
250 Dezember 1998 PC Magazin

P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R

Ein PC mit Soundkarte kann Klän-
ge über ein angeschlossenes Mi-
krofon aufnehmen oder elektri-

sche Impulse von einer Hi-Fi-Kompo-
nente durch die Line-In-Schnittstelle
empfangen. Dazu mißt er in regelmäßi-
gen Zeitabständen die analoge Amplitu-
de der Welle und rechnet die gemessene
Spannung in einen digitalen Wert um.
Beim Abspielen wandelt die Soundkarte
die so erhaltenen Werte wieder in Span-
nungen zurück, die dann einen Laut-
sprecher betreiben.

Entscheidend für die Klangqualität ist
zum einen die Anzahl
der gemessenen Wer-
te pro Sekunde (Sam-
pling-Frequenz). Zum
anderen spielt die An-
zahl der Bits eine Rol-
le, die zur Repräsen-
tation der abgetaste-
ten Spannungswerte
benutzt werden. Ein
CD-Player arbeitet
zum Beispiel mit ei-
ner Sampling-Fre-
quenz von 44,1 kHz
und 16 Bit pro Ab-
tastwert. Multiplizie-
ren Sie diese 44 100
Abtastwerte pro Se-
kunde mit dem Platzbedarf von 2 Byte
(= 16 Bit) pro Abtastwert, so errechnen
Sie einen Speicherbedarf von 88 200
Byte pro Sekunde für jeden der beiden
Stereokanäle.

Um die aufgenommenen Musiksigna-
le korrekt reproduzieren zu können,
muß die Sampling-Frequenz mindestens
doppelt so hoch sein wie die Frequenz
des höchsten Tons. Aus dieser allge-
meingültigen Regel (bekannt als Shan-
non-Theorem) resultiert auch der typi-

sche Frequenzgang eines CD-Players
bis etwa 22 kHz.

■ Qual der Wahl
Um eine Demo mit Hintergrundmusik
zu versehen, haben Sie die Wahl zwi-
schen zwei verschiedenen Ansätzen.
• Sie können das ganze Musikstück auf-
nehmen, als wav-Datei speichern und
parallel zur Demo abspielen. Der Vorteil
hierbei ist, daß Sie nur einmal die Aus-
gabe starten müssen und sich um nichts
weiteres zu kümmern brauchen. Außer-
dem benötigt die CPU zum Abspielen
der Sample-Daten praktisch keine Re-
chenzeit. Negativ schlägt der relativ ho-
he Speicherverbrauch zu Buche. Wie Sie

dem etwas entgegenwirken, erfahren Sie
später.
• Bei der zweiten Variante werden ein-
zelne Instrumente aufgenommen und
die Musiknoten zu den Instrumentenda-
ten gespeichert. Sie haben dann dafür zu
sorgen, daß die Instrumente zu den ge-
gebenen Zeitpunkten in der richtigen
Tonhöhe abgespielt werden. Dieses Ver-
fahren nutzen die noch vom Commodo-
re Amiga stammenden Modules (MOD-
Format) und die Extended Modules

(XM-Format), welche eine erweiterte
Funktionalität besitzen.

Hauptsächlich fallen zwei verschiede-
ne Berechnungen mit den Sample-Daten
an. Zuerst möchten Sie sicherlich die
Lautstärke eines Instruments beeinflus-
sen. Dafür multiplizieren Sie jeden Sam-
ple-Wert mit einem Faktor und verän-
dern somit die Amplitude, also die
Lautstärke des Samples.

Die zweite wichtige Operation ist das
Mischen der einzelnen Kanäle bzw. der
Instrumente. Ohne Wavetable-Sound-
karte muß die Software diese rechenin-
tensive Aufgabe übernehmen. Moderne
PCs sind schnell genug. Sie berechnen
die Klänge in Echtzeit und fügen zu-
sätzlich Effekte wie Chorus oder Reverb
(Echo) hinzu. Das Mischen der Sample-
Daten entspricht einer Addition.

■ Module komponieren
FastTracker II ist ein Musikprogramm,
mit dem Sie selbst MOD- und XM-Mu-
sikstücke schreiben. Um Ihnen den Ein-
stieg ins Komponieren mit FastTracker
II (auf unserer Heft-CD) zu erleichtern,
gibt Ihnen PC Magazin wertvolle Tips
zur Hand.

Profi-Einstieg
Wie auch alle anderen Tracker auf dem
Markt ist FastTracker II kein Pro-
gramm, um schnell oder einfach Musik
zu machen. Es erfordert eine gewisse
Einarbeitung und Gewöhnung, um ef-
fektiv mit diesem mächtigen, aber un-
konventionellen Tool umzugehen.

Generell ist ein sogenanntes Modul
anders aufgebaut als MIDI-Dateien. Der
Ansatz der Module ist – da sie ur-
sprünglich vom Amiga stammen – sehr
Hardware-nah und effizient gehalten.
Generell gibt es eine Anzahl von
Kanälen (normalerweise zwischen 4 und
32). Jeder Kanal entspricht einer Mono-
Audiodatei, ähnlich einer wav-Datei. Im
Gegensatz zu Harddisk-Recording-
Software bieten Tracker jedoch die
Möglichkeit, diese Klänge beliebig in
Tonhöhe und Lautstärke zu modifizie-
ren. So entstehen aus diesen einzelnen
Samples komplexe polyphone (vielstim-
mige) Musikstücke.

Die Musikdaten sind deshalb in soge-
nannten Patterns zusammengefaßt. In
einem Pattern gibt es für jeden Kanal ei-
ne Spalte, in der untereinander die
Events stehen. Jedes Event besteht aus
vier Komponenten:
• einer Note, die die Tonhöhe des abzu-
spielenden Instruments angibt;

Demo-Programmierung unter Windows 95/NT

Schöne Töne
Nach den visuellen Effekten der letzten Ausgaben
warten die Programme und Routinen diesmal mit
akustischen Reizen auf.

HERZSTÜCK DES FASTTRACKER II: Im Pattern-Editor weisen Sie
jedem Instrument Tonhöhe, Lautstärke und Effekte zu.

PC Magazin Dezember 1998 251

P C U N D E R G R O U N D
P R A X I S

• einer Instrumentennummer, die das
Instrument bzw. das Sample spezifiziert;
• einer Lautstärkespalte, die die Laut-
stärke des Tons bestimmt
• und einer Effektspalte, in der Sie mit-
tels einer dreistelligen Hexadezimalzahl
bestimmte Modulationen auf den Ton
anwenden.

Eine Zeile in einem Pattern entspricht
einem bestimmten Zeitintervall. Im Ge-

gensatz zu einer Event-Liste in üblichen
Sequenzerprogrammen ist dieser Zeit-
ablauf jedoch starr, das heißt, die Liste
wird mit einer mehr oder weniger kon-
stanten Geschwindigkeit von oben nach
unten abgearbeitet.

In der sogenannten Order-Liste rei-
hen Sie die Patterns aneinander und fü-
gen so einen Song zusammen. Alle Pat-
terns in der Orderliste werden nachein-
ander abgespielt. Wenn Sie sich in die –
leider nicht optimale – Benutzerführung
von FastTracker II eingearbeitet haben,
sind Sie mit ein wenig Übung bald in der
Lage, professionelle Musikstücke zu
komponieren.

Im Editor von FastTracker II stellen
Sie schnell fest, daß das ganze Programm
mit Hexadezimalzahlen arbeitet. Der
Grund dafür ist die kompaktere Darstel-
lung der verwendeten Parameter für die
Bildschirmausgabe. Das ist etwas ge-
wöhnungsbedürftig, aber die hexadezi-
male Numerierung der Pattern-Zeilen
erscheint bei der heutigen 4/4-Takt-do-
minierten Musik wesentlich intuitiver.
Sie können damit Abstände von bei-
spielsweise 4, 8 oder 16 Zeilen schneller
erkennen.

Bevor Sie sich ans Werk machen, soll-
ten Sie sich die Online-Hilfe und die
mitgelieferte Dokumentation ansehen.
Dort finden Sie einige Tastaturbefehle,
die die Arbeit mit dem Editor wesentlich

erleichtern. Da die bereits erwähnten Ef-
fektspalten in den Patterns mit Zahlen
arbeiten, sollten Sie auch diese in der
Hilfe nachschlagen.

Das Sound-Cockpit
Nach dem Programmstart sehen Sie den
sogenannten Arbeitsbildschirm. Dieser
ist in mehrere Bereiche unterteilt. In der
unteren Hälfte befindet sich normaler-

weise die Arbeits-
fläche, also der Pat-
tern-Editor, während
Sie im oberen Bild-
schirmteil nützliche
Anzeigen oder Hilfs-
bildschirme sehen. Im
Normalfall finden Sie
links oben die Order-
Liste, diverse Einstel-
lungen, eine Spei-
cheranzeige und ei-
nen Bereich mit Os-
zilloskop-Darstel-
lungen. Diese zeigen
während des Abspie-
lens den Zustand der
einzelnen Kanäle an.

Im rechten oberen Teil befinden sich
zwei Reihen mit Schaltflächen zum Auf-
rufen der verschiedenen Funktionen
und Editoren, rechts daneben die Liste
der Instrumente und ihrer Samples.

Da FastTracker II aus der DOS-Zeit
stammt, steht zuerst die Konfiguration
Ihrer Soundkarte an. Im Config-Menü
wählen Sie in den Abschnitten Output
Device und Sampling Device Ihre
Soundkarte aus. Im Fall einer Sound-
Blaster-kompatiblen Karte sollten Sie
zusätzlich die IRQ- und DMA-Einstel-
lungen überprüfen. Außerdem emp-
fiehlt es sich für eine möglichst gute
Klangqualität, die Optionen Interpolati-
on, 16bit mixing und Stereo zu aktivie-
ren. Um die maxima-
le Sampling-Fre-
quenz für die Ausga-
be zu wählen, klicken
Sie rechts oben neben
der Frequenztabelle
auf Max.

Um ein Modul zu
laden, klicken Sie
oben in der Mitte auf
Disk op. und wählen
den entsprechenden
Namen im Dateiaus-
wahlfenster links
oben. Mit der Schalt-
fläche Save speichern
Sie ein Modul unter

dem aktuellen Namen – dieser ist am un-
teren Fensterrand eingeblendet. Um die-
sen Namen zu ändern, klicken Sie ihn –
wie bei allen Textfeldern in FastTracker
II – mit der rechten Maustaste an. Möch-
ten Sie einen Sample als Instrument la-
den, klicken Sie in der Instrumentenliste
auf die Position, an der es eingetragen
werden soll, und auf den Dateinamen in
Dateiselektor.

Im unteren Teil des Bildschirms sehen
Sie entweder den Pattern-, den Sample-
oder den Instrumenteneditor. Der Pat-
tern-Editor ist das Herzstück des
Tracker. Hier geben Sie die Notendaten
in die Patterns ein. Dazu benutzen Sie
die Tastatur als virtuelles Keyboard: Die
QWERTZ-Reihe stellt die weißen, die
Zahlenreihe die schwarzen Tasten dar.
QUERTZ ist ein nach der Anordnung
der Tasten auf der Tastatur entstandenes
Kunstwort zur Unterscheidung der eng-
lischen (QWERTY) und der deutschen
(QWERTZ) Tastatur. Der Cursor be-
findet sich immer in der hervorgehobe-
nen Mittelzeile des Pattern-Editors und
ist mit einer Umrandung markiert.

Sie bewegen den Cursor mit den Pfeil-
tasten oder der [Tab]-Taste, um zwi-
schen den Kanälen zu wechseln. Vor-
sicht: Auch wenn der Pattern-Editor
nicht aktiv ist und Sie zum Beispiel den
Sample-Editor sehen, können Sie den
Inhalt des Pattern modifizieren. Mit der
Leertaste wechseln Sie zwischen dem
Anhörmodus (die Samples werden ein-
fach nur gespielt, wenn Sie die Tasten
drücken) und dem Editiermodus (die
Noten werden in das Pattern eingetra-
gen). Den Editiermodus erkennen Sie an
der etwas helleren Farbe des Bildschirm-
rahmens.

Befindet sich der Cursor über der No-
tenspalte, können Sie Noten eingeben
oder mit der Feststelltaste ein Key- q

SAMPLE-EDITOR: die virtuelle Stimmgabel zum Feintuning der
Instrumente

CYBER-KLAVIER: FastTracker II verwandelt die PC-Tastatur in
ein virtuelles Keyboard.

252 Dezember 1998 PC Magazin

P C U N D E R G R O U N D
P R A X I S

off-Event setzen. Im letzteren Fall
stoppt die Sample-Ausgabe des betref-
fenden Kanals an dieser Position. Bei
den anderen Spalten geben Sie die Lauts-
tärke und die Effekte ein, deren Zahlen-
codes Sie der Online-Hilfe entnehmen.

Im Sample-Editor schließlich können
Sie die Sample-Daten der Instrumente
betrachten und wie mit einem Wave-Be-
arbeitungsprogramm modifizieren.

■ Sound-Bibliothek
benutzen
Um Ihre Kompositionen in Ihre Demo
zu integrieren, bedienen Sie sich am be-
sten einer fertigen Bibliothek wie der
MIDAS Audio Library (auf unserer
Heft-CD). Die Gründe, warum wir Ih-
nen hier eine fertige Bibliothek vorstel-
len, sind vielfältiger Natur: Zum einen
würde die Entwicklung eines eigenen
MOD-Players mit all seinen Feinheiten
mehrere Ausgaben von PC Under-
ground füllen – ganz zu schweigen von
einem XM-Player.

Zum anderen ist es nicht immer sinn-
voll, gleich das Rad neu zu erfinden.
Deswegen kommt das MIDAS-Sound-
system auch in der Demoszene sehr oft
zum Einsatz. Es ist zweifelsfrei eines der
besten und bietet eine einfach Schnitt-
stelle, um MOD- und XM-Dateien un-
ter DOS, Windows oder Linux abzu-
spielen.

Aktuelle Updates und weitere Infor-
mationen bekommen Sie unter

www.s2.org/midas

Außer dem MIDAS-Paket, in dem eine
Vielzahl von Beispielprogrammen und
Dokumentationen enthalten sind,
benötigen Sie nur noch eine kleine Än-
derung am Demo-Basissystem: Sie müs-
sen sichergehen, daß MIDAS immer

korrekt beendet wird. Deshalb fügen Sie
dem Basissystem außer demoinit() und
demomain() noch demoquit() hinzu.
Diese Funktion wird beim Beenden der
Demo automatisch aufgerufen.

Als Beispielprogramm hierzu finden
Sie in dieser Ausgabe einen kleinen Mo-
dule-Player. Dieses Programm verwen-
det die von MIDAS bereitgestellten
Funktionen, um Informationen über die
Musikwiedergabe zu erhalten:

MIDASmoduleInfo info;
MIDASplayStatus status;

MIDASgetModuleInfo(module,
&info);

MIDASgetPlayStatus(playHandle,
&status);

Die beiden Strukturen &info und &sta-
tus werden von den aufgerufenen Funk-

tionen mit Daten gefüllt und sind fol-
gendermaßen definiert:

typedef struct {
// Titel des Module
char songName[32];
// Länge der Order-List

unsigned songLength;
// Anzahl der ver-
// schiedenen Patterns
unsigned numPatterns;
// Anzahl der Instrumente
unsigned numInstruments;
// Anzahl der Kanäle
unsigned numChannels;

} MIDASmoduleInfo;

struct {
// Position in der Order-List
unsigned position;
// Pattern an dieser Stelle
unsigned pattern;
// aktuelle Zeile im Pattern
unsigned row;
// Synchronisationsinfo
int syncInfo;
unsigned songLoopCount;

} MIDASplayStatus;

Der Module-Player stellt den Titel des
Module in der Titelzeile dar, während er
die momentane Position, das Pattern

und die Zeile konti-
nuierlich im Fenster
aktualisiert. Die Rou-
tinen, mit denen Sie
die MIDAS-Biblio-
thek nutzen und Feh-
lermeldungen abfan-
gen, finden Sie in der
Datei
UseMIDAS.cpp.

■ Musik im
wav-Format
Das Komponieren
mit FastTracker II
benötigt ohne Zwei-
fel einiges an Erfah-
rung und erscheint
auf den ersten Blick

sehr aufwendig. Einfacher geht es mit
Musikprogrammen wie jenen aus der
eJay-Reihe. Anstatt wie bei Tracker die
Noten für einzelne Instrumente anzuge-
ben, fügen Sie hier vorgefertigte Klang-
bausteine zu einem Musikstück zusam-
men. Dabei stehen Ihnen mehrere
Kanäle zur Verfügung, in denen Sie mit
automatischer Positionierungshilfe per
Drag&Drop die Klänge aus einer Aus-
wahl von mehreren hundert Samples an-
einanderreihen können.

Abhängig vom gewählten eJay-Pro-
gramm, das es für die Musikrichtungen
Rave, Dance und Hip-Hop gibt, können
Sie weitere Effekte und eigene Klang-
bausteine hinzufügen. Mit solch einem
Programm erzielen Sie in kürzester Zeit
beeindruckende Ergebnisse, die Sie als
wav-Datei speichern.

Wie Sie bereits wissen, benötigen
wav-Dateien im Vergleich zu mid-,
mod- oder xm-Dateien relativ viel Spei-

FUNKTIONEN DER MIDAS-SOUND-BIBLIOTHEK
Wenn Sie die Datei midasdll.lib in Ihre De-
mo linken und die zugehörige Header-Da-
tei einbinden, stehen Ihnen folgende Be-
fehle und Datentypen zur Verfügung, mit
denen Sie bereits das Abspielen starten
können:

MIDASmodule module;
MIDASmodulePlayHandle

playHandle;

//Startet MIDAS und ini-
//tialisiert die Soundausgabe
MIDASstartup();
MIDASinit();

//Legt fest, daß MIDAS auto-
//matisch im Hintergrund läuft
MIDASstartBackgroundPlay(0);

//Lädt die xm-Datei
module =

MIDASloadModule("musik.xm");

//Beginnt das Abspielen
playHandle =

MIDASplayModule(module,TRUE);

//Hier kann Ihr Programm wie
//bisher ablaufen

//Abspielen stoppen und
//Speicher freigeben
MIDASstopModule(playHandle);
MIDASfreeModule(module);

//Beendet MIDAS
MIDASclose();

MACHT SPASS: Mit Rave-eJay schaffen Sie die Grundlagen für
Ihre spätere D.J.-Karriere.

PC Magazin Dezember 1998 253

P C U N D E R G R O U N D
P R A X I S

cherplatz. Abhilfe könnte das MP3-Mu-
sikformat schaffen, das hervorragende
Kompressionsraten erzielt. Allerdings
ist es nicht so einfach, dieses Format wie-
der abzuspielen, und es gibt auch keine
frei erhältlichen Bibliotheken.

Deshalb reduzieren Sie die Da-
tenmenge mit anderen Mitteln. Der erste
Schritt ist die Wahl einer niedrigeren
Sample-Frequenz, da Sie für eine Demo
nicht die volle CD-Qualität benötigen.
Außerdem brauchen Sie für gute Ergeb-
nisse nicht unbedingt 16 Bit je Sample-
Wert. Oftmals sind 8 Bit aber zu wenig.

Um diesem Dilemma zu entgehen,
nutzen Sie eine Eigenschaft des mensch-
lichen Hörapparates aus: Das Ohr
nimmt bei leisen Klangpassagen kleinere
Unterschiede der Lautstärke wahr als bei
lauten. Also verwenden Sie bei niedrigen
Amplituden präzisere Sample-Werte,
während Sie sich bei hohen Amplituden
ungenaue Werte leisten können.

Wenn eine Soundkarte die Amplitude
a in den Sample-Wert s überführt, wan-
delt sie 2*a in 2*s um. Es besteht also ein
linearer Zusammenhang zwischen der
Amplitude und dem Sample-Wert, das
heißt die Genauigkeit eines Sample-
Wert-Schrittes entspricht immer dersel-
ben Änderung der Amplitude. Um sich
nun die Schwächen des Menschen beim
Hören zunutze zu machen, verwenden
Sie statt einer linearen Skala eine nichtli-
neare. So können Sie zum Beispiel 16-
Bit-Werte in nichtlineare 8-Bit-Werte
umwandeln und erhalten ein deutlich
besseres Ergebnis als normalerweise bei
8 Bit. Ausgehend von einem unsigned
16-Bit-Sample-Wert errechnen Sie den
neuen nichtlinearen Wert aus

nichtlinearer_wert =
➥ 255.0*(pow(2.0,
➥ samplewert/65536.0)-1.0);

Mit dieser einfachen Formel reduzieren
Sie den Umfang der wav-Daten deutlich,
ohne einen großen Verlust an Klangqua-
lität hinzunehmen.

Bevor Sie die Daten wieder abspielen,
müssen Sie diese natürlich zurückkon-
vertieren. Dies geschieht mit einer einfa-
chen Formel:

samplewert =
➥ 65535.0*log10(1.0+wert/
➥ 256.0)/log10(2)-32767.0;

Die Variable samplewert ist hier 16 Bit
signed.

Sind Sie mit dem bisherigen Ergebnis
noch nicht zufrieden, wenden Sie einen
sogenannten Low-Pass-Filter auf die
zurückkonvertierten Sample-Daten an.
Dieser Filter schwächt die Lautstärke

von Klängen, deren Frequenzen über ei-
ner gewissen Grenzfrequenz liegen,
deutlich ab.

Ein Klang ist – in der Realität – immer
eine Mischung aus vielen verschiedenen
Frequenzen. Das Rauschen allerdings,
das Sie bei den Samples hören, besteht
hauptsächlich aus hohen Frequenzen,
die sie mit diesem Filter eliminieren.

Den denkbar einfachsten Low-Pass-
Filter erhalten Sie, indem Sie den Mittel-
wert jeweils zweier Sample-Werte bil-
den:

for (i=1;i<anzahl_werte;i++)
➥wert[i] =
➥(wert[i]+wert
➥[i-1])/2;

Als letzter Punkt ist noch die Wiederga-
be über Ihre Soundkarte zu klären. Für
wav-Dateien steht
Ihnen unter Win-
dows die PlaySound-
Funktion zur Verfü-
gung, die Sie aller-
dings aus mehreren
Gründen in Demos
nicht verwenden soll-
ten. Beispielsweise
haben Sie damit nicht
die Möglichkeit, an
einer bestimmten
Stelle die Sound-
ausgabe anzuhalten
und sie danach wieder
fortzusetzen.

Außerdem können
Sie nicht feststellen,
an welcher Position
innerhalb der Sam-
ple-Daten Sie sich be-
finden. Genau dies brauchen Sie aber,
um die seit Abspielbeginn verstrichene
Zeit zu berechnen und damit die Syn-
chronisation mit Ihrer Demo zu ge-
währleisten.

Sie verwenden also besser das Wave-
form Audio Interface von Windows. Es
stellt die nötigen Funktionen zur Verfü-
gung, um beliebige wav-Daten abzu-
spielen.

Sie können auch bestimmte Teile eines
Sample mit dem WaveOut-Device loo-
pen, also mehrmals abspielen. So redu-
zieren Sie die Datenmenge erneut, da Sie
identische Passagen eines Musikstücks –
in der Praxis ein häufiger Fall – nur ein-
mal speichern.

Um die Wiedergabe vorzubereiten,
übergeben Sie der Funktion waveOut-
Open eine Waveformatex-Struktur.
Dort tragen Sie die von Ihnen ge-
wünschten Parameter für die Soundaus-

gabe ein. Das geeignete Multimedia-
Gerät sucht sich waveOutOpen dann
selbständig:

WAVEFORMATEX format;
HWAVEOUT wavehandle;
WAVEHDR wheader;

// ungepackte Sample-Daten
format.wFormatTag =

WAVE_FORMAT_PCM;
// Monoausgabe
format.nChannels = 1;
// Sampling-Frequenz
format.nSamplesPerSec = 22050;
// Bytes pro Sekunde
format.nAvgBytesPerSec = 22050*2;
format.nBlockAlign = 2;

// 16 Bits pro Sample
format.wBitsPerSample = 16;
format.cbSize = 0;

waveOutOpen(&wavehandle,
WAVE_MAPPER,&format,0,0,0);

Nun haben Sie mit wavehandle das rich-
tige Ausgabegerät. Anschließend berei-
ten Sie den Datenblock vor, der an die
Soundkarte geschickt werden soll:

// Zeiger auf die Sample-Daten
wheader.lpData =

(char*)wave16bit;
// Größe des Datenblocks/Byte
wheader.dwBufferLength = size;
wheader.dwBytesRecorded = 0;
wheader.dwUser = 0;
wheader.dwFlags = 0;
wheader.dwLoops = 0;

waveOutPrepareHeader(
wavehandle,&wheader,
sizeof(wheader));

Damit ist die Soundausgabe initialisiert.
Den Startschuß zum Abspielen geben
Sie mit folgender Zeile:

waveOutWrite(wavehandle,
&wheader,sizeof(wheader));

Um Ihre Demo zu jedem Zeitpunkt mit
der gewünschten Musik zu synchroni-
sieren, holen Sie mit der Zeile q

UNSER MOD-PLAYER ist für die aktuelle Statusanzeige im Fen-
ster verantwortlich.

254 Dezember 1998 PC Magazin

P C U N D E R G R O U N D
P R A X I S

MMTIME mmtime;
waveOutGetPosition(wavehandle,

&mmtime,sizeof(mmtime));

die aktuelle Abspielposition ein, aus der
Sie dann die verstrichene Zeit seit Sam-
ple-Beginn berechnen. Sie können die
Zeit auch mit Hilfe der Funktion Get-
DemoTime() aus der Basisbibliothek be-
stimmen, allerdings sollten Sie diese
Funktion nur bei kürzeren wav-Stücken
verwenden. Auf der Heft-CD finden Sie
eine vollständige Demo, die ein kompri-

miertes Sample lädt und dazu synchro-
nisiert einige Effekte der letzten Ausga-
ben demonstriert.

Auch für dieses Programm benötigen
Sie die demoquit()-Funktion zum Been-
den der wav-Ausgabe:

waveOutReset(wavehandle);
waveOutUnprepareHeader(

wavehandle,&wheader,
sizeof(wheader));

waveOutClose(wavehandle);

Nun haben Sie alle Werkzeuge in der
Hand, um Ihre eigene Demo mit allem

Drum und Dran zu schreiben. Seien Sie
kreativ: Wir sind gespannt auf Ihre Re-
sultate! s P E I / J R

Die Heft-CD enthält das Programm FastTracker II,
die MIDAS-Sound-Bibliothek sowie die vollständi-
ge PC Underground Demo. Download-Angebote
zum Artikel finden Sie auch in unserem Internet-
Angebot unter

www.pc-magazin.de/magazin/
➥extras.htm

Klicken Sie in der Tabelle Online Extras unter Pra-
xis auf das entsprechende Download-Feld.

main.cpp

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:

#include "midasdll. h"
#include "demo. h"

unsigned short *screen;

// Wird benîtigt, um den Fenstertitel zu Ñndern
extern HWND DemoHWND;

// MIDAS-spezifische Deklarationen
extern void InitMIDAS(void);
extern void CloseMIDAS(void);
extern void StartupMIDAS(void);
extern MIDASmodulePlayHandle PlayModule(MIDASmodule
module);

extern MIDASmodule LoadModule(char *fileName);
extern void StopFreeModule(MIDASmodulePlayHandle
playHandle,MIDASmodule module);

MIDASmodule module;
MIDASmodulePlayHandle playHandle;
MIDASmoduleInfo info;
MIDASplayStatus status;

// Variablen fÅr unseren kleinen Module-Player
short palette1[32][256];
bitmaptype background;
unsigned char *back;
unsigned short *back16;
short palette2[32][256];
bitmaptype zahlen;
unsigned char *zahl;

BOOL demoinit (void)
{
Fenster_Modus = FENSTER;

// Speicher fÅr das Bild reservieren
screen = (unsigned short *)malloc(SCREEN_X*SCREEN_Y*2);
if (screen == NULL) return 0;
memset(screen,0,SCREEN_X*SCREEN_Y*2);

// Hintergrundbild und Zahlen-Bild laden
if (bmp_load("HINTERGRUND. BMP",background) ! =
BMP_NOERROR) return 0;

if (bmp_load("ZAHLEN. BMP",zahlen) ! =
BMP_NOERROR) return 0;

bmp_make16bitpalette(background);
bmp_make16bitpalette(zahlen);

back = (unsigned char *)background. cBitmap;
zahl = (unsigned char *)zahlen. cBitmap;

// Hintergrundbild einmalig in Hicolor Umwandeln
back16 = (unsigned short *)malloc(320*240*sizeof(short));
if (back16 == NULL) return FALSE;
for (int ofs = 0; ofs<SCREEN_X*SCREEN_Y; ofs ++)
back16[ofs] = background. sColors[back[ofs]];

// MIDAS starten,initialisieren und Module laden
StartupMIDAS();
InitMIDAS();
module = LoadModule("test. s3m");

return TRUE;
}

// Gibt eine Zahl aus
void write_single(int x,int y,int v)
{

74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:

int i,j;
int ofs = x+y*SCREEN_X;

for (j=0; j<14; j++)
{
for (i=0; i<10; i++)
{
int p = zahl[i+(j+v*14)*320];
if (p ! = 16) screen[ofs] = zahlen. sColors[p];
ofs++;

}
ofs += SCREEN_X-10;

}
}

// maximal 3-stellige Zahl ausgeben,
// x ist rechtsbÅndige Koordinate
void write_number(int x,int y,int v)
{
write_single(x-10,y,v%10);
v /= 10; if (v>0) write_single(x-20,y,v%10);
v /= 10; if (v>0) write_single(x-30,y,v%10);

}

void demomain(void)
{
// Modulenamen in den Fenstertitel !
MIDASgetModuleInfo(module,&info);

char text[128];
strcpy(text,"PC Underground: \"");
strcat(text,info. songName);
strcat(text,"\"");
SetWindowText(DemoHWND,text);

// Abspielen starten
playHandle = PlayModule(module);

// Hintergrundbild komplett kopieren
memcpy(screen,back16,320*240*2);

while (DemoRunning)
{
// Nur den Teil des Hintergrundbildes,
// der Åberschrieben wird, kopieren
for (int i=125; i<125+56; i++)
memcpy(screen+i*320+208,back16+i*320+208,30*2);

// Informationen holen
MIDASgetPlayStatus(playHandle,&status);

// Und darstellen
write_number(238,125,status. position);
write_number(238,146,status. pattern);
write_number(238,167,status. row);

BlitGraphic(screen);

// LÑ·t den Demotask 50ms warten
// Dies ermîglichst es, den Player
// im Hintergrund laufen zu lassen
Sleep(50);

}
}

void demoquit(void)
{
// Ausgabe beenden und MIDAS beenden
StopFreeModule(playHandle,module);
CloseMIDAS();

}

Der einfache Module-Player beherrscht viele Formate, darunter
MOD-, S3M- und XM-Dateien.

