
244 Januar 1999 PC Magazin

P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R /
N I L S P I P E N B R I N C K

In dieser Ausgabe von PC Under-
ground stellen wie Ihnen die soge-
nannte Voxelspace-Grafik vor. Vo-

xelspace ist ein Verfahren zur Darstel-
lung dreidimensionaler Objekte. Im Ge-

gensatz zur 3D-Engine aus den Ausga-
ben 8/98 und 9/98 basiert das Verfahren
aber nicht auf Polygonen, sondern auf
sogenannte Voxels (Volume-Elements),
aus denen sich das 3D-Objekt zusam-
mensetzt. Sie können sich ein Voxel ein-
fach als Miniquader vorstellen, denn es
ist gewissermaßen das dreidimensionale
Pendant eines Pixels (Picture-Element).

Es gibt sehr unterschiedliche Anwen-
dungen für Voxelspace. In der Medizin
wird das Verfahren zum Beispiel einge-
setzt, um Daten eines Kernspintomo-
graphen zu visualisieren. Eine andere
Möglichkeit kennen Sie vielleicht aus
PC-Spielen, zum Beispiel dem Hub-
schraubersimulator Comanche. Hier
werden Voxels verwendet, um eine

Landschaft darzustellen. Und genau die-
se Variante stellen wir Ihnen in dieser
Ausgabe vor.

Wenn Sie ein dreidimensionales Ob-
jekt mit Voxels darstellen, verwenden
Sie dazu ein dreidimensionales Array
von Werten. Jeder Eintrag in diesem Ar-
ray hält zunächst fest, ob sich an der ent-
sprechenden Stelle überhaupt ein Voxel

befindet. Ist ein Voxel
vorhanden, enthält
der Eintrag darüber
hinaus zusätzliche In-
formationen, zum
Beispiel die Farbe des
Voxel.

Die Berechnung ei-
nes Bilds erfolgt, in-
dem für jeden Pixel
am Bildschirm ermit-
telt wird, welcher Vo-
xel des Objekts dem
Betrachter am näch-
sten ist. Leider führt
dieses Verfahren auch
bei relativ einfachen
Objekten sehr schnell
zu einer immensen
Datenmenge. Wir

zeigen Ihnen, wie Sie dieses Hindernis
mit einem kleinen Trick umgehen.

■ Landschaft erfassen
Stellen Sie sich einen Landschaftsaus-
schnitt aus der Vogelperspektive vor.
Wenn Sie ein gedachtes Gitter über den
Ausschnitt legen, können Sie für jedes
einzelne Feld im Gitter eine Farbe und
eine Höhe der Landschaft angeben. Die-
se Daten reichen schon aus: Sie bilden
diese Landschaft durch Voxels nach, die
auf einer Ebene stehen, und zwar nur
mit der Grundfläche eines Gitterfelds
und der angegebenen Höhe und Farbe.

Die Daten speichern Sie als Bitmaps.
Die erste Bitmap, die Heightmap, ent-
hält für jede Position (x,y) die Höhe der

Landschaft bzw. die Höhe des Voxel,
das sich an dieser Position befindet. Die
zweite Bitmap enthält die dazugehörige
Farbe. Sie generieren solche Land-
schaftsdaten entweder selbst mit Pho-
toshop oder ähnlichen Bildbearbei-
tungsprogrammen, oder Sie verwenden
unsere Beispiele auf der Heft-CD.

Wenn Sie sich auf Landschaften mit
einer Größe von 256 x 256 oder
512 x 512 Pixeln beschränken, hält sich
die Datenmenge in Grenzen. Diese Auf-
lösungen reichen für eine Demo auch
vollkommen aus, da in Demos und Bei-
spielprogrammen fast immer seamless-
Texturen, das heißt beliebig aneinander-
reihbare Texturen, verwendet werden.
Die Kantenlängen der Bitmaps berech-
nen Sie mit 2n, um eine möglichst
schnelle Berechnung im Programm zu
gewährleisten.

■ Bild berechnen
Um das endgültige Bild zu berechnen,
müßten Sie für jeden Bildpunkt eine
Sichtbarkeitsprüfung durchführen, um
herauszufinden, welcher Voxel sichtbar
ist. Eine solche Sichtbarkeitsprüfung
wird mit dem sogenanntem Raycasting
durchgeführt: Sie schießen einen Strahl
von der Betrachterposition durch das Pi-
xel des Bilds und durch den Voxelspace,

Demo-Programmierung unter Windows 95/NT

Frei wie ein Vogel
Den Grand Canyon und die Schluchten der Ozeane bereisen Sie heute schon
virtuell am Bildschirm. Wie Sie Ihre eigene Cyberwelt mit Hilfe des Voxel-
space schaffen, zeigt Ihnen dieser Beitrag.

WEISS-BLAUER HIMMEL, grüne Landschaft, schneebedeckte
Gipfel – mit Voxelspace zur PC-Idylle

GRENZENLOSE FREIHEIT: durch Wüsten
und Täler zur nächsten Oase

PC Magazin Januar 1999 245

P C U N D E R G R O U N D
P R A X I S

bis Sie einen Voxel getroffen haben oder
der Strahl eine bestimmte maximale
Suchstrecke zurückgelegt hat, bei der Sie
die Berechnung abbrechen.

Bei einer Auflösung von 320 x 240
Punkten wären das 76 800 Operationen,
die allesamt sehr viel Rechenzeit kosten.
Dies wäre ohne sehr komplizierte Ver-
fahren und entsprechend kleinliche As-
sembler-Optimierung nicht in Echtzeit
möglich. Wenn Sie aber die Möglichkei-
ten der Betrachterposition und des -
blickwinkels etwas einschränken, brau-
chen Sie im Prinzip nur einen einzigen
Ray (Strahl) pro Bildschirmspalte aus-
zuwerten.

Zuerst berechnen Sie, wie die Strahlen
verlaufen. Nehmen Sie für den Anfang
an, der Betrachter, der über diese Land-
schaft fliegt, blickt immer waagerecht,
das heißt nicht nach unten und nicht
nach oben.

Im Bild rechts sehen Sie einen Land-
schaftsausschnitt aus der Vogelperspek-
tive. Darauf sind die Betrachterposition
und der Kegel des sichtbaren Bereichs
eingezeichnet. Der Kegel hat einen vor-
her festgelegten Öffnungswinkel, der
dem Öffnungswinkel der virtuellen Ka-
mera entspricht.

In diesem Kegel befinden sich in kon-
stanten Winkelabständen die Strahlen,
die Sie schießen. In Wirklichkeit sind es
natürlich deutlich mehr, als in dieser Ski-
zze eingezeichnet sind (wie bereits er-
wähnt, ein Strahl pro Bildschirmspalte).
Diese Strahlen geben Sie durch einen
Startpunkt (Ortsvektor) und einen
Richtungsvektor an.

Da Sie sich im Moment noch im Zwei-
dimensionalen befinden, hat jeder dieser
Vektoren zwei Komponenten. Daß die-
se Komponenten in Fixpoint-Arithme-
tik gespeichert werden, haben Sie sicher
schon geahnt. Der Startpunkt ist die Po-
sition der Betrachterkamera und somit
für alle Strahlen konstant. Den Rich-
tungsvektor erhalten Sie für einen be-
stimmten Blickwinkel mit Hilfe der Si-
nus- und der Cosinus-Funktion:

delta_x = cos(winkel)*FIXPOINT;
delta_y = sin(winkel)*FIXPOINT;

Da die Sinus- bzw. Cosinus-Funktionen
der meisten Prozessoren sehr langsam
sind, verwenden Sie statt dessen vorbe-
rechnete Funktionswerte in einer Tabel-
le. Die Schleife, die für jede Spalte des
Bildschirms die Richtungsvektoren be-
rechnet, sieht dann – mit Hinzunahme
der Parameter für den Öffnungs- und
Blickwinkel des Betrachters – folgender-
maßen aus:

for (x = 0; x < SCREEN_X; x++)
{

//Abweichung vom Blickwinkel
//für diese Spalte:
winkel = (OEFFNUNGSWINKEL *

(SCREEN_X - x * 2)) /
➥SCREEN_X;

// Werte aus den Tabellen
//auslesen:
delta_x = COS

➥(blickwinkel + winkel);
delta_y = SIN

➥(blickwinkel + winkel);
//an dieser Stelle wird die
//Funktion aufgerufen,die eine
//Bildschirmspalte zeichnet

}

Damit haben Sie die Richtung der Strah-
len im Zweidimensionalen bestimmt

und können somit die ersten Bilder be-
rechnen.

■ Raycasting einsetzen
Das nächste Problem, das Sie lösen, ist
die Strahlenverfolgung. Dabei stellen Sie
fest, welcher Voxel von einem dieser
Strahlen getroffen wird. An dieser Stelle
haben Sie bereits das delta_x und das
delta_y für den Strahl bestimmt und
wählen noch eine (vorläufig) feste Flug-
höhe z.

Außerdem kennen Sie die Startpositi-
on (x/y) des Strahls. Sie addieren jetzt
delta_x auf x und delta_y auf y und prü-
fen jeweils, ob der Voxel an der Position
(x/y) höher als oder gleich hoch wie die
Flughöhe ist. Haben Sie einen solchen
Voxel gefunden, müssen die dahinter lie-
genden Voxels, um sichtbar zu sein,
natürlich nicht nur höher als die Flug-
höhe, sondern auch höher als die bisher
gefundenen Voxels sein.

Damit diese Schleife nicht ewig läuft
und auch um den Fall abzufangen, daß
ein Strahl nie einen Voxel trifft, verwen-
den Sie zusätzlich einen Zähler, den Sie
nach jedem Schleifendurchlauf inkre-
mentieren. Wenn dieser Zähler einen be-

stimmten, vorher festgelegten Wert
überschreitet, brechen Sie die Schleife
ab. Dieser Wert bestimmt also auch die
Entfernung, bis zu der Voxels sichtbar
sind. Prinzipiell sieht das Raycasting fol-
gendermaßen aus:

entf = 0;
z = 100; //Flughöhe
while (entf++ < MAX_ENTF)

{
x += delta_x;

y += delta_y;
if (hoehe[x,y] >= z)
{

// Voxel getroffen!
z = hoehe[x,y];

}

}

Mit dieser Routine berechnen Sie natür-
lich keine zufriedenstellenden Bilder, die
einen Eindruck einer perspektivischen
Darstellung der Landschaft vermitteln.
An dieser Stelle kommt unser angekün-
digter Trick ins Spiel. Das Auf- und Ab-
blicken, das heißt die Neigung der Be-
trachterkamera, drücken Sie durch ein
delta_z aus, das Sie nach jedem Rayca-
sting-Schritt zur Flughöhe addieren.
Außerdem erhöhen Sie den entf-Wert
nicht um 1, sondern um eine Variable ph.
Zusätzlich deklarieren Sie eine Konstan-
te VSCALE, mit der Sie die vertikale
Skalierung der Landschaft festlegen.

Wenn Sie in der Schleife einen Voxel
erreichen, dessen Höhe größer als der
momentane z-Wert ist, dann erhöhen
Sie delta_z um VSCALE und z um ph,
solange dies der Fall ist. Bei der Berech-
nung einer Spalte des Bilds starten Sie bei
dieser Routine in der untersten Zeile.

Die Pixel zeichnen Sie ebenfalls in die-
ser Schleife, indem Sie den aktuellen Pi-
xel auf die Farbe des getroffenen Voxels
setzen und die nachfolgende Pixel-Ko-
ordinate auf den Pixel darüber setzen.
Wenn Sie die oberste Zeile des Bilds
überschritten haben, brechen Sie die Be-
rechnung dieser Bildschirmspalte ab.
Die fertige Routine zum Zeichnen sieht
dann folgendermaßen aus:

while (ph < MAX_ENTF*VSCALE)
{

y += dy;
x += dx;
z += dz;
ph += VSCALE;

h = hoehe[x,y];

// Schnittpunkt ?
if (h > z)
{

c = farbe[x,y];
do
{

// Steigung erhöhen
dz += VSCALE;
screen[pixel] = c;
z += ph; q

IM RAYCASTING-VERFAHREN überprüfen
Sie, ob ein Voxel sichtbar oder verdeckt ist.

246 Januar 1999 PC Magazin

P C U N D E R G R O U N D
P R A X I S

pixel -= SCREEN_X;
if (pixel < 0) return;

} while (h > z);

}
}

Allerdings ist diese Methode mathema-
tisch nicht ganz korrekt. Sie liefert aber
für Neigungen, die nicht zu groß sind
(ca. bis +/- 45° nach oben und unten),
akzeptable Ergebnisse. Und Sie wissen
ja, der Zweck heiligt bekanntlich die
Mittel.

■ Hintergrund berechnen
Nun sind Sie so weit, daß Sie eine Voxel-
Landschaft darstellen können. Aber was
wäre eine idyllische Landschaft ohne
entsprechenden Himmel?

Für den Himmel benutzen Sie eine
Textur, die Sie entsprechend der Kame-
rabewegung am Bildschirm verschieben.
Die Textur sollte natürlich seamless, das
heißt beliebig aneinanderreihbar sein,
um sie mehrmals nebeneinander zeich-
nen zu können.

Die Verschiebung entlang der x-Ach-
se berechnen Sie aus dem Blickwinkel
der Kamera. Die Verschiebung nach
oben bzw. unten erhalten Sie aus dem
Neigungswert der Kamera.

Die Himmel-Textur, die Sie in den
Beispielprogrammen zu diesem Artikel
auf der Heft-CD finden, wurde übrigens
mit Hilfe von prozeduralen Texturen
mit dem Shareware-Raytracer POVRay
berechnet. Sie erzeugen solche Texturen
auch mit der Routine für fraktale Plas-
mawolken und den Verzerrungen aus
PC Underground der Ausgabe 10/98.

■ Nebel einbauen
Ein weiteres hübsches Feature, das Sie
Ihrem Voxel-Programm hinzufügen
können, ist das sogenannte Fogging

(Nebel). Hierbei werden die Farben der
Voxels je nach Entfernung vom Be-
trachter mit weißer Farbe gemischt.

So geben Sie der Landschaftsdarstel-
lung ein weitaus realeres Aussehen.
Außerdem vermeiden Sie einen stören-
den Effekt in der Darstellung: Bei der
Berechnung des Raycasting müssen Sie
die Suchschleife nach einer gewissen
Strecke abbrechen, entweder weil der
Strahl keinen Voxel trifft oder weil Sie
einfach nicht genug Rechenzeit zur Ver-
fügung haben, den Strahl sehr lange Zeit
zu verfolgen.

Durch das Abbrechen des Raycasting
kann es passieren, daß hohe Berge plötz-
lich in einiger Entfernung des Betrach-
ters aus dem Boden herauszuwachsen
scheinen. Sie programmieren das Fog-
ging dann so, daß die Voxels, die die ma-
ximale Entfernung vom Betrachter ha-
ben, beinahe weiß sind. Dann tauchen
die Berge aus dem Nebel heraus auf, statt
im Hintergrund in die Höhe zu
sprießen.

Sie programmieren das Fogging, in-
dem Sie der Schleife für das Raycasting
eine Variable hinzufügen, die die Anzahl
der Durchläufe enthält. Zudem legen Sie
eine Shading-Tabelle an, die für jede
Entfernung und jede Farbe der Land-
schafts-Bitmap die Mischfarbe mit Weiß
enthält. Diese Tabelle berechnen Sie
zum Beispiel so wie im Listing-Teil die-
ses Artikels.

Übrigens: Ohne großen Aufwand im-
plementieren Sie auch eine Drehung der
Kamera um die eigene Achse. Hierzu
sollten Sie die Ausmaße des berechneten
Voxel-Bilds auf 256 x 256 ändern und
dieses Bild als Textur für den Rotozoo-
mer aus Ausgabe 11/98 verwenden.

■ Landschaften generieren
Neue Landschaften zu generieren erfor-
dert ein bißchen Übung. Wir zeigen Ih-
nen deshalb, wie eine unserer Beispiel-
landschaften erzeugt wurde.

Als Software haben wir das bekannte
Bildbearbeitungsprogramm Photoshop
von Adobe benutzt. Photoshop ist durch
die vielen Filterfunktionen perfekt für
Ihre Aufgabe gerüstet. Da fast alle neue-
ren Bildbearbeitungsprogramme die ent-
sprechenden Fähigkeiten besitzen, kön-
nen Sie dieses Beispiel auch mit anderen
Programmen nachvollziehen.

Zunächst erzeugen Sie eine Graustu-
fen-Bitmap mit den Maßen 256 x 256 Pi-
xel. Diese Bitmap wird Ihre Höhen-Bit-
map. Um eine gute Landschaftsstruktur
zu bekommen, wählen Sie als Zeichen-

farbe Weiß und als Hintergrundfarbe
Schwarz.

Über das Menü Filter/Rendering Fil-
ter/Wolken lassen Sie Photoshop die
Grundstruktur Ihrer Landschaft berech-
nen. Rufen Sie zudem mehrfach den Fil-
ter Differenz Wolken aus dem gleichen
Menü auf. Damit bekommen Sie zusätz-
liche feine Strukturen in Ihrer Land-
schaft. Speichern Sie dieses Bild, denn Sie
brauchen es später noch, um der Land-
schaft den letzen Schliff zu geben.

Diese Bitmap sieht noch nicht sehr
realistisch aus. Es fehlen Wasserflächen,
Niederungen und Hochplateaus, die Sie
im nächsten Schritt hinzufügen.

Als erstes ist es nötig, den ganzen
Wertebereich der Graustufen-Bitmap
auszunutzen, um einen geeigneten Wer-
tebereich für die Voxel-Berechnung zu
erhalten. Das erledigen Sie mit der Funk-
tion Auto-Tonwertkorrektur, die Sie im
Menü Bild/Einstellungen finden.

Jetzt folgt die Generierung der Hoch-
plateaus und Wasserflächen: Über die
Graduierungskurve im gleichen Menü
bearbeiten Sie die Verteilung der Grau-
stufen. Wählen Sie als Werkzeug den
Stift, und zeichnen Sie Bereiche gleicher
Höhe durch horizontale Linien ein.

Wenn Sie mit der Höhen-Bitmap fertig
sind, ändern Sie über die Helligkeit-Kon-
trast-Regelung noch das Höhenniveau,
falls Ihre Berge zu hoch sind. Sind Ihre
Berge zu spitz und zackig, dann spielen
Sie am besten so lange mit den Weich-
zeichnungsfiltern, bis Sie zufrieden sind.

Laden Sie nun die Bitmap, die Sie vor-
her gespeichert haben. Diese Grafik ver-
wandeln Sie durch einfaches Einfärben
und Nachbearbeiten in eine sehr realisti-
sche Landschafts-Textur.

Mit Hilfe des Paletteneditors im Menü
Bild/Modus/Farbtabelle färben Sie Ihre

OHNE LICHTEFFEKTE sieht die Landschafts-
Textur noch nicht sehr aufregend aus.

DIE VERTEILUNG DER GRAUSTUFEN für ei-
ne Wasseroberfläche bearbeiten Sie mit
einer Graduierungskurve.

PC Magazin Januar 1999 247

P C U N D E R G R O U N D
P R A X I S

Textur ein. Von Hochgebirgen bis hin
zu Fantasielandschaften ist alles mög-
lich. Wir haben uns in den Beispielen
eher konservativ an der Natur orientiert:
Die Wasserflächen sind blau, die Berge
grau mit weißen, schneebedeckten Gip-
feln und dazwischen ein wenig Braun-
und Grüntöne für Sand und Gras-
flächen.

Jetzt zum Feinschliff: Wandeln Sie Ihr
Bild mit Bild/Modus/RGB-Farbe in das
RGB-Format um. Fügen Sie dem Bild
etwas Rauschen hinzu, um der Land-
schaft mehr Realismus zu verleihen. Was
jetzt noch fehlt, sind Lichteffekte, die
Sonneneinstrahlung und Schattenwurf
der Berge simulieren. Dank der Rende-
ring-Filter von Photoshop ist dies denk-
bar einfach.

Laden Sie Ihre Höhen-Bitmap, und
stellen Sie sicher, daß die Bitmap als
Graustufen-Bitmap vorliegt. Photoshop
hat nämlich die unangenehme Eigen-
schaft, bmp-Dateien immer als palettier-
te Bilder zu laden, auch wenn gar keine
Farben benutzt wurden.

Die Ebene Ihrer Höhen-Bitmap wird
nun dupliziert und in die Textur-Bitmap
eingefügt. Öffnen Sie hierzu die Ebe-
nen-Toolbox, und wählen Sie die Ebene
aus. Die Funktion zum Duplizieren ru-
fen Sie über die rechte Maustaste ab.
Sollten Sie die Ebenen-Toolbox nicht
finden, ist diese vermutlich ausgeblen-
det. Sie finden sie im Menü Fenster/Ebe-
nen einblenden. Die duplizierte Ebene
wird Ihnen als Relief-Kanal für die Be-
leuchtung dienen. Rufen Sie hierzu den
Filter Filter/Rendering/Beleuchtungsef-
fekte auf. Als Relief-Kanal wählen Sie
den neuen Kanal der Höhen-Bitmap.
Zum Start empfehlen wir eine diffuse
Lichtquelle.

Nun können Sie mit den Reglern ex-
perimentieren, bis Sie ein ansprechendes
Resultat erzielen. Durch die zahlreichen
Parameter dieses Filters ist es nicht
leicht, gleich am Anfang die optimalen
Ergebnisse zu erzielen. Aber mit ein
bißchen Übung bekommen Sie schnell
den richtigen Dreh.

Übrigens: Vertrauen Sie nicht blind
dem Vorschaufenster. In der Regel fallen
die Beleuchtungseffekte immer etwas
extremer aus. Wenn Sie fertig sind, ver-
gessen Sie nicht, Ihre Textur wieder auf
256 Farben zu reduzieren, um Sie im Vo-
xel-Programm verwenden zu können.

■ Keyframing optimieren
Im Beitrag zur 3D-Engine in Ausgabe
9/98 haben wir Ihnen gezeigt, wie Sie die

Kamerapositionen und alle Animations-
daten für eine angenommene Bildfre-
quenz speichern und wieder abspielen.
Dieses Verfahren glänzt durch seine
Einfachheit, hat aber einige entscheiden-
de Nachteile: Die Animation ist auf eine
bestimmte Bildfrequenz abgestimmt
und wird deswegen auf unterschiedli-
chen PCs auch unterschiedlich schnell
abgespielt. Es ist außerdem sehr schwie-
rig, die Kamerafahrt nachträglich zu än-
dern. Aus diesem Grund zeigen wir Ih-
nen hier eine verbesserte Variante des
Keyframings.

Sie legen dabei nicht mehr extra für je-
des Bild eine Kameraposition ab, son-
dern definieren diese Position nur noch
für einige Zeitpunkte. Mit ein wenig Ma-
thematik berechnen Sie die Zwi-
schenstufen.

Das Problem, eine weiche Kurve zwi-
schen einigen wenigen Stützwerten zu
berechnen, ist nicht neu und wurde von
vielen Mathematikern behandelt. Sehr

nützlich für die Computergrafik hat sich
dabei die Familie der kubischen Splines
erwiesen. Diese Splines berechnen den
Kurvenverlauf zwischen zwei Stützwer-
ten, indem eine Funktion dritten Grades
aus den gegebenen Werten berechnet
wird. Diese Funktion benutzen Sie, um
Werte zwischen den Keyframes zu be-
rechnen.

Es gibt eine ganze Menge verschiede-
ner kubischer Splines. Vermutlich haben
Sie sogar schon mit kubischen Splines
gearbeitet, ohne es zu wissen: Die Run-
dungen und Bögen von TrueType-
Schriften und auch die Beziér-Kurven,
die von vielen Grafikprogrammen be-
nutzt werden, sind zum Beispiel solche
Kurven.

■ Hermite-Kurven
berechnen
Hermite-Kurven bestehen aus zwei
Punkten (Im Bild P1 und P2 genannt)
sowie aus zwei Vektoren (die Tangen-
ten), die Einfluß auf die Richtung der
Kurve haben, sobald die Kurve den
Startpunkt verläßt (T1) bzw. den End-
punkt erreicht (T2). Diese vier Werte ge-
ben Ihnen eine sehr gute Kontrolle über
den Verlauf der Kurve zwischen den
zwei Punkten.

Um einen Punkt dieser Kurve zu be-
rechnen, verwenden Sie die Formeln des
Mathematikers Hermite. Diese Funk-
tionen werden Hermite Basis Funktio-
nen genannt und lauten:

h1(t) = 2 * t^3 - 3 * t^2 + 1
h2(t) = -2 * t^3 + 3 * t^2
h3(t) = 1 * t^3 - 2 * t^2 + t
h4(t) = 1 * t^3 - 1 * t^2

Der Wert t bestimmt den Punkt der
Kurve, der berechnet werden soll. Der

Wert ist 0 für den Fall,
daß Sie am Anfang
der Kurve sind, und 1,
wenn Sie den End-
punkt berechnen. Al-
le Werte zwischen 0
und 1 berechnen die
erwünschten Zwi-
schenwerte.

Um einen Wert auf
dieser Kurve zu be-
rechnen, multiplizie-
ren Sie nur die Punk-
te und Tangenten mit
den vier Funktionen.

Für die Berech-
nung einer zweidi-
mensionale Kurve ge-
hen Sie so vor: Be-
rechnen Sie zuerst für

Ihren t-Wert die Funktionen h1, h2, h3
und h4. Wenden Sie anschließend fol-
gende Formeln an, um die Koordinaten
zu erhalten:

x = (h1 * P1.x) + (h2 * P2.x) +
➥(h3 * T1.x) + (h4 * T2.x);
y = (h1 * P1.y) + (h2 * P2.y) +
➥(h3 * T1.y) + (h4 * T2.y);

■ Mehrere
Kurvenabschnitte
Die Tangenten, die von den Hermite-
Kurven benötigt werden, sind nicht ge-
rade anschaulich. Sie sollen sich jedoch
das Erstellen der Keyframes so einfach
wie möglich machen. Es ist auch gar
nicht in Ihrem Interesse, daß die Kurven
extrem flexibel sind. Ein Knick an denq

AUF DIE BELEUCHTUNG kommt es an. Lichteffekte verstärken
den realen Eindruck.

248 Januar 1999 PC Magazin

P C U N D E R G R O U N D
P R A X I S

Stützwerten zum Beispiel würde bei ei-
nem Kameraflug nur störend wirken.

Wenn Sie mehr als einen Kurvenab-
schnitt haben, zum Beispiel bei einer
Abfolge von Kamerapositionen, berech-
nen Sie Tangenten, die diese Bedingun-
gen erfüllen. Die Tangentenformel für
die Cardinal Splines lautet:

T[i].x = a *
➥(P[i+1].x - P[i-1].x);
T[i].y = a *
➥(P[i+1].y - P[i-1].y);

Über die Konstante a stellen Sie ein, wie
weich der Übergang zwischen den Kur-
ven sein soll. Sinnvolle Werte für a liegen
zwischen 0 und 1. Cardinal Splines mit
dem a-Wert 0.5 haben übrigens einen ei-
genen Namen: Sie werden Catmull-
Rom Splines genannt. Und genau diese
Splines sind optimal für den Zweck, den
Sie hier verfolgen.

Die Tangenten-Formel hat einen klei-
nen Nachteil: Sie benötigen zum Be-
rechnen jeweils den vorherigen und den
nächsten Spline-Punkt. Für den ersten
und letzten Punkt funktioniert sie nicht.
In unserer Implementation wird die
Tangente für den ersten und letzten
Stützpunkt jeweils auf 0 gesetzt.

■ C++-Klasse einsetzen
Um Ihnen die Arbeit mit den Splines zu
erleichtern, finden Sie auf der Heft-CD
in dieser Ausgabe eine leicht zu benut-
zende C++-Klasse. Sie ist in der Lage,
die ganze Familie von Cardinal Splines
zu berechnen – und zwar für so viele
Stützwerte gleichzeitig, wie Sie wollen.
Die genaue Implementation finden Sie in

den beiden Quelltext-Dateien Spline.cpp
und Spline.h. Einen kleinen Beispiel-
Code, der die Verwendung der Klasse
demonstriert, zeigt Listing 1. Im kom-
pletten Quelltext zum Artikel befindet
sich außerdem noch ein zusätzliches
Beispielprogramm.

■ Splines einbauen
Das Einbauen der Splines in den Voxel-
space ist einfach. Zunächst einmal wer-
den für den Voxelspace Key-Informa-
tionen erzeugt, indem Sie eine Hand-
steuerung – ähnlich der eines Flugsimu-
lators – in das Programm einbauen.
Dann speichern Sie in regelmäßigen Ab-
ständen (zum Beispiel jede Sekunde) die
aktuelle Kameraposition in eine Datei.
Wenn Sie sich für diese Variante ent-

scheiden, führen Sie einige kleine Ände-
rungen im Demosystem durch.

Ein Tastendruck darf nicht mehr dazu
führen, daß das Programm beendet
wird. Dafür kommentieren Sie die Zeile

„case: WM_KEYDOWN“

in der Datei demosys.cpp aus (Funktion:
WindowProc). Jetzt fragen Sie die Tasten
ab. Sie verwenden dafür die Windows-
Funktion GetAsyncKeyState. Informa-
tionen zu dieser Funktion finden Sie in
der Hilfe zur Win32-API.

Die Auswertung der Keyframing-In-
formationen, die Sie in den Dateien
keys1.txt und keys2.txt finden, geschieht
mit der CardinalSpline-Klasse. Bei der
Initialisierung des Effekts wird ein
Spline erzeugt.

Die Datei wird zeilenweise ausgelesen
und die Informationen als Keyframes
der Spline-Klasse übergeben. Am An-
fang dieser Dateien geben Sie noch die
Landschafts- und Höhen-Bitmap sowie
die Anzahl der Spline-Stützwerte und
die Abspielgeschwindigkeit der Spline-
Interpolation an.

In der Funktion Lenkung werden für
den aktuellen Zeitpunkt die Kamerada-
ten interpoliert (Klassenmethode Cardi-
nalSpline::Get) und an die Voxelspace-
Routine übergeben. s J R

Die komplette Demo, alle Quelltexte und die C++-
Klasse zur Berechnung der Cardinal Splines finden
Sie auf unserer Heft-CD und im Internet-Angebot
des PC Magazin unter

www.pc-magazin.de/magazin
➥extras.htm

Klicken Sie unter Online Extras im Menü Praxis auf
das entsprechende Download-Feld.

1 Fog

1:
2:
3:
4:
5:
6:
7:
8:

9:

10:

11:

// Entfernung 0 bis 31
// cmap ist das Landschaftsfarbbitmap
for (int j = 0; j < 32; j++)
for (int i = 0; i < 256; i++)
{

entf = j*j/32;
fogtable[i][j] =

ColorCode((cmap. cColors[i*4+0]*(32-entf)+
entf*256)/32,

(cmap. cColors[i*4+1]*(32-entf)+
entf*256)/32,

(cmap. cColors[i*4+2]*(32-entf)+
entf*256)/32);

}

Mit diesem Listing erzeugen Sie die Fog-Tabelle

2 Spline

1:
2:
3:
4:
5:
6:
7:
8:
9:

// Tabelle mit X und Y Koordinaten eines 2D Splines

float splinedata[] = { 20, 70,
50, 20,
230, 20,
300, 160};

// Spline Erstellen:
// 2 Dimension (zweidimensional, also X und Y)

10:
11:
12:
13:
14:
15:
16:

17:

18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:

// 0. 5 ist die A-Konstante
// 4 ist die Anzahl der StÅtzwerte

CardinalSpline spline (2, 0. 5, 4);

// 4 StÅtzwerte setzen
// erster Parameter ist der Zeitpunkt bzw Framenummer des
StÅtzwertes
// zweiter Parameter ist ein Pointer auf die StÅtzwert-
Koordinaten

spline. set (0, &splinedata[0]);
spline. set (10, &splinedata[2]);
spline. set (20, &splinedata[4]);
spline. set (30, &splinedata[6]);

// Spline initialisiern, Tangenten berechnen.
spline. prepare();

// Kurve stÅckweise Berechnen:
for (int i=0; i<30; i++)
{

float data[2];
spline. get (i, data);
float x= data[0];
float y= data[1];
// Hier kann man die Werte benutzen und
// zum Beispiel Punkte setzen.
putpixel (x,y);

}

Mit diesem Listing berechnen Sie Splines

VIRTUAL REALITY: Erst durch das Zusam-
menspiel von Licht und Schatten treten
die Landschaftskonturen deutlich hervor.

