a+Mischtabelle[b]];

//Grün-Anteile mischen
a=bild1[i*3+1]
b=bild2[i*3+1]-a+255;
Pixel|=Gtab[a+Mischtabelle[b]];

//Blau-Anteile mischen
a=bild1[i*3+2]
b=bild2[i*3+2]-a+255;
Pixel|=Btab[a+Mischtabelle[b]];

mischbild[i]=Pixel;
}

■ Fraktale Plasmawolken

Plasmawolken kommen in Demoeffek-
ten häufig zum Einsatz. Sie eignen sich
hervorragend für einfache Texturen und
für Effekte aller Art. Aber auch als kon-
trollierter Zufallszahlengenerator leisten
Sie gute Dienste.

Es gibt zahlreiche Algorithmen, um
fraktale Plasmawolken zu erzeugen. Für
die folgenden Effekte benötigen Sie je-
doch einen ganz speziellen Typ. Die
Plasmen müssen „seamless“, also naht-
los sein. Das heißt, Sie können die Bilder
wie Kacheln auf dem Bildschirm ausle-
gen und bekommen keine sichtbaren
Nahtstellen zwischen den Einzelteilen.

Diese Plasmen erzeugt in der Regel ein
rekursiver Algorithmus, der jedes Qua-
drat in vier kleinere Quadrate aufteilt.
Die neu erzeugten Punkte berechnen
Sie, indem Sie die vier umgebenden
Punkte mitteln sowie einen Zufallswert
addieren.

Da die Plasmen in unserem Fall eine
feste Breite und Höhe von 256 Pixeln ha-

ben, können Sie die Rekursion einfach
durch eine Schleife ersetzen. Dies macht
den Code in der Datei plasma.cpp über-
sichtlicher und schneller. Beim Erzeu-
gen der Plasmen können Sie zusätzlich
den Startwert des Zufallszahlen-Gene-
rators sowie den Grad des Zufalls ange-
ben.

■ Animierte Verzerrungen
mit Plasmen
Plasmawolken besitzen eine sehr nützli-
che Eigenschaft: Nahe beieinander lie-
gende Pixel haben ähnliche Werte, aber
über das Plasma selbst sind die Werte
sehr zufällig verteilt. Diese Eigenschaft
können Sie für einen Demoeffekt nut-
zen, den Sie als Vollbildeffekt sowie als
sehr schönen Texture-Generator einset-
zen können.

Zunächst generieren Sie zwei Plasma-
bilder. Das erste soll Ihr Ausgangsbild
sein, das zweite dient dazu, eben dieses
Ausgangsbild zu verzerren. Nun legen
Sie zwei Tabellen xoffset und yoffset an,

die für einen eingegebenen Wert einen
Verschiebungswert liefern. Zeichnen Sie
das Bild Pixel für Pixel, und lesen Sie den
Farbwert des entsprechenden Pixels aus
dem zweiten Plasmabild. Diesen Wert
nehmen Sie als Eingabewert der Tabel-
len und erhalten somit eine Verschie-
bung für die x- und y-Richtung. Diese
Verschiebung gibt an, welches Pixel Sie
aus dem ersten Plasmabild an das aktu-
elle Pixel kopieren.

Sie kopieren also nicht 1:1, sondern
verzerren die Punkte des Quellbildes
leicht anhand des zweiten Plasmas. Die
Tabellen xoffset und yoffset füllen Sie da-
bei mit Werten ganz nach Ihrem Ge-
schmack. Auf der Sinusfunktion basie-
rende Kreisbahnen haben sich dabei be-
währt. Sie sehen immer sehr gut aus.

Probieren Sie ruhig einmal an den Pa-
rametern herum. Sie können damit zum
Beispiel marmorierte Texturen erzeu-
gen. Und wenn Sie bei jedem Bildaufbau
die Parameter leicht ändern, bekommen
Sie eine tolle Bewegung ins Bild. Dieser
Effekt eignet sich hervorragend als Hin-
tergrund für ein Logo.

Der Algorithmus erzeugt wieder 256
x 256 Pixel große Texturen. Das Bei-
spielprogramm kachelt das Fenster mit
der Textur aus, um einen schwarzen
Rand zu vermeiden.

for (int y=0;y<256;y++)
{

for (int x=0;x<256;x++)
{

//Plasma-Wert lesen
unsigned char plasmawert= q

ADDITIVES SHADING
Additives Shading bedeutet, die Farban-
teile eines Pixels auf ein anderes aufzuad-
dieren. Diese Methode benötigen Sie zum
Beispiel für die Lensflares. Es handelt sich
hier um eine Addition mit Saturation (Sät-
tigung) – das heißt, es gibt für jeden Farb-
anteil eine maximale Obergrenze.
Diese Obergrenze halten Sie durch einen
Trick ein. Zunächst behandeln Sie die bei-
den ursprünglichen Pixel genauso wie bei
der Transparenz des Motion-Blur-Verfah-
rens. Zusätzlich verwenden Sie eine vor-
berechnete Tabelle, aus der Sie die Farbe
des durch additives Shading entstande-
nen Pixels erhalten. Der Grund: Vor der
Addition haben Sie die Werte halbiert, um
keinen Wert größer als 16 Bit zu erhalten.
Deshalb müßte nun eigentlich jeder Farb-
anteil den doppelten Wert besitzen. Da
dann aber Farbanteile über der zulässigen
Obergrenze auftauchen würden, verwen-
den Sie eine Tabelle mit den korrekt be-
rechneten Werten. Diese Tabelle, in die

Sie nur noch den erhaltenen Farbwert ein-
setzen, berechnen Sie mit

//Alle Farbwerte
for (i=0;i<65536;i++)
{

//Farbanteile extrahieren
//und skalieren
int r=((i&ROT_MASKE)>

ROT_POS)*512>ROT_SIZE;
int g=((i&GRUEN_MASKE)>

GRUEN_POS)*512>GRUEN_SIZE;
int b=((i&BLAU_MASKE)>

BLAU_POS)*512>BLAU_SIZE;
//Korrekten Farbwert berechnen
//und in Tabelle schreiben
remappalette[i]=

ColorCode(min(255,r),
min(255,g),
min(255,b));

}

Um auf ein Pixel additives Shading anzu-
wenden, benötigen Sie also die Mischfar-
be der zwei entsprechenden Pixel und den
zugehörigen Tabelleneintrag:

additive_Farbe=
remappalette[Mischfarbe];

DIE FARBWERTE zweier Pixel werden im
Highcolor-Format addiert.

236 Oktober 1998 PC Magazin

P C U N D E R G R O U N D
P R A X I S

plasma[256*y+x]

//Berechnen der Verschiebung
//aus den Tabellen
unsigned char xx=

x+xoffset[plasmawert];
unsigned char yy=

y+yoffset[plasmawert];

//Kopieren des verschobenen
//Pixels
ziel[256*y+x]=

quell[yy*256+xx];
}

}

Auf diesem Algorithmus bauen Sie
leicht zahlreiche neue Effekte auf. Ver-
suchen Sie zum Beispiel, ein Bild mit Lo-
go als Verzerrquelle zu benutzen, oder
nehmen Sie als Quelltextur ein gestreif-
tes Bild. So entstehen holzähnliche Tex-
turen.

Die C-Variante des Algorithmus ist
recht langsam. Zum Vorberechnen von
Texturen ist sie aber allemal geeignet. Im
Code finden Sie deshalb eine schnelle
Assembler-Version.

■ Sinusplasmen
Da Sie sich gerade mit Plasmen beschäf-
tigen, wollen wir Ihnen einen Klassiker
der Demo-Programmierung nicht vor-
enthalten: Sinusplasmen. Diese haben
schon immer einen großen optischen
Reiz ausgeübt.

Sinusplasmen entstehen, wenn Sie
mehrere überlagerte Sinusfunktionen
berechnen und als Bitmaps darstellen.
Die Vorgehensweise ähnelt dabei stark
dem Texture Mapping. Da eine Sinus-
Welle jedoch eindimensional ist, fällt der
Code wesentlich kompakter aus. Auch
füllen Sie den ganzen Bildschirm, so daß
die aufwendige Berechnung der Poly-
gonkanten nicht nötig ist.

Der Programm-
code weiter unten be-
rechnet für jedes Pixel
das Argument der Si-
nusfunktion. Da Sie
nur am optischen Er-
gebnis des Effekts in-
teressiert sind, wäre es
Zeitverschwendung,
diese Funktion für je-
des Pixel aufzurufen.
Sie sollten sich daher
eine Tabelle anlegen.

Ein Vorteil der Ta-
belle ist, daß Sie nicht
mehr auf die Sinus-
funktionen festgelegt
sind. Probieren Sie
einmal andere Tabel-
leneinträge aus. Die

Bewegung in diesem Effekt entsteht, in-
dem Sie die Startwerte der Plasmabe-
rechnung von Bild zu Bild variieren.

//Zeiger auf Highcolor-Zielbild
short *picture;
//Zeiger auf Highcolor-Palette
short *palette;
//Zeiger auf Sinus-Tabelle
int *sinetable;

//Geschwindigkeit der
//Wellen vorberechnen
int speed_x=3000*sin(time);
int speed_y=3000*cos(time);

//Startwert der Welle setzen
int wave_y=0;

//Schleife über die Höhe
//des Bitmaps
for (int y=0;y<height;y++)
{

//Aktuellen Wellen-Wert sichern
int wave_x=wave_y;

//eine Scanline zeichnen
for (int x=0;x<width;x++)
{

//Punkt setzen
*(picture++)=

palette[sinta-
ble[wave_x %

Tabellen_Groes
➥se]];

//Geschwin
➥digkeit in

//X-Richtung
➥addieren

wave_x+=speed_x;
}
//Geschwindig

➥keit in
//X-Richtung

➥addieren

wave_y+=speed_y;
}

Diese Programmzei-
len berechnen nur ei-
ne einzelne Welle.
Für ein wirklich hüb-

sches Sinusplasma brauchen Sie mehrere
davon. Die entsprechende Erweiterung
ist sehr einfach, macht den Code aber
unübersichtlich. Den vollen Quelltext
sehen Sie in der Datei sinplas.cpp bzw.
sinplas.h.

■ 2D-Bumpmapping
Im ersten PC-Underground-Artikel
(Ausgabe 7/98, ab S. 228) haben Sie be-
reits eine Lichtquelle über ein Bild be-
wegt. An dieser Stelle werden Sie diesem
Bild noch eine dreidimensionale Struk-
tur hinzufügen, die sich dann in der
Schattierung durch die Lichtquelle be-
merkbar macht. Bei dieser Art der Schat-
tierung spricht man von Bumpmapping
(der englische Begriff Bump bedeutet
Beule). Daß diese Übersetzung treffend
ist, sehen Sie am Beispielprogramm.

Die dreidimensionale Struktur erhal-
ten Sie, indem Sie jedem Pixel des Bildes
eine Höhe zuweisen und so höhere und
tiefere Bereiche (Beulen) für das Bild er-
halten. Die Höhe eines Pixels bestim-
men Sie zum Beispiel anhand von ma-
thematischen Funktionen. Einfacher be-
rechnen Sie die Höhe anhand der Hel-
ligkeit eines Pixels, was meistens auch in
einem sehr interessanten Effekt resul-
tiert. Die Helligkeit entspricht der Sum-
me der Rot-, Grün- und Blau-Anteile ei-
nes Pixels.

Wenn Sie die Bitmap-Laderoutinen
der Grafikbibliothek verwenden, be-
rechnen Sie die Helligkeit wie folgt:

for (j=0;j<SCREEN_Y;j++)
for (i=0;i<SCREEN_X;i++)
{
pixel=bild[i+j*SCREEN_X];

helligkeit=
(bmpheader.cColors[pixel*4]+

➥ bmpheader.cColors[pixel*4+1]+
➥ bmpheader.cColors[pixel*4+2]);

HIER WERDEN zwei Bilder überblendet.

ANIMIERTE VERZERRUNGEN mit Plasmen

PC Magazin Oktober 1998 237

P C U N D E R G R O U N D
P R A X I S

heightmap[i+j*SCREEN_X]=
helligkeit;

}

Nachdem Sie die Höhe eines jeden Pi-
xels berechnet haben, ermitteln Sie für
jedes Pixel die „Neigung“ des Bildes an
dieser Stelle. Dazu bilden Sie an einem
Punkt (X/Y) für die horizontale Nei-
gung die Differenz aus der Höhe des
Punkts links und des Punkts rechts da-
von. Analog erhalten Sie die vertikale
Neigung durch die Differenz des darü-
ber- und des darunterliegenden Punkts.

Diese beiden Werte verwenden Sie
später bei der Berechnung des Bildes.
Deshalb speichern Sie sie in der soge-
nannten Bumpmap. Eine Bumpmap
verfügt immer über doppelt so viele Ein-
träge, wie die Auflösung des Bildes be-
trägt. Jeweils zwei aufeinanderfolgende
Werte enthalten die zusammengehöri-
gen Neigungen eines Pixels. Die Berech-
nung erfolgt dann mit Hilfe dieser
Bumpmap:

for (j=1;j<SCREEN_Y-1;j++)
for (i=1;i<SCREEN_X-1;i++)
{

horizontal=
heightmap[i+j*SCREEN_X-1]-
heightmap[i+j*SCREEN_X+1];

vertikal=
heightmap[i+j*SCREEN_X-

SCREEN_X]-
heightmap[i+j*SCREEN_X+

SCREEN_X];

bumpmap[(i+j*SCREEN_X)*2]=
horizontal;

bumpmap[(i+j*SCREEN_X)*2+1]=
vertikal;

}

Die Berechnung des endgültigen Bildes
unterscheidet sich nur in einer Kleinig-
keit von der Berechnung der Lichtquel-
le in der ersten Ausgabe. Sie benötigen
wie dort eine Shading-Tabelle und eine
Lightmap.

Bevor Sie jedoch die Helligkeit für ein
Pixel aus der Lightmap auslesen, modi-
fizieren Sie die Koordinaten des Light-
map-Pixels durch Addition mit den ho-
rizontalen und vertikalen Neigungen
der zu zeichnenden Pixel des Bildes. In
C-Pseudocode würde das folgender-
maßen aussehen:

for (j=0;j<SCREEN_Y;j++)
for (i=0;i<SCREEN_X;i++)
{

//Wie bisher: addiere Bewe-
➥gung

//der Lichtquelle
xpos=i+horizontale_bewegung;
ypos=j+vertikale_bewegung;

//Der Unterschied:
xpos=xpos+horizontale_nei

➥gung;
ypos=ypos+vertikale_neigung;

screen[i+j*SCREEN_X]=
palette[lightmap[xpos+

ypos*SCREEN_X*2]]
[bild[i+j*SCREEN_X]];

}

Sie müssen bei der Modifikation der Ko-
ordinaten nur darauf achten, daß Sie
stets in einem gültigen Wertebereich
bleiben und nicht Speicher außerhalb
der Lightmap adressieren.

■ Lensflares
Wenn Sie mit einer Videokamera gegen
grelles Licht oder die Sonne filmen, kön-
nen Sie hellere bunte Kreise oder n-Ecke

im Bild beobachten. Diese Linsenfehler
(Lensflares) entstehen durch Reflexion
von sehr hellem Licht an den Linsen des
Kameraobjektivs. Es ist unmöglich, sol-
che Spiegelungen mathematisch und
physikalisch korrekt in Echtzeit zu be-
rechnen.

Für Demoeffekte nutzen Sie die Ei-
genschaften aus, die Sie in der Realität
beobachten. Sie können einfach die Bild-
bereiche, an denen solche Linsenfehler
auftreten, mit der Farbe dieser Erschei-
nung aufhellen. Die Lensflares liegen
immer auf der Gerade, die vom Mittel-
punkt des Bildes und der Position der
Lichtquelle bestimmt werden. Die Posi-
tion berechnen Sie aus dem Richtungs-
vektor der Position der Lichtquelle zum
Bildmittelpunkt und einem konstanten
Faktor für jeden Linsenfehler.

Programmieren Sie diesen Effekt als
Zusatz zum Bumpmapping-Effekt. Da-
zu benötigen Sie gezeichnete (oder von
einem Bildbearbeitungsprogramm be-
rechnete) Bilder von Lensflares. Diese
Bilder zeichnen Sie dann Pixel für Pixel
auf den Bumpmapping-Effekt – so ent-

steht ein realistischer Effekt.
Doch zunächst definieren Sie einen

Variablentyp:
typedef struct
{

int sizebit, size;
float faktor;
bitmaptype bmp;
int *map;

} lensflare;

Dabei ist size die Kantenlänge des qua-
dratischen Bildes. Es sollen nur Zweier-
potenzen als Größe möglich sein, also

size = 2^sizebit

Den Faktor für den Richtungsvektor
enthält faktor, die
Zeiger auf das Bild
sind bmp bzw. *map.

Die Bilder der
Lensflares zeichnen
Sie am besten in
Graustufen. Die Far-
be erhalten die Lens-
flares dann beim La-
den des Bildes. Dabei
gibt ein Faktor für
Rot, Grün und Blau
die Intensität des ent-
sprechenden Farbka-
nals an.

Die Stelle, an der
Sie den Lensflare
zeichnen, erhalten Sie
aus der Position der
Lichtquelle auf dem
Bild:

licht_x-=SCREEN_X/2;
licht_y-=SCREEN_Y/2;

lensflare_x=licht_x*faktor+
SCREEN_X/2-size/2;

lensflare_y=licht_y*faktor+
SCREEN_Y/2-size/2;

Setzen Sie den Lensflare an die berech-
nete Position. Dabei verwenden Sie die
Technik des additiven Shadings (siehe
Textbox, S. xxx) mit folgenden Befehlen:

//ofs ist die Adresse
//des Pixels im Bild
pixel=(screen[ofs]>1) & bitmask;

//mappos ist die Adresse
//des Lensflare-Pixels
flarepixel=flare.map[mappos];

screen[ofs]=
remappalette[pixel+flarepixel];

■ Der Wassereffekt
Besonders faszinierend wirkt oft der
Eindruck einer bewegten Wasserober-
fläche zwischen dem Bild und dem Be-
trachter. Dabei berücksichtigen Sie ne-
ben der Lichtbrechung durch das Was-
ser auch die Reflexion des Lichts einer
beliebigen Lichtquelle. Dabei kann q

SINUSPLASMEN üben einen besonderen optischen Reiz aus.

238 Oktober 1998 PC Magazin

P C U N D E R G R O U N D
P R A X I S

die Umsetzung auf einen in Echtzeit be-
rechneten Effekt nicht physikalisch kor-
rekt sein.

Zunächst benötigen Sie eine Reprä-
sentation des Wassers. Hier bietet sich
eine sogenannte Heightmap an, in der
Sie für jedes Pixel den Wert für die Was-
serhöhe speichern. Simulieren Sie nun
die Schwingungen, die das Wasser voll-
zieht. Sie können sich dabei einen Was-
sertropfen vorstellen, der auf eine glatte
Wasserfläche fällt. Sie sehen konzentri-
sche Kreise, die sich langsam ausbreiten.
Die Intensität der Schwingung läßt dabei
mit der Zeit nach.

In Ihrem Programm verwenden Sie
die beiden Heightmaps height1 und
height2, mit deren Hilfe Sie ein Bild aus
den vorhergehenden berechnen. Den
Wert eines neuen Heightmap-Eintrags
in height1 für die Position (X/Y) be-
stimmen Sie mit height2: Sie addieren die
an diese Position in height2 anliegenden
Höheninformationen, teilen das Ergeb-
nis durch 2 und subtrahieren die zu
(X/Y) gehörende Höhe.

Sie erhalten einen neuen Höhenwert,
den Sie nur noch abschwächen müssen,
damit die Wellen auf dem Wasser tosen:

//Schwingung des Wassers
height1[X][Y]=
((height2[X][Y-1]+

height2[X][Y+1]+
height2[X-1][Y]+
height2[X+1][Y])/2)-
height1[offset];

//Abschwächung
height1[X][Y]=height1[X][Y]*0.875
;

height1 enthält den aktuellen „Wasser-
stand“, mit dem Sie das fertige Bild
zeichnen. Um die Reflexion und Licht-
brechung an einem Pixel zu berechnen,
benötigen Sie eine Art Oberflächennor-

male oder Ablenkung
für das Wasser an die-
sem Punkt. Diese Ab-
lenkung erhalten Sie
getrennt für die Hori-
zontale und die Verti-
kale:
ablenkung_h=

height[X-1][Y]-
height1[X+1][Y];

ablenkung_v=
height[X][Y-1]-
height1[X][Y+1];

Addieren Sie diese
beiden Werte und ei-
ne Konstante, erhal-
ten Sie einen Hellig-
keitswert für eine von
links oben scheinende
Lichtquelle. Ändern
Sie die Vorzeichen bei

dieser Addition, ergibt sich eine andere
Richtung des Lichts. Für einen Lichtein-
fall aus beliebiger Richtung multiplizie-
ren Sie vor der Addition den einen Wert
mit dem Sinus und
den anderen mit dem
Cosinus des Einfalls-
winkels. Da Sie diese
Operation allerdings
für jedes Pixel benöti-
gen, kostet das sehr
viel Zeit.

Für die Beleuch-
tung zeichnen Sie je-
des einzelne Pixel des
Hintergrundbildes
mit der berechneten
Helligkeit anhand ei-
ner Shading-Tabelle.
Um die Lichtbre-
chung zu simulieren,
addieren Sie zur X-
Koordinaten die ho-
rizontale Ablenkung.
Analog dazu rechnen
Sie zur Y-Koordinaten die vertikale Ab-
lenkung. Auf diese Weise erhalten Sie die
Koordinaten des Pixels, das Sie auslesen
und auf den Bildschirm schreiben:

helligkeit=
ablenkung_h+ablenkung_v;

helligkeit+=128;

Xneu=X+(ablenkung_h);
Yneu=Y+(ablenkung_v);

screen[X][Y]=palette[helligkeit]
[bild[Xneu][Yneu]];

Nachdem das Bild gezeichnet ist, müs-
sen Sie nur noch die Speicherbereiche
von height1 und height2 vertauschen,
damit die Berechnung des Wassers rich-
tig funktioniert.

Was Ihnen jetzt noch fehlt, ist die Be-
wegung des Wassers. Dazu setzen Sie
einfach an der Stelle, an der ein Tropfen
auftreffen soll, den Wert in height1 auf
einen festen Wert:

water1[X][Y]=-1500;

Sie sollten die Anzahl der Bilder pro Se-
kunde so reduzieren, daß alle Rechner
damit fertig werden.

■ Ausblick
Sie haben nun eine Reihe von Bitmap-
Effekten kennengelernt, die auf ver-
schiedenen Techniken basieren. Bewe-
gungsunschärfe, Überblendeffekte, ani-
mierte Plasmawolken, Linsen- und
Wassereffekte – damit lassen sich schon
auf ganz einfache Art beeindruckende
Effekte in eigenen Programmen erzeu-
gen.

Es gibt allerdings noch weitere Mög-
lichkeiten: In der nächsten Ausgabe
werden Sie zwei weitere Arten kennen-
lernen, die durch geeignete Parameter-

wahl eine Vielzahl verschiedener Effek-
te zulassen.

Ihnen und Ihrer Kreativität sind bei
der Arbeit keinerlei Grenzen gesetzt, da
Sie durch leichtes Abändern der Algo-
rithmen und durch Kombination ver-
schiedener Verfahren spielend einfach
neue, unglaubliche Effekte erzeugen.

s P E I

Alle Programme, Routinen und eine lauffähige De-
mo finden Sie auf der Heft-CD zu dieser Ausgabe,
oder Sie laden sie aus dem Internet-Angebot des
PC Magazin unter

www.pc-magazin.de/magazin/
➥extras.htm

herunter. Klicken Sie in der Tabelle Online Extras
unter Praxis auf das entsprechende rote Down-
load-Feld.

2D-BUMPMAPPING mit Lensflares

HIER WIRD der Wassereffekt deutlich.

