
276 November 1998 PC Magazin

P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R /
N I L S P I P E N B R I N C K

Wir entwickeln in diesem Bei-
trag mit Hilfe von Movelists
(Bewegungslisten) den be-

kannten Tunneleffekt. Dieser stellt ei-
nen sich drehenden Tunnel (Zylinder)
dar, in den der Betrachter beim An-
schauen gleichsam magisch hineingezo-
gen wird. Bei der Berechnung wird die
Texturemap gewissermaßen um den
Tunnel gewickelt.

Movelists sind Effekte, die eine oder
mehrere Tabellen verwenden, um ein
Bild aus einer Textur zu berechnen. Die-
se Tabellen geben an, in welchem Winkel
oder welcher Entfernung sich ein Pixel
zum Bildschirmmittelpunkt befindet.
Zudem legen sie die Helligkeitswerte für
jedes Pixel fest. Beim Entwickeln einer
Routine für diesen Effekt bestimmen Sie
für jedes Pixel zuerst, welches Texel
(Texture Pixel) der Textur gezeichnet
werden soll. Anschließend legen Sie fest,
welche sonstigen Attribute, wie zum
Beispiel die Helligkeit, das Texel erhält.

Wenn Sie sich den Screenshot des
Tunnels ansehen, können Sie beobach-
ten, daß sich die Helligkeit des Tunnels
von der Mitte nach außen hin erhöht.

Damit haben Sie schon die Idee für die
erste Movelist, die Sie hier benötigen. Da
Sie bei diesem Effekt wieder mit einer
256-Farben-Textur arbeiten, empfiehlt
es sich, für jedes Pixel direkt den Hellig-
keitswert zu speichern, den eine Sha-
ding-Tabelle für die Textur verwendet.
Der Helligkeitsverlauf in der Tabelle ist
mit einer empirisch ermittelten Formel
berechnet. Wie Sie sehen können, ist das
für den räumlichen Eindruck auf jeden
Fall ausreichend. Der folgende C-Code
berechnet die Shading-Tabelle für den
Tunnel:

// Shading-Tabelle für den Tunnel
offset = 0;
for (y = 0; y < SCREEN_Y; y++)

for(x = 0; x < SCREEN_X; x++)
{

// Abstandsquadrate des
Pixels

// zur Bildschirmmitte
xdist = SCREEN_X / 2 - x;
ydist = SCREEN_Y / 2 - y;
xdist *= xdist;
ydist *= ydist;

// Daraus wird ein Hellig-
// keitswert berechnet
d = 255.0 -
sqrt(xdist+ydist);
d *= d * d * d * d;
d /= SCREEN_X * SCREEN_Y *

180.0 * 180.0;

// auf den richtigen
// Wertebereich achten!
d = min(255, max(0, d));
// Und kleine Zufallswerte
// addieren, um keine harten
// Kanten auftreten zu lassen
d = (63 - d * 4.0) / 4.0 +

rand()/16384.0;

stab[offset++] = d;
}

Möglich wäre jetzt, eine Tabelle zu be-
rechnen, die für jedes Pixel ein Texel be-
stimmt. Damit könnten Sie den Tunnel
zwar darstellen, aber es würde sich
nichts bewegen. Um den Tunnel um sei-
ne eigene Achse rotieren zu lassen und
den Betrachter entlang des Tunnels zu
bewegen, benötigen Sie zwei weitere Ta-
bellen.

Die eine Tabelle, die für das Bewegen

des Betrachters zuständig sein soll, ent-
hält für jedes Pixel die V-Koordinate der
Textur. Diese Tabelle soll noch von ei-
nem Abstandswert des Betrachters zur
Zeichenebene und natürlich vom Radius
des Tunnels abhängen. Wichtig ist, daß
U und V für Texturkoordinaten stehen
und X und Y für Bildschirmkoordina-
ten. Die Berechnung erfolgt folgender-
maßen:

// V-Tabelle
offset = 0;
for (y = -SCREEN_Y/2;

y < SCREEN_Y/2; y++)
for (x = -SCREEN_X/2;

x < SCREEN_X/2; x++)
{

if (x)
// um Division durch
// 0 zu vermeiden
{

// Abstand berechnen
temp = cos(atan((double)y /

(double)x));
temp *= abstand*radius/8.0;
if (temp == 0) temp ++;

temp = fabs(temp/(double)x)
+ 64.0;

ztab[offset++] = temp;
} else

// einfach den Wert des
// Pixels daneben verwenden
ztab[offset++] = temp;

}

Die zweite Tabelle hält für jedes Pixel die
U-Koordinate der Textur bereit. Da Sie
die Textur um den Tunnel herum-
wickeln wollen, genügt es, bei dieser Ta-
belle für jedes Pixel den Winkel zu einer
Halbgeraden (Strahl) aus dem Bild-
schirmmittelpunkt zu bestimmen und
diesen so zu skalieren, daß er die Breite
der Texturemap hat. Diese Berechnung
erledigen Sie mit dem Arcustangens:

// ArcTan-Tabelle
int offset = 0;
for (y = -SCREEN_Y/2;

y < SCREEN_Y/2; y++)
for (x = -SCREEN_X/2;

x < SCREEN_X/2; x++)
{

if (x)
// Division durch 0 vermeiden
{

// Winkel berechnen

Demo-Programmierung unter Windows 95/NT

Tanz der Bitmaps
In dieser Ausgabe lernen Sie weitere Verfahren für den Umgang mit Bitmaps
kennen. Diese erlauben eine Vielzahl von optisch spannenden Effekten.

DER TUNNELEFFEKT, implementiert mit
Hilfe von Movelists

PC Magazin November 1998 277

P C U N D E R G R O U N D
P R A X I S

temp = atan((double)y /
(double)x);

// und auf die Breite der
// Textur skalieren
temp = 256.0 * temp /

6.28318630718;

// Vorzeichenkorrektur
// des Arctan
if (x <= 0 && y <= 0)

temp ++;
if (x > 0 && y > 0)

temp ++;
if (x >= 0) temp += 128;

atab[offset++] = temp;
} else
// Wert des vorherigen Pixels
// verwenden

atab[offset++] = temp;
}

Nachdem Sie alle diese Tabellen berech-
net haben, geht es daran, den Tunnel zu
zeichnen. Hierzu lesen Sie zuerst für je-
des Pixel die dazugehörige U- und V-
Koordinate aus. Damit können Sie das
Texel aus der Texturemap auslesen.
Wenn Sie aus der Shading-Tabelle für
den Tunnel den Helligkeitswert des Pi-
xels ermitteln, können Sie der Textur
den endgültigen Farbwert für das aktu-
elle Pixel zuweisen:

for (n = 0;
n < SCREEN_X * SCREEN_Y;
n++)

{
u = atab[n];
v = ztab[n];

screen[n] = palette[stab[n]]
[bmp[(v << 8)

+u]];
}

Nun stellen Sie sich sicher die Frage, wie
Sie Bewegung in den Tunnel bekom-
men. Sie haben die Textur um den Tun-
nel herumgewickelt, und zwar so, daß
sie in der Breite genau einmal herumpaßt
und sich in der Tiefe wiederholt. Dazu
sollten Sie natürlich eine sogenannte
seamless (saumlose) Textur verwenden,
die Sie aneinanderlegen können, ohne
daß Kanten zu sehen sind.

Wenn Sie den Tunnel drehen wollen,
addieren Sie einfach einen Wert auf die
U-Koordinate. Damit ändern Sie den
Drehwinkel, da der Winkel und die U-
Koordinate aufgrund der Arcustangens-
Tabelle direkt zusammenhängen. Sie
müssen nur darauf achten, daß die Ko-
ordinaten, die über den Rand der Tex-
turemap hinausgehen, am anderen Rand
der Textur fortzusetzen sind.

Dies erreichen Sie dadurch, daß Sie
den Rest ermitteln, der bei der Teilung
von U-Koordinate und Texturemap-
Breite entsteht. Wenn sie eine 256 Pixel
breite Textur haben (wie hier), ergibt
sich eine weitere Möglichkeit: Verknüp-

fen Sie sie mit AND 255, was deutlich
schneller ist.

Der gleiche Trick wie bei der Drehung
läßt sich analog auf die Bewegung ent-
lang der Achse anwenden. Die Schleife
zum Zeichnen des Tunnels sieht dann
folgendermaßen aus:

for (n = 0;
n < SCREEN_X * SCREEN_Y;
n++)

{
u = (atab[n]+drehung) & 255;

v = (ztab[n]+bewegung) & 255;

screen[n] = palette[stab[n]]
[bmp[(v > 8)+u]];

}

Wie Sie sehen, ist die Berechnung von
komplexen Effekten mit Hilfe von
Movelists sehr einfach und auch sehr
schnell. Mit wenigen Speicherzugriffen
pro Pixel erhalten Sie Bilder, die Sie mit
3D-Routinen nicht in dieser Geschwin-
digkeit berechnen können. Und auf heu-
tigen Rechnern fällt der Speicherbedarf
für die Tabellen auch nicht mehr ins Ge-
wicht.

Ein weiterer Vorteil dieser Methode
ist es, daß die Berechnung trotz der we-
nigen Register der Pentium- und Penti-
um-kompatiblen Prozessoren paralleli-
siert werden kann. Dies können Sie in
der im Quelltext enthaltenen Assem-
bler-Schleife sehen, in der zwei Pixel pro
Schleifendurchlauf berechnet werden
und der Prozessor deshalb optimal aus-
genutzt wird.

■ Freies Verzerren
von Bitmaps
Die zweite Methode ist ein sehr einfa-
ches und schnelles Verfahren, um Bit-
maps zu verzerren. Diese Methode ar-
beitet ähnlich wie die bereits vorgestell-
te Tunnelmethode. Um die aufwendige
Berechung von Texturkoordinaten zu
verkürzen bzw. um auf große Tabellen
zu verzichten, benutzen Sie einen Trick:

Sie unterteilen den Bildschirm in klei-
nere Bereiche, die genau 8 x 8 Pixel groß
sind. So erhalten Sie ein Gitter, für des-
sen Kreuzungspunkte (die Ecken der
8 x 8-Pixel-Blöcke) Sie die genauen Tex-
turkoordinaten für das Bild berechnen.

Angenommen, Sie arbeiten in einer
Auflösung von 320 x 240 Punkten.
Dann müssen Sie nur (320/8)+1=41 Ko-
ordinaten auf der X-Achse und
(240/8)+1 Koordinaten auf der Y-Achse
berechnen. Insgesamt macht das nur
1271 Texturkoordinaten. Im Vergleich
dazu: Berechnen Sie die Texturkoordi-

naten für jedes Pixel einzeln, dann sind
es 76 800 Berechnungen. Mit einem ein-
fachen Trick erreichen Sie also allein für
die Berechnung etwa eine Beschleuni-
gung um den Faktor 60.

Wo liegt der Vorteil gegenüber der
Tunnelmethode? Sie können für jedes
Bild die Texturkoordinaten völlig neu
berechnen, da der Aufwand sehr gering
ist, und damit abhänging von der Zeit
den Effekt sehr flexibel gestalten.

Nun zeichnen Sie mit Ihren Koordi-
naten natürlich auch etwas. Sie werden
sehen, daß dies viel einfacher ist, als es im
ersten Moment aussieht. Das Gitter, das
Sie berechnen, besteht – wie bereits er-

wähnt– aus vielen kleine Kästchen, die
alle 8 x 8 Pixel groß sind.

Sie berechnen das endgültige Bild, in-
dem Sie jeden 8 x 8-Block mit einer Tex-
tur füllen. Die Texturkoordinaten ent-
nehmen Sie den vier Eckpunkten und in-
terpolieren über den Block linear. Nun
sehen Sie, daß Sie, um beispielsweise
320/8=40 Blöcke zu zeichnen, 41 Stütz-
werte benötigen, damit Sie die Textur-
koordinaten auch für den letzten Block
erhalten.

■ Ein Texture-Mapper
für 8 x 8-Blöcke
Diese Routine entwickeln wir, um die
Textur für einen Block zu interpolieren.
Im Gegensatz zum normalen Texture-
Mapping ist die Interpolation von Tex-
turen über 8 x 8-Blöcke sehr einfach: Es
ist nicht nötig, die aufwendige Kanten-
berechnung für die Polygone durchzu-
führen. Auch fallen sehr rechenintensive
Operationen wie etwa die Division für
die Inkremente weg, da die Breiten q

EIN 8 X 8-BLOCK mit den vier Stützwerten
(den berechneten Texturkoordinaten)
A,B,C und D.

8 x 8

A C

B

y

x

D

278 November 1998 PC Magazin

P C U N D E R G R O U N D
P R A X I S

und Höhen der Kästchen immer acht Pi-
xel weit sind. Divisionen von Zweierpo-
tenzen lassen sich durch schnellere Shift-
Operationen ersetzen.

Wie beim Texture-Mapping üblich,
arbeiten Sie mit Fixed-Point-Zahlen
(vergleiche PC Underground, PC Maga-
zin 8/98, ab S. 234). Zunächst einmal in-
terpolieren Sie die Texturkoordinaten
der linken und rechten Kante des Käst-
chens. Über die während der Interpola-
tion entstehenden linken und rechten
Texturkoordinaten zeichnen Sie dann
später eine acht Pixel lange Zeile, um den
Zwischenraum zu füllen.

Die folgende Struktur enthält die Ko-
ordinaten eines Gitterpunkts:

struct GridPointUV
{

signed int u;
signed int v;

}

GridPointUV a,b,c,d;

signed int dudy_left =
(b.u-a.u)/8;

signed int dvdy_left =
(b.v-a.v)/8;

signed int dudy_right=
(d.u-c.u)/8;

signed int dvdy_right=
(d.v-c.v)/8;

Die vier signed-int-Werte sind die verti-
kalen Koordinateninkremente. Die Na-
men der Variablen haben einen guten
Grund: Sie sind der Mathematik entlie-
hen. dudy bedeutet, daß diese Variable
die Steigung der U-Koordinate (Textur)
entlang der Y-Koordinate (Bitmap) ist.
Das _left und _right bezieht sich auf die
Kante des Blocks.

Die Interpolation über die vertikalen
Kanten eines Blocks implementieren Sie
wie folgt:

GridPointUV left = a;
GridPointUV right = b;

for (int y=0; y<8; y++)
{

// Zeichnen einer Zeile,
// (siehe unten)

// Anpassen der left- und
// right-
//Variablen für die nächste
// Zeile

left.u += dudy_left;
left.v += dvdy_left;
right.u += dudy_right;
right.v += dvdy_right;
}

Das Zeichnen der Zeile selbst ist fast
identisch mit der Berechnung der verti-
kalen Kanten. Erneut werden die Stei-
gungen (diesmal für die X-Achse) ent-
lang der Bildschirmzeile berechnet, und
dann die Interpolationsvariablen initiali-
siert und gezeichnet:

dudx = (right.u-left.u)/8;

dvdx = (right.v-left.v)/8;

signed int u = left.u;
signed int v = left.v;

for (int x=0; x<8; x++)
{

// Umwandlung von Fixed-Point
// in echte Koordinaten
// In diesem Beispiel geht die
// Routine von 256*256 großen
//Texturen aus.

int texel_u = ((u>16) &
0x00ff);

int texel_v = ((v>16) &
0x00ff);

// Lesen von Texture-Pixel bei
// [texel_u][texel_v] ...)
//... setzen des Pixels bei
// [x][y] ...)

// Anpassen der u- und
// v-Variablen für das nächste
// Pixel
u += dudx;
v += dvdx;

}

Wenn Sie sich nach
dem Download die
komplette Routine
im Quelltext von
grid.cpp ansehen, stel-
len Sie fest, daß diese
Routine sehr einfach
geschrieben ist, aber
dennoch rasend
schnell läuft, da auf
aufwendige Berech-
nungen verzichtet
werden kann.

Die Routine zum
Zeichnen der 8 x 8-
Blöcke ist so schon
ganz praktisch. Da-
mit Sie aber wirklich
bequem Effekte aus-
probieren können,
brauchen Sie noch ei-
ne Routine, mit der Sie den kompletten
Bildschirm mit den Texturkoordinaten
aus einem vollständigen Gitter zeichnen:

void RenderScreen8x8
(GridPointUV *gitter,

// Gitter-Array
unsigned short *dest,
// Pointer auf das Bitmap
unsigned short *palette,
unsigned char *texture)

{
// Anzahl der Blöcke:
long BlocksX = SCREEN_X/8;
long BlocksY = SCREEN_Y/8;

// Pointer auf die Koordinaten
//der aktuellen Zeile
GridPointUV *line = gitter;
// Pointer auf die Koordinaten
// der nächsten Zeile
GridPointUV *nextline =

&gitter[BlocksX+1];

// Schleife über alle Zeilen:
for (int y=0; y<BlocksY; y++)

{

// eine Zeile von 8x8
// Kästchen Zeichnen:

for (int x=0; x<BlocksX; x++)
Render8x8Block(line[x+0],

nextline[x+0],
line[x+1],

nextline[x+1],
&dest[x*8],
SCREEN_X,
palette,
texture);

// Variablen für nächste
// Zeile anpassen

dest += SCREEN_X*8;
line = nextline;
nextline += (BlocksX+1);

}
}

■ Der Roto-Zoomer
Ein Roto-Zoomer ist ein Effekt, der ei-
ne Textur gleichzeitig dreht und ver-
größert bzw. verkleinert. Vor einigen
Jahren war dieser Effekt bei Demo-Pro-

grammierern sehr beliebt, um Program-
mierfähigkeiten zu zeigen.

Roto-Zoomer sind mit dem vorge-
stellten Algorithmus sehr einfach zu be-
rechnen. Die Routine ist dann beinahe
so schnell, daß der Hauptspeicher die
ankommenden Pixeldaten nicht schnell
genug speichern kann und zur Bremse
wird.

Für diesen Effekt berechnen Sie die
gedrehten und gezoomten Texturkoor-
dinaten U und V für jeden Gitterpunkt.
Dies erledigen Sie am besten mit folgen-
dem Programmcode – das Beispiel ist für
eine Auflösung von 320 x 240 ausgelegt:

GridPointUV Gitter[41][31];
float rotation;
float zoomfaktor;

// Vorberechnen der Rotation und

DURCH ÜBERLAGERN mit einer ganz einfachen Sinusfunktion
verzerrt sich die Textur.

PC Magazin November 1998 279

P C U N D E R G R O U N D
P R A X I S

// der Skalierung
float cosinus = cos(rotation) *

zoomfaktor;
float sinus = sin(rotation) *

zoomfaktor;

// Zwei Schleifen zum Berechnen
// des Gitters
for (int hoehe=0; hoehe<31;

hoehe++)
for (int breite=0; breite<41;

breite++)
{

// Berechnen von x und y
// relativ zum Bildschirm-
// mittelpunkt:
float x = ((float)breite-

20.0);
float y = ((float)hoehe-

15.0);

// Berechnen von u und v
// durch einfache Rotation.
// 65536 ist die Skalierung
// für die Fixed-Point-
// Umwandlung
Gitter[y][x].u = (x*sinus -

y*cosinus)*
65536.0;

Gitter[y][x].v = (y*sinus +
x*cosinus)*
65536.0;

}

Anschließend durchlaufen Sie eine wei-
tere Schleife und rufen die 8 x 8-Textu-
re-Mapping-Routine für jedes Kästchen
auf.

■ Noch mehr Effekte
Wie Sie sehen, haben Sie mit dieser Rou-
tine bereits einen Effekt-Baukasten. Den
Möglichkeiten sind (fast) keine Grenzen
gesetzt. Sie können wilde mathemati-
sche Formeln benutzen, um Texturko-
ordinaten zu berechnen. Überlagern Sie
zum Beispiel einfach ein paar Sinusfunk-
tionen, und schon fängt Ihre Textur an,
sich wild zu verzerren.

Diese Routine ist natürlich nicht auf
Texturen beschränkt. Sie können auch
Farben über die Blöcke hinweg interpo-
lieren. Ändern Sie dazu die Interpolati-
on auf die drei Farbkomponenten R,G
und B ab. Am mathematischen Teil än-
dert sich dadurch nichts. Sie können auf
diesem Weg ein Sinus-Plasma zeichnen,
das um ein Vielfaches schneller läuft als
mit der in der vorigen Ausgabe vorge-
stellten Methode.

Viele schöne Effekte erreichen Sie
durch Projektion. Dabei berechnen Sie
aus den X- und Y-Koordinaten und ei-
ner Tiefenkoordinate Z die Texturkoor-
dinaten. Die Umrechnung in U/V-Ko-
ordinaten erfolgt durch einfache per-
spektivische Projektion.

U = x* perspektive / z;
V = y* perspektive / z;

In den Beispiel-Codes ist ein Effekt im-
plementiert, der mit dieser Methode ar-

beitet (siehe Bild oben).
Sie können auch zwei Effekte gleich-

zeitig berechnen und die Texturkoordi-
naten von einem Effekt in den anderen
überblenden. Hierbei ist allerdings Vor-
sicht geboten: Die 8 x 8-Interpolation
funktioniert immer nur in eine Rich-
tung. Sobald die Routine einen Wrap-
Around ausführen muß, wird sie versa-
gen.

Ein kleines Beispiel hierzu: Die linke
U-Koordinate beträgt 255, während die
rechte Koordinate 10 ist. Dies führt zu
einer Steigung von (255-10)=245. Das
bedeutet, daß fast die gesamte Textur
rückwärts in das Kästchen gemappt
wird. Leider ist dieses Ergebnis falsch,
da Sie ja immer mit seamless (kanten-
gleichen) Texturen arbeiten.

Wenn Sie diesen Fall vermeiden wol-
len, dann können Sie den 8 x 8-Interpo-
lierer so umschreiben, daß im Gitter kei-
ne Texturkoordinaten, sondern die Stei-
gung direkt gespeichert wird. Viele Ef-
fekte (besonders Sinus-Verzerrer und
Plasmen) lassen sich auch so berechnen.
Direktes Berechnen der Texturkoordi-
naten ist jedoch viel anschaulicher und
einfacher.

■ Erweiterung auf
Lichteffekte
Es gibt einen weiteren Weg, das vorher
genannte Problem zu umgehen. Mit ei-
nem neuen Feature interpolieren Sie zu-
sätzlich zu den Texturkoordinaten noch
eine Helligkeit. Diese Helligkeit berech-
nen Sie dann so, daß die Stellen in der
Bitmap dunkel sind, die durch die hohen
Steigungen unschön ausehen, während
die guten Teile der Textur normal er-
scheinen.

Ändern Sie hierfür
die Struktur des Grid-
PointsUV ab, und fü-
gen Sie einen Hellig-
keitswert hinzu. Die
Variable bezeichnen
Sie nach dem bekann-
ten Gouraud-Shading
mit g, da Sie im Prin-
zip hier nichts ande-
res machen.

struct GridPoint-

➥UVG
{

signed int u;
signed int v;
signed int g;

}

Sie passen natürlich
noch die Routinen

zum Zeichnen an. Wie bei den R-, G-
und B-Koordinaten ist es eine einfache
Erweiterung. Sie kopieren einfach den
Code von U oder V. Im Beispiel-Code
haben wir dies schon für Sie vorbereitet.

Zum Beleuchten der Texturen sollten
Sie wie bei den bisherigen Effekten die
Textur in 8 Bit Farbtiefe pro Pixel (256
Farben) vorliegen haben. Sie können
dann zur Textur eine Shading-Palette
mit (bei diesem Effekt) 256 Schattierun-
gen berechnen und die jeweilige Schat-
tierung anhand des Gouraud-Hellig-
keitswerts auswählen.

Die Berechnung der Shading-Palette
ist sehr einfach. Angenommen, Sie
möchten eine einfache Beleuchtung ha-
ben, dann reservieren Sie sich genug
Speicher für diese Tabelle. Sie benöti-
gen für jede Palette 512 Byte (256 Far-
ben à 2 Byte, da ein Pixel 2 Byte groß
ist), und da Sie 256 Schattierungen an-
legen, liegt der Speicherbedarf insge-
samt bei 128 KByte. Wenn Sie weniger
Speicher für die Tabelle verwenden
möchten, dann beschränken Sie sich auf
32 Schattierungsstufen. Dies liefert
nicht ganz so gute Ergebnisse, doch
wird das Programm dadurch etwas
schneller.

Dies liegt an dem Problem der Intel-
Prozessoren, deren Zugriffe auf Spei-
cherbereiche, die weit auseinander lie-
gen, relativ langsam sind. Verantwort-
lich dafür ist, daß der Prozessor-Cache
nicht so viele Werte zwischenspeichern
kann. Deshalb wird der Cache vom Sy-
stem vergeblich durchsucht, was zusätz-
lich Rechenzeit kostet.

Die Shading-Tabelle berechnen Sie
mit einer doppelt geschachtelten Schlei-
fe, die jede Farbe einzeln ermittelt. Ge-
nau dies erledigt die Routine Make q

DIESER EFFEKT arbeitet mit perspektivischer Projektion.

280 November 1998 PC Magazin

P C U N D E R G R O U N D
P R A X I S

ShadedPalette in der Datei grid.cpp.
Zum Verständnis hier der wichtigste
Code-Teil:

for (int Shading = 0;
Shading < 256; Shading++)

for (int Index = 0;
Index < 256; Index++)

{
// Shading von Rot, Grün
// und Blau
int r = (Bitmap->cColors

[Index*4+0]*Shading)/
256;

int g = (Bitmap->cColors
[Index*4+1]*Shading)/
256;

int b = (Bitmap->cColors
[Index*4+2]*Shading)/
256;

// Zusammensetzen der
// 16-Bit-Farbe
Palette[Shading*256+Index] =

Rtab[r]|Gtab[g]|Btab[b];
}

Sie können auch zusätzlich bei den hell-
sten Schattierungsstufen weiße Farban-
teile auf die RGB-Werte addieren. Dann
bekommen Sie wunderschöne Glanz-
lichter auf die Effekte. Oder Sie inter-
polieren zum Beispiel zwischen zwei
Paletten und geben damit den Effekten
einen ganz neuen Charakter. Den Mög-

lichkeiten sind auch hier keine Grenzen
gesetzt.

■ König der 2D-Effekte

Zum Abschluß nun noch der König der
2D-Effekte: die Feedbacks (Rückkop-
pelungseffekte). Sie entstehen, wenn Sie

ein berechnetes Bild als neue Textur für
das nächste Bild verwenden. Damit er-
zeugen Sie sehr interessante Effekte.
Das Problem bei diesen Feedback-Ef-
fekten ist, daß sie sich zwar sehr einfach
aus 8x8-Mappern herleiten lassen, aber
sehr schwer in den Griff zu bekommen
sind.

Im Pseudo-Code
ist die Erstellung ei-
nes Feedbacks sehr
einfach:
do {

Verforme Textur
in eine Bitmap;
Kopiere Bitmap
in die Textur;
Zeige Bitmap
auf dem Screen;

} while
(!Langeweile)

Das Problem mit
Feedbacks ist, daß die
Textur nach und nach
vollständig zerstört
wird – dies geschieht
durch die wiederholte
Verzerrung. Entwe-
der erhalten Sie nach
einiger Zeit eine ein-
farbige Bitmap oder

Sie haben nur noch buntes Rauschen auf
dem Bildschirm.

Diese Probleme können Sie in den
Griff bekommen: Restaurieren Sie nach
jedem Durchlauf einen Teil des Bildes.
So vermeiden Sie am Ende einen einfar-
bigen Bildschirm. Sie können beispiels-
weise immer einen Teil einer Bitmap
über die neue Textur kopieren, die Sie
erhalten haben.

Das Rauschen ist ebenfalls mit einem
einfachen Trick zu bewältigen: Wie in
der vorigen Ausgabe von PC Undergro-
und beschrieben, läßt sich mit einem
Motionblur-Algorithmus das aktuelle
und das letze Bild in einem Verhältnis
von 50 Prozent mischen.

Hiermit haben Sie alles, was Sie zum
Experimentieren benötigen. Mit den Ef-
fektbaukästen, die Sie nun kennen, kön-
nen Sie eine große Vielzahl von Bitmap-
Effekten berechnen, die Sie allesamt in
einer modernen Demo finden können –
und vielleicht schon bald in Ihrer Demo.

sW R

Alle Programme, Routinen und eine lauffähige De-
mo finden Sie im Internet-Angebot des PC Magazin
unter

www.pc-magazin.de/magazin/
➥extras.htm

Klicken Sie einfach in der Tabelle Online Extras
unter Praxis auf das entsprechende rote Down-
load-Feld.

BEIM FEEDBACK verwenden Sie ein berechnetes Bild als
Grundlage für eine neue Berechnung.

ASSEMBLER-OPTIMIERUNG BEI MOVELISTS
Um die Assembler-Routinen für die Penti-
um-Prozessor-Familie zu optimieren,
müssen Sie zuerst überlegen, wie Sie die
Tabellen und die Texturemap möglichst
sinnvoll speichern, um sowohl schnell als
auch registersparend darauf zugreifen zu
können. Dazu reservieren Sie einen neuen,
großen Speicherbereich, in den Sie die
drei Movelist-Tabellen an bekannte
Adressen innerhalb dieses Blocks kopie-
ren. Dadurch können Sie alle Tabellen mit
einem Register und einem Offset adres-
sieren. Ein weiterer bei Texturemaps der
Größe 256 x 256 gern verwendeter Trick
ist, das Alignment (Ausrichtung) des Zei-
gers auf die Textur auf 64 KByte zu setzen.
Anschaulich bedeuted dies, daß die un-
tersten 16 Bit des Zeigers Null sind:

Wenn Sie diesen Pointer z.B. in das EBX-
Register eintragen, können Sie ein Texel
adressieren, indem Sie in in das BH-Regi-
ster die V- und in das BL-Register die U-

Koordinate schreiben:

Mit diesem Trick sparen Sie sowohl Re-
chenzeit als auch wieder wertvolle Regi-
ster. Sie bekommen das Alignment, indem
Sie einen doppelt so großen Speicherbe-
reich adressieren, als Sie eigentlich
benötigen und danach den Zeiger um 64
KByte verschieben. Nun können Sie ein-
fach die untersten 16 Bit löschen:

mapneu = (unsigned char*)
malloc(256*256*2);

mapneu = (unsigned char*)
(((int)bmp2+65536) &

~65535);
memcpy(mapneu, map, 256*256);

Schreiben Sie jetzt die Assembler-Schlei-
fe möglichst parallelisiert und ohne Pen-
alties (Zeitstrafen) verursachende Be-
fehlsabfolgen. Wenn Sie zwei Pixel gleich-
zeitig berechnen, kommen Sie auch mit
32-Bit-Schreibbefehlen aus und benötigen
keine 16-Bit-Operationen, die auf dem
Pentium-Prozessor im Protected Mode
sehr langsam arbeiten. Die fertige opti-
mierte Assembler-Routine sehen Sie im
Quelltext.

xxxxxxxxxxxxxxxx0000000000000000

32 Bit

16 Bit 16 Bit

BH BL

Zeiger auf Textur:

xxxxxxxxxxxxxxxxvvvvvvvvuuuuuuuu

16 Bit

fest BH BL

16 Bit

