5-E]

PC UNDERGROUND
PRAXIS

download
/ www.pc-magazin.de

Pt L

- - b /
Demo-Programmierung unter Windows l%S/ﬁ}lT% o

der Bitmaps

In dieser Ausgabe lernen Sie weitere Verfahren fur den Umgang mit Bitmaps
kennen. Diese erlauben eine Vielzahl von

CARSTEN DACHSBACHER/
NILS PIPENBRINCK

ir entwickeln in diesem Bei-
trag mit Hilfe von Movelists
(Bewegungslisten) den be-

kannten Tunneleffekt. Dieser stellt ei-
nen sich drehenden Tunnel (Zylinder)
dar, in den der Betrachter beim An-
schauen gleichsam magisch hineingezo-
gen wird. Bei der Berechnung wird die
Texturemap gewissermalien um den
Tunnel gewickelt.

Movelists sind Effekte, die eine oder
mehrere Tabellen verwenden, um ein
Bild aus einer Textur zu berechnen. Die-
se Tabellen geben an, in welchem Winkel
oder welcher Entfernung sich ein Pixel
zum Bildschirmmittelpunkt befindet.
Zudem legen sie die Helligkeitswerte fur
jedes Pixel fest. Beim Entwickeln einer
Routine fiir diesen Effekt bestimmen Sie
fur jedes Pixel zuerst, welches Texel
(Texture Pixel) der Textur gezeichnet
werden soll. Anschliel3end legen Sie fest,
welche sonstigen Attribute, wie zum
Beispiel die Helligkeit, das Texel erhélt.

E\[f_,. PC Magazin Demo

DER TUNNELEFFEKT, implementiert mit
Hilfe von Movelists

Wenn Sie sich den Screenshot des
Tunnels ansehen, kdnnen Sie beobach-
ten, dal3 sich die Helligkeit des Tunnels
von der Mitte nach auRen hin erhéht.

276 November 1998 PC Magazin

Damit haben Sie schon die Idee fir die
erste Movelist, die Sie hier benétigen. Da
Sie bei diesem Effekt wieder mit einer
256-Farben-Textur arbeiten, empfiehlt
es sich, fuir jedes Pixel direkt den Hellig-
keitswert zu speichern, den eine Sha-
ding-Tabelle fur die Textur verwendet.
Der Helligkeitsverlauf in der Tabelle ist
mit einer empirisch ermittelten Formel
berechnet. Wie Sie sehen konnen, ist das
fur den raumlichen Eindruck auf jeden
Fall ausreichend. Der folgende C-Code
berechnet die Shading-Tabelle fur den
Tunnel:

/I Shading-Tabelle fiir den Tunnel

offset = 0;

for (y = 0; y < SCREEN_Y; y++)
for(x = 0; x < SCREEN_X; x++)

/I Abstandsquadrate des
Pixels

/I zur Bildschirmmitte

xdist = SCREEN_X/ 2 - x;

ydist = SCREEN_Y /2 -y;

xdist *= xdist;

ydist *= ydist;

/I Daraus wird ein Hellig-

Il keitswert berechnet

d=255.0-

sqrt(xdist+ydist);

d*=d*d*d*d;

d /= SCREEN_X * SCREEN_Y *
180.0 * 180.0;

/I auf den richtigen

/I Wertebereich achten!

d = min(255, max(0,d));

//'Und kleine Zufallswerte

/I addieren, um keine harten

/I Kanten auftreten zu lassen

d=(63-d*4.0)/4.0+
rand()/16384.0;

) stab[offset++] = d;

Moglich wére jetzt, eine Tabelle zu be-
rechnen, die fUr jedes Pixel ein Texel be-
stimmt. Damit konnten Sie den Tunnel
zwar darstellen, aber es wirde sich
nichts bewegen. Um den Tunnel um sei-
ne eigene Achse rotieren zu lassen und
den Betrachter entlang des Tunnels zu
bewegen, bendétigen Sie zwei weitere Ta-
bellen.

Die eine Tabelle, die fir das Bewegen

des Betrachters zusténdig sein soll, ent-
halt fur jedes Pixel die V-Koordinate der
Textur. Diese Tabelle soll noch von ei-
nem Abstandswert des Betrachters zur
Zeichenebene und natlirlich vom Radius
des Tunnels abhéangen. Wichtig ist, dad
U und V flr Texturkoordinaten stehen
und X und Y fir Bildschirmkoordina-
ten. Die Berechnung erfolgt folgender-
malien;

/I V-Tabelle

offset = 0;

for (y = -SCREEN_Y/2;

y < SCREEN_Y/2; y++)

for (x = -SCREEN_X/2;
X < SCREEN_X/2; x++)
{

if (x)
// um Division durch
/I 0 zu vermeiden

{
/I Abstand berechnen
temp = cos(atan((double)y /
(double)x));
temp *= abstand*radius/8.0;
if (temp == 0) temp ++;

temp = fabs(temp/(double)x)
+64.0;

ztab[offset++] = temp;
}else
/I einfach den Wert des
/I Pixels daneben verwenden
ztab[offset++] = temp;

}

Die zweite Tabelle halt fiir jedes Pixel die
U-Koordinate der Textur bereit. Da Sie
die Textur um den Tunnel herum-
wickeln wollen, gentigt es, bei dieser Ta-
belle fur jedes Pixel den Winkel zu einer
Halbgeraden (Strahl) aus dem Bild-
schirmmittelpunkt zu bestimmen und
diesen so zu skalieren, daf3 er die Breite
der Texturemap hat. Diese Berechnung

erledigen Sie mit dem Arcustangens:
/I ArcTan-Tabelle
int offset = 0;
for (y = -SCREEN_Y/2;
y < SCREEN_Y/2; y++)
for (x = -SCREEN_X/2;
X < SCREEN_X/2; x++)

if (x)
/I Division durch 0 vermeiden

/I Winkel berechnen

temp = atan((double)y /
(double)x);
// und auf die Breite der
/I Textur skalieren
temp = 256.0 * temp /
6.28318630718;

/I Vorzeichenkorrektur
/I des Arctan
if(x<=08&&y<=0)
temp ++;
if(x>0&&y>0)
temp ++;
if (x>=0)temp += 128;

atab[offset++] = temp;
} else
/I Wert des vorherigen Pixels
Il verwenden
atab[offset++] = temp;
}

Nachdem Sie alle diese Tabellen berech-
net haben, geht es daran, den Tunnel zu
zeichnen. Hierzu lesen Sie zuerst fir je-
des Pixel die dazugehorige U- und V-
Koordinate aus. Damit kdnnen Sie das
Texel aus der Texturemap auslesen.
Wenn Sie aus der Shading-Tabelle flr
den Tunnel den Helligkeitswert des Pi-
xels ermitteln, kénnen Sie der Textur
den endgultigen Farbwert fiir das aktu-
elle Pixel zuweisen:
for (n=0;

n < SCREEN_X * SCREEN_Y;
n++)

u = atab[n];
v = ztab[n];

screen[n] = palette[stab[n]]
[omp((v << 8)
+ul;

}

Nun stellen Sie sich sicher die Frage, wie
Sie Bewegung in den Tunnel bekom-
men. Sie haben die Textur um den Tun-
nel herumgewickelt, und zwar so, dal3
sie in der Breite genau einmal herumpal3t
und sich in der Tiefe wiederholt. Dazu
sollten Sie natirlich eine sogenannte
seamless (saumlose) Textur verwenden,
die Sie aneinanderlegen kénnen, ohne
dafl} Kanten zu sehen sind.

Wenn Sie den Tunnel drehen wollen,
addieren Sie einfach einen Wert auf die
U-Koordinate. Damit dndern Sie den
Drehwinkel, da der Winkel und die U-
Koordinate aufgrund der Arcustangens-
Tabelle direkt zusammenhéngen. Sie
mussen nur darauf achten, daf3 die Ko-
ordinaten, die Uber den Rand der Tex-
turemap hinausgehen, am anderen Rand
der Textur fortzusetzen sind.

Dies erreichen Sie dadurch, daf3 Sie
den Rest ermitteln, der bei der Teilung
von U-Koordinate und Texturemap-
Breite entsteht. Wenn sie eine 256 Pixel
breite Textur haben (wie hier), ergibt
sich eine weitere Moglichkeit: Verknip-

fen Sie sie mit AND 255, was deutlich
schneller ist.

Der gleiche Trick wie bei der Drehung
1413t sich analog auf die Bewegung ent-
lang der Achse anwenden. Die Schleife
zum Zeichnen des Tunnels sieht dann
folgendermalf3en aus:

for (n=0;

n < SCREEN_X * SCREEN_Y;
n++)

u = (atab[n]+drehung) & 255;
v = (ztab[n]+bewegung) & 255;

screen[n] = palette[stab[n]]
[bmp[(v > 8)+ul]];
}

Wie Sie sehen, ist die Berechnung von
komplexen Effekten mit Hilfe von
Movelists sehr einfach und auch sehr
schnell. Mit wenigen Speicherzugriffen
pro Pixel erhalten Sie Bilder, die Sie mit
3D-Routinen nicht in dieser Geschwin-
digkeit berechnen kdnnen. Und auf heu-
tigen Rechnern féllt der Speicherbedarf
flr die Tabellen auch nicht mehr ins Ge-
wicht.

Ein weiterer Vorteil dieser Methode
ist es, daR die Berechnung trotz der we-
nigen Register der Pentium- und Penti-
um-kompatiblen Prozessoren paralleli-
siert werden kann. Dies kénnen Sie in
der im Quelltext enthaltenen Assem-
bler-Schleife sehen, in der zwei Pixel pro
Schleifendurchlauf berechnet werden
und der Prozessor deshalb optimal aus-
genutzt wird.

Die zweite Methode ist ein sehr einfa-
ches und schnelles Verfahren, um Bit-
maps zu verzerren. Diese Methode ar-
beitet &hnlich wie die bereits vorgestell-
te Tunnelmethode. Um die aufwendige
Berechung von Texturkoordinaten zu
verklrzen bzw. um auf grof3e Tabellen
zu verzichten, benutzen Sie einen Trick:

Sie unterteilen den Bildschirm in Klei-
nere Bereiche, die genau 8 x 8 Pixel grof3
sind. So erhalten Sie ein Gitter, flir des-
sen Kreuzungspunkte (die Ecken der
8 x 8-Pixel-Blocke) Sie die genauen Tex-
turkoordinaten fur das Bild berechnen.

Angenommen, Sie arbeiten in einer
Auflésung von 320 x 240 Punkten.
Dann mussen Sie nur (320/8)+1=41 Ko-
ordinaten auf der X-Achse und
(240/8)+1 Koordinaten auf der Y-Achse
berechnen. Insgesamt macht das nur
1271 Texturkoordinaten. Im Vergleich
dazu: Berechnen Sie die Texturkoordi-

PC UNDERGROUND
PRAXIS

»

naten fur jedes Pixel einzeln, dann sind
es 76 800 Berechnungen. Mit einem ein-
fachen Trick erreichen Sie also allein fiir
die Berechnung etwa eine Beschleuni-
gung um den Faktor 60.

Wo liegt der Vorteil gegenuiber der
Tunnelmethode? Sie kdnnen fur jedes
Bild die Texturkoordinaten vollig neu
berechnen, da der Aufwand sehr gering
ist, und damit abhénging von der Zeit
den Effekt sehr flexibel gestalten.

Nun zeichnen Sie mit IThren Koordi-
naten natirlich auch etwas. Sie werden
sehen, daB dies viel einfacher ist, als es im
ersten Moment aussieht. Das Gitter, das
Sie berechnen, besteht — wie bereits er-

8x8

y

EIN 8 X 8-BLOCK mit den vier Stutzwerten
(den berechneten Texturkoordinaten)
AB,CundD.

wahnt- aus vielen kleine Kastchen, die
alle 8 x 8 Pixel groR sind.

Sie berechnen das endguiltige Bild, in-
dem Sie jeden 8 x 8-Block mit einer Tex-
tur flllen. Die Texturkoordinaten ent-
nehmen Sie den vier Eckpunkten und in-
terpolieren Uber den Block linear. Nun
sehen Sie, daB Sie, um beispielsweise
320/8=40 Blocke zu zeichnen, 41 Stiitz-
werte bendtigen, damit Sie die Textur-
koordinaten auch fiir den letzten Block
erhalten.

Diese Routine entwickeln wir, um die
Textur fir einen Block zu interpolieren.
Im Gegensatz zum normalen Texture-
Mapping ist die Interpolation von Tex-
turen Uber 8 x 8-Blocke sehr einfach: Es
ist nicht notig, die aufwendige Kanten-
berechnung fur die Polygone durchzu-
fuhren. Auch fallen sehr rechenintensive
Operationen wie etwa die Division fur
die Inkremente weg, da die Breiten ©

PC Magazin November 1998 277

PC UNDERGROUND
PRAXIS

und Hohen der Kastchen immer acht Pi-
xel weit sind. Divisionen von Zweierpo-
tenzen lassen sich durch schnellere Shift-
Operationen ersetzen.

Wie beim Texture-Mapping Ublich,
arbeiten Sie mit Fixed-Point-Zahlen
(vergleiche PC Underground, PC Maga-
zin 8/98, ab S. 234). Zunéchst einmal in-
terpolieren Sie die Texturkoordinaten
der linken und rechten Kante des Kast-
chens. Uber die wahrend der Interpola-
tion entstehenden linken und rechten
Texturkoordinaten zeichnen Sie dann
spater eine acht Pixel lange Zeile, um den
Zwischenraum zu fallen.

Die folgende Struktur enthalt die Ko-
ordinaten eines Gitterpunkts:

struct GridPointUVv
{

signed int u;
signed int v;

GridPointUV a,b,c,d;

signed int dudy_left =

(b.u-a.u)/8;
signed int dvdy_left =

(b.v-a.v)/8;
signed int dudy_right=

(d.u-c.u)/8;
signed int dvdy_right=

(d.v-c.v)/8;

Die vier signed-int-Werte sind die verti-
kalen Koordinateninkremente. Die Na-
men der Variablen haben einen guten
Grund: Sie sind der Mathematik entlie-
hen. dudy bedeutet, daR diese Variable
die Steigung der U-Koordinate (Textur)
entlang der Y-Koordinate (Bitmap) ist.
Das _left und _right bezieht sich auf die
Kante des Blocks.

Die Interpolation Uber die vertikalen
Kanten eines Blocks implementieren Sie
wie folgt:

GridPointUV left = a;

GridPointUV right = b;

Eor (int y=0; y<8; y++)

/I Zeichnen einer Zeile,
1/ (siehe unten)

/I Anpassen der left- und
1/ right-
[IVariablen fiir die nachste
1l Zeile

left.u +=dudy_left;

left.v += dvdy_left;

right.u += dudy_right;

right.v += dvdy_right;

}

Das Zeichnen der Zeile selbst ist fast
identisch mit der Berechnung der verti-
kalen Kanten. Erneut werden die Stei-
gungen (diesmal fur die X-Achse) ent-
lang der Bildschirmzeile berechnet, und
dann die Interpolationsvariablen initiali-
siert und gezeichnet:
dudx = (right.u-left.u)/s;

278 November 1998 PC Magazin

dvdx = (right.v-left.v)/8;

signed int u = left.u;
signed int v = left.v;

for (int x=0; x<8; x++)

{
/I Umwandlung von Fixed-Point
/I in echte Koordinaten
/I In diesem Beispiel geht die
/I Routine von 256*256 grofRen
/[Texturen aus.

int texel_u = ((u>16) &
0x00ff);

int texel_v = ((v>16) &
0x00ff);

/I Lesen von Texture-Pixel bei
/I [texel_u][texel_v] ...)
/l... setzen des Pixels bei

Xy --)

/I Anpassen der u- und

/I v-Variablen fur das nachste
I Pixel

u += dudx;

v += dvdx;

}

Wenn Sie sich nach
dem Download die
komplette Routine
im Quelltext von
grid.cpp ansehen, stel-
len Sie fest, da diese
Routine sehr einfach
geschrieben ist, aber
dennoch rasend
schnell lauft, da auf
aufwendige Berech-
nungen verzichtet
werden kann.

Die Routine zum
Zeichnen der 8x 8-
Blocke ist so schon
ganz praktisch. Da-
mit Sie aber wirklich
bequem Effekte aus-
probieren konnen,
brauchen Sie noch ei-
ne Routine, mit der Sie den kompletten
Bildschirm mit den Texturkoordinaten

aus einem vollstdndigen Gitter zeichnen:
void RenderScreen8x8

(GridPointUV *gitter,
Il Gitter-Array
unsigned short *dest,
/I Pointer auf das Bitmap
unsigned short *palette,
unsigned char *texture)

/I Anzahl der Blocke:
long BlocksX = SCREEN_X/8;
long BlocksY = SCREEN_Y/8;

/I Pointer auf die Koordinaten

/lder aktuellen Zeile

GridPointUV *line = gitter;

/I Pointer auf die Koordinaten

/I der nachsten Zeile

GridPointUV *nextline =
&gitter[BlocksX+1];

/I Schleife uber alle Zeilen:
for (int y=0; y<BlocksY; y++)

/I eine Zeile von 8x8
/I Kastchen Zeichnen:
for (int x=0; x<BlocksX; x++)
Render8x8Block(line[x+0],
nextline[x+0],
line[x+1],
nextline[x+1],
&dest[x*8],
SCREEN_X,
palette,
texture);
/I Variablen fur nachste
/] Zeile anpassen
dest += SCREEN_X*8;
line = nextline;
nextline += (BlocksX+1);

Ein Roto-Zoomer ist ein Effekt, der ei-
ne Textur gleichzeitig dreht und ver-
groRert bzw. verkleinert. Vor einigen
Jahren war dieser Effekt bei Demo-Pro-

i PC Magazin Demo

DURCH UBERLAGERN mit einer ganz einfachen Sinusfunktion
verzerrt sich die Textur.

grammierern sehr beliebt, um Program-
mierféhigkeiten zu zeigen.

Roto-Zoomer sind mit dem vorge-
stellten Algorithmus sehr einfach zu be-
rechnen. Die Routine ist dann beinahe
so schnell, daB der Hauptspeicher die
ankommenden Pixeldaten nicht schnell
genug speichern kann und zur Bremse
wird.

Fir diesen Effekt berechnen Sie die
gedrehten und gezoomten Texturkoor-
dinaten U und V fur jeden Gitterpunkt.
Dies erledigen Sie am besten mit folgen-
dem Programmcode — das Beispiel ist fiir
eine Auflésung von 320 x 240 ausgelegt:

GridPointUV Gitter[41][31];
float rotation;
float zoomfaktor;

/I Vorberechnen der Rotation und

/I der Skalierung

float cosinus = cos(rotation) *
zoomfaktor;

float sinus = sin(rotation) *
zoomfaktor;

/I Zwei Schleifen zum Berechnen
/I des Gitters
for (int hoehe=0; hoehe<31;
hoehe++)
for (int breite=0; breite<41;
breite++)
{

/I Berechnen von x und y
/I relativ zum Bildschirm-
/I mittelpunkt:
float x = ((float)breite-
20.0);
float y = ((float)hoehe-
15.0);

/I Berechnen von u und v

/I durch einfache Rotation.

/1 65536 ist die Skalierung

/I fur die Fixed-Point-

/I Umwandlung

Gitter[y][x].u = (x*sinus -
y*cosinus)*
65536.0;

Gitter[y][x].v = (y*sinus +
x*cosinus)*
65536.0;

}

AnschlieRend durchlaufen Sie eine wei-
tere Schleife und rufen die 8 x 8-Textu-
re-Mapping-Routine fir jedes Késtchen
auf.

Wie Sie sehen, haben Sie mit dieser Rou-
tine bereits einen Effekt-Baukasten. Den
Mdoglichkeiten sind (fast) keine Grenzen
gesetzt. Sie kdnnen wilde mathemati-
sche Formeln benutzen, um Texturko-
ordinaten zu berechnen. Uberlagern Sie
zum Beispiel einfach ein paar Sinusfunk-
tionen, und schon fangt Ihre Textur an,
sich wild zu verzerren.

Diese Routine ist nattrlich nicht auf
Texturen beschrankt. Sie kdnnen auch
Farben Gber die Blécke hinweg interpo-
lieren. Andern Sie dazu die Interpolati-
on auf die drei Farbkomponenten R,G
und B ab. Am mathematischen Teil an-
dert sich dadurch nichts. Sie kdnnen auf
diesem Weg ein Sinus-Plasma zeichnen,
das um ein Vielfaches schneller lauft als
mit der in der vorigen Ausgabe vorge-
stellten Methode.

Viele schone Effekte erreichen Sie
durch Projektion. Dabei berechnen Sie
aus den X- und Y-Koordinaten und ei-
ner Tiefenkoordinate Z die Texturkoor-
dinaten. Die Umrechnung in U/V-Ko-
ordinaten erfolgt durch einfache per-
spektivische Projektion.

U = x* perspektive / z;

V = y* perspektive / z;

In den Beispiel-Codes ist ein Effekt im-
plementiert, der mit dieser Methode ar-

DIESER EFFEKT arbeitet mit perspektivischer Projektion.

beitet (siehe Bild oben).

Sie kénnen auch zwei Effekte gleich-
zeitig berechnen und die Texturkoordi-
naten von einem Effekt in den anderen
Uberblenden. Hierbei ist allerdings Vor-
sicht geboten: Die 8 x 8-Interpolation
funktioniert immer nur in eine Rich-
tung. Sobald die Routine einen Wrap-
Around ausfiihren muR, wird sie versa-
gen.

Ein kleines Beispiel hierzu: Die linke
U-Koordinate betragt 255, wahrend die
rechte Koordinate 10 ist. Dies fuhrt zu
einer Steigung von (255-10)=245. Das
bedeutet, daR fast die gesamte Textur
rickwarts in das Kastchen gemappt
wird. Leider ist dieses Ergebnis falsch,
da Sie ja immer mit seamless (kanten-
gleichen) Texturen arbeiten.

Wenn Sie diesen Fall vermeiden wol-
len, dann kénnen Sie den 8 x 8-Interpo-
lierer so umschreiben, da im Gitter kei-
ne Texturkoordinaten, sondern die Stei-
gung direkt gespeichert wird. Viele Ef-
fekte (besonders Sinus-Verzerrer und
Plasmen) lassen sich auch so berechnen.
Direktes Berechnen der Texturkoordi-
naten ist jedoch viel anschaulicher und
einfacher.

Es gibt einen weiteren Weg, das vorher
genannte Problem zu umgehen. Mit ei-
nem neuen Feature interpolieren Sie zu-
satzlich zu den Texturkoordinaten noch
eine Helligkeit. Diese Helligkeit berech-
nen Sie dann so, daR die Stellen in der
Bitmap dunkel sind, die durch die hohen
Steigungen unschon ausehen, wahrend
die guten Teile der Textur normal er-
scheinen.

PC UNDERGROUND
PRAXIS

»

Andern Sie hierfur
die Struktur des Grid-
PointsUV ab, und fi-
gen Sie einen Hellig-
keitswert hinzu. Die
Variable bezeichnen
Sie nach dem bekann-
ten Gouraud-Shading
mit g, da Sie im Prin-
zip hier nichts ande-
res machen.

struct GridPoint-
OUVG

signed int u;

signed int v;
signed int g;

Sie passen naturlich
noch die Routinen
zum Zeichnen an. Wie bei den R-, G-
und B-Koordinaten ist es eine einfache
Erweiterung. Sie kopieren einfach den
Code von U oder V. Im Beispiel-Code
haben wir dies schon fiir Sie vorbereitet.

Zum Beleuchten der Texturen sollten
Sie wie bei den bisherigen Effekten die
Textur in 8 Bit Farbtiefe pro Pixel (256
Farben) vorliegen haben. Sie kdnnen
dann zur Textur eine Shading-Palette
mit (bei diesem Effekt) 256 Schattierun-
gen berechnen und die jeweilige Schat-
tierung anhand des Gouraud-Hellig-
keitswerts auswéhlen.

Die Berechnung der Shading-Palette
ist sehr einfach. Angenommen, Sie
mochten eine einfache Beleuchtung ha-
ben, dann reservieren Sie sich genug
Speicher fir diese Tabelle. Sie benoti-
gen fur jede Palette 512 Byte (256 Far-
ben a 2 Byte, da ein Pixel 2 Byte grof3
ist), und da Sie 256 Schattierungen an-
legen, liegt der Speicherbedarf insge-
samt bei 128 KByte. Wenn Sie weniger
Speicher fur die Tabelle verwenden
mochten, dann beschrénken Sie sich auf
32 Schattierungsstufen. Dies liefert
nicht ganz so gute Ergebnisse, doch
wird das Programm dadurch etwas
schneller.

Dies liegt an dem Problem der Intel-
Prozessoren, deren Zugriffe auf Spei-
cherbereiche, die weit auseinander lie-
gen, relativ langsam sind. Verantwort-
lich dafir ist, daR der Prozessor-Cache
nicht so viele Werte zwischenspeichern
kann. Deshalb wird der Cache vom Sy-
stem vergeblich durchsucht, was zusatz-
lich Rechenzeit kostet.

Die Shading-Tabelle berechnen Sie
mit einer doppelt geschachtelten Schlei-
fe, die jede Farbe einzeln ermittelt. Ge-
nau dies erledigt die Routine Make ©

PC Magazin November 1998 279

PC UNDERGROUND
PRAXIS

ShadedPalette in der Datei grid.cpp.
Zum Verstandnis hier der wichtigste
Code-Teil:

for (int Shading = 0;
Shading < 256; Shading++)
for (int Index = 0;
Index < 256; Index++)
{

/I Shading von Rot, Griin

//'und Blau

int r = (Bitmap->cColors
[Index*4+0]*Shading)/

256;

int g = (Bitmap->cColors
[Index*4+1]*Shading)/
256;

int b = (Bitmap->cColors
[Index*4+2]*Shading)/
256;

/I Zusammensetzen der

/I 16-Bit-Farbe

Palette[Shading*256+Index] =

Rtab[r]|Gtab[g]|Btabl[b];

Sie kdnnen auch zusétzlich bei den hell-
sten Schattierungsstufen weiRe Farban-
teile auf die RGB-Werte addieren. Dann
bekommen Sie wunderschdne Glanz-
lichter auf die Effekte. Oder Sie inter-
polieren zum Beispiel zwischen zwei
Paletten und geben damit den Effekten
einen ganz neuen Charakter. Den Md&g-

Um die Assembler-Routinen fur die Penti-
um-Prozessor-Familie zu optimieren,
mussen Sie zuerst uberlegen, wie Sie die
Tabellen und die Texturemap moglichst
sinnvoll speichern, um sowohl schnell als
auch registersparend darauf zugreifen zu
koénnen. Dazu reservieren Sie einen neuen,
groRen Speicherbereich, in den Sie die
drei Movelist-Tabellen an bekannte
Adressen innerhalb dieses Blocks kopie-
ren. Dadurch kénnen Sie alle Tabellen mit
einem Register und einem Offset adres-
sieren. Ein weiterer bei Texturemaps der
GroRe 256 x 256 gern verwendeter Trick
ist, das Alignment (Ausrichtung) des Zei-
gers auf die Textur auf 64 KByte zu setzen.
Anschaulich bedeuted dies, daR die un-
tersten 16 Bit des Zeigers Null sind:

Zeiger auf Textur:

| 32 Bit |
| 16 Bit | 16 Bit |
XXXXXXXXXXXXXXXxX0000000000000000

Wenn Sie diesen Pointer z.B. in das EBX-
Register eintragen, konnen Sie ein Texel
adressieren, indem Sie in in das BH-Regi-
ster die V- und in das BL-Register die U-

280 November 1998 PC Magazin

lichkeiten sind auch hier keine Grenzen
gesetzt.

Zum Abschluf? nun noch der Konig der
2D-Effekte: die Feedbacks (Rickkop-
pelungseffekte). Sie entstehen, wenn Sie

i« PC Magazin Demo

-.';EI ®-
'l <

BEIM FEEDBACK verwenden Sie ein berechnetes Bild als

Grundlage fur eine neue Berechnung.

Koordinate schreiben:

| 16 Bit | 16 Bit |

XXXXXXXXXXXXXXXXVVVVVVVVUuuuuuuu

l fest |<—BH—»|«—BL—|

Mit diesem Trick sparen Sie sowohl Re-
chenzeit als auch wieder wertvolle Regi-
ster. Sie bekommen das Alignment, indem
Sie einen doppelt so groRen Speicherbe-
reich adressieren, als Sie eigentlich
benétigen und danach den Zeiger um 64
KByte verschieben. Nun kénnen Sie ein-
fach die untersten 16 Bit l6schen:

mapneu = (unsigned char*)
malloc(256*256*2);
mapneu = (unsigned char*)
(((int)pbmp2+65536) &
~65535);
memcpy(mapneu, map, 256*256);

Schreiben Sie jetzt die Assembler-Schlei-
fe moglichst parallelisiert und ohne Pen-
alties (Zeitstrafen) verursachende Be-
fehlsabfolgen. Wenn Sie zwei Pixel gleich-
zeitig berechnen, kommen Sie auch mit
32-Bit-Schreibbefehlen aus und benétigen
keine 16-Bit-Operationen, die auf dem
Pentium-Prozessor im Protected Mode
sehr langsam arbeiten. Die fertige opti-
mierte Assembler-Routine sehen Sie im
Quelltext.

ein berechnetes Bild als neue Textur fir
das néchste Bild verwenden. Damit er-
zeugen Sie sehr interessante Effekte.
Das Problem bei diesen Feedback-Ef-
fekten ist, daB sie sich zwar sehr einfach
aus 8x8-Mappern herleiten lassen, aber
sehr schwer in den Griff zu bekommen
sind.

Im Pseudo-Code
ist die Erstellung ei-
nes Feedbacks sehr
einfach:
do {

Verforme Textur
in eine Bitmap;
Kopiere Bitmap
in die Textur;
Zeige Bitmap
auf dem Screen;

} while

(ILangeweile)
Das Problem mit
Feedbacks ist, daR die
Textur nach und nach
vollstdndig zerstort
wird — dies geschieht
durch die wiederholte
Verzerrung. Entwe-
der erhalten Sie nach
einiger Zeit eine ein-
farbige Bitmap oder
Sie haben nur noch buntes Rauschen auf
dem Bildschirm.

Diese Probleme konnen Sie in den
Griff bekommen: Restaurieren Sie nach
jedem Durchlauf einen Teil des Bildes.
So vermeiden Sie am Ende einen einfar-
bigen Bildschirm. Sie kdnnen beispiels-
weise immer einen Teil einer Bitmap
Uber die neue Textur kopieren, die Sie
erhalten haben.

Das Rauschen ist ebenfalls mit einem
einfachen Trick zu bewdltigen: Wie in
der vorigen Ausgabe von PC Undergro-
und beschrieben, a4kt sich mit einem
Motionblur-Algorithmus das aktuelle
und das letze Bild in einem Verhaltnis
von 50 Prozent mischen.

Hiermit haben Sie alles, was Sie zum
Experimentieren bendtigen. Mit den Ef-
fektbaukaésten, die Sie nun kennen, kén-
nen Sie eine groRe Vielzahl von Bitmap-
Effekten berechnen, die Sie allesamt in
einer modernen Demo finden kénnen —
und vielleicht schon bald in Ihrer Demo.

WR

Alle Programme, Routinen und eine lauffahige De-
mo finden Sie im Internet-Angebot des PC Magazin
unter

www.pc-magazin.de/magazin/
[extras.htm

Klicken Sie einfach in der Tabelle Online Extras
unter Praxis auf das entsprechende rote Down-
load-Feld.

