
214 Februar 1999 PC Magazin

P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R /
N I L S P I P E N B R I N C K

Spiele warten heutzutage mit faszi-
nierenden 3D-Grafiken auf. Spezi-
elle 3D-Grafikkarten stillen dabei

den Leistungshunger. Auch in dieser
Rubrik haben wir bereits eine einfache
3D-Grafik-Engine entwickelt, die wir
nun erweitern (letztes Update in Ausga-
be 9/98, ab S. 216). Wenn Sie nicht von
Anfang an dabei waren, finden Sie alle
bisher erschienenen PC-Underground-
Beiträge auf der Heft-CD.

Was genau versteckt sich hinter dem
Schlagwort 3D? Im Bereich der Compu-
tergrafik bedeutet 3D
meist nur, daß die
Grafikobjekte durch
dreidimensionale Ko-
ordinaten repräsen-
tiert sind. Spätestens
für die Ausgabe am
Monitor werden die
Daten auf die zwei-
dimensionale Bild-
schirmebene herun-
terprojiziert. Die Gra-
fik erscheint somit für
jedes Auge gleich. Ei-
nen dreidimensiona-
len Eindruck sugge-
rieren bestenfalls Bild-
merkmale wie die
Größe eines bekann-
ten Alltagsgegenstan-
des: Je kleiner er ist, um so weiter entfernt
erscheint er. Ebenso hebt sich auf Por-
traitfotos der unscharfe Hintergrund von
der aufgenommenen Person ab und trägt
so zum Eindruck von Tiefe bei.

Um ein virtuelles Objekt räumlich
wahrzunehmen, müssen Sie jedem Auge
ein eigenes Teilbild präsentieren. Da die
Augen bei den meisten Menschen etwa
sechseinhalb Zentimeter auseinander
liegen, unterscheiden sich die Teilbilder
dementsprechend in ihrem Kamera-
standpunkt. Wenn Sie beim Betrachten
Ihren Kopf zur Seite bewegen, ändert
sich Ihr Blickwinkel auf das Objekt
nicht – Sie sehen immer noch die glei-
chen Teilbilder. Daher heißt dieses Ver-
fahren auch „21/2D“ oder „Stereo-Se-
hen“, analog zum Musikgenuß aus zwei
Kanälen.

Diesem Manko begegnen Virtual-
Reality-Helme und Bewegungssenso-

ren. Damit können Sie Ihren Kopf frei
bewegen und sich interaktiv um ein Ob-
jekt herumbewegen: 3D par excellence.
Ein Computer muß nur die Bewegungs-
daten der Sensoren auswerten und die

dazu passenden Teilbilder errechnen.
Wir beschränken uns in diesem Artikel
auf die bereits sehr wirkungsvolle Ste-
reo-Betrachtung.

■ Rot + Grün = 3D
Da Shutter-Brillen (siehe Textbox auf S.
215) noch zu teuer sind und das Polari-
sationsverfahren nicht mit Monitoren
funktioniert, bietet sich die Rot-Grün-
Technik für einen Einbau in das Voxel-
programm (vgl. Ausgabe 1/99, ab S. 244)
und die 3D-Engine (vgl. Ausgaben 8/98,
ab S. 234 und 9/98, ab S. 216) an. Hier-
für berechnen Sie zwei unabhängige Bil-
der für beide Augen. Da die Echtfarben-
Darstellung ohnehin durch die Brille
verlorengeht, genügen Graustufen-Bil-
der. Die zwei Bilder unterscheiden sich
in den Positionen der betrachtenden vir-
tuellen Kameras. Sie verwenden also für
das linke Bild eine Kamera, die ein we-
nig nach links von der Betrachterpositi-
on verschoben ist, und für das rechte ei-
ne Kamera etwas rechts davon.

Um die beiden Bilder für die Ausgabe
auf dem Monitor geschickt zusammen-
zufügen, nutzen Sie die Eigenschaften
des im Demosystem verwendeten Farb-
modells aus. Mit zwei Shading-Tabellen
können Sie die darin enthaltenen Farb-
werte so plazieren, daß Sie jeweils nur
die Pixel der Einzelbilder mit einem bit-
weisen Oder verknüpfen müssen, um
den endgültigen Farbwert zu erhalten.

■ Voxelspace umrüsten
Das Voxelprogramm müssen Sie kaum
modifizieren. Sie fügen nur einige Zeilen
hinzu, um das fertige Programm im Pro-
jektverzeichnis VOXEL3D zu erhalten.

Legen Sie statt einer Shading-Tabelle
für den Nebeleffekt zwei Tabellen na-
mens fogtable_red und fogtable_green
an. Diese enthalten den Rot- und den
Grün-Wert für jede Voxel-Farbe und je-
de Schattierung. Die Berechnung ge-
schieht folgendermaßen:

for (int j=0; j<32; j++)
for (int i=0; i<256; i++)
{

value=j*j/32;
shade=(colormapbmp.cColors

[i*4+0]*(32-value))/32+
(colormapbmp.cColors
[i*4+1]*(32-value))/32+
(colormapbmp.cColors
[i*4+2]*(32-value))/32;

shade/=3;
fogtable_red[i][j]=

ColorCode(shade,0,0);
fogtable_green[i][j]=

ColorCode(0,shade,0);
}

Die Oder-Verknüpfung, mit der Sie
zwei Pixel für das endgültige Bild verar-

Demo-Programmierung unter Windows 95/NT

Rot-Grün in
Bewegung
Dank Stereo-Rendering nehmen Sie Objekte

räumlich wahr. Außerdem tunen Sie die 3D-Engine

durch schnelleres Clipping und Partikelsysteme.

MIT EINER ROT-GRÜN-BRILLE sieht das linke Auge ausschließ-

lich die grünen Farbanteile, das rechte Auge nur die roten.

PC Magazin Februar 1999 215

P C U N D E R G R O U N D
P R A X I S

beiten, bauen Sie direkt in die Zeichen-
routine des Voxelprogramms ein. Diese
einfache Lösung bietet sich an, da jeder
Pixel nur ein einziges Mal gezeichnet
wird. Sie ändern also in der Prozedur ca-
stray nur die Schleife, die die Pixel setzt:

void castray(int col,int horiz,
int delta_x,int delta_y,
int fogtable[256][32])

{
...
//Schnittpunkt
if (h>z)
{

c=fogtable[colormap8[ofs]]
[distance>3];

//Diese Schleife wird durch-
//schnittlich 2x durchlaufen
do
{

//Steigung erhöhen
delta_z+=VSCALE;
//Pixel mit OR setzen
screen[pixel]|=c;
//Z erhöhen

z+=ph;
//in nächsthöhere Bild-
//schirmzeile gehen
pixel-=SCREEN_X;
if (pixel<0) return;

} while (h>z);
}
...

}

Wie Sie der geänderten Prozedurdefini-
tion entnehmen, steht Ihnen innerhalb
der Prozedur castray die Shading-Tabel-
le für die Berechnung beider Bilder zur
Verfügung. Es fehlt nur noch die neue
Schleife, in der Sie die Position der Ka-
mera nach links und rechts versetzen.
Den Richtungsvektor für diese Ver-
schiebung berechnen Sie aus der
Blickrichtung. Da dieser Vektor zweidi-
mensional ist, erhalten Sie das ge-
wünschte Lot dazu, indem Sie die Kom-
ponenten vertauschen und eine davon
negieren. Eine neue Schleife ist etwa:

xp=xpos;
yp=ypos;

for (x=0; x<SCREEN_X; x++)
{

winkel=(BLICKWINKEL*
(SCREEN_X-x*2))/SCREEN_X;

delta_x=COS(drehwinkel+
winkel)<<(RADIX-16);

delta_y=SIN(drehwinkel+
winkel)<<(RADIX-16);

//bisher:
//castray(x,neigung,delta_x,
//delta_y);

float move=-0.002;
xpos=xp+move*delta_y;
ypos=yp-move*delta_x;
castray(x,neigung,delta_x,

delta_y,fogtable_red);

move=0.002;
xpos=xp+move*delta_y;
ypos=yp-move*delta_x;
castray(x,neigung,delta_x,

delta_y,fogtable_green);
}

Der empirisch gewonnene Faktor move
bestimmt den idealen Abstand des Be-
trachters vom Monitor. Damit Sie einen
möglichst optimalen 3D-Effekt bekom-
men, sollten Sie diesen Wert experimen-
tell an Ihren Arbeitsplatz anpassen.

■ Die Stereo-3D-Engine
Die 3D-Engine der Ausgaben 8/98 (ab S.
234) und 9/98 (ab S. 216) rüsten Sie mit
fast ebensowenig Aufwand auf eine ech-
te 3D-Darstellung auf. Im Projektver-
zeichnis ENGINE3D passen Sie
zunächst die Definition der 3D-Objek-
te so an, daß Sie nicht mehr eine einzige
Palette für eine Textur haben, sondern je
eine für jedes Teilbild. Entsprechend än-
dern Sie auch die Textur-Laderoutine
LoadTexture(...) im Programmcode der
Datei tpolygon.cpp.

Sie verringern die Anzahl der Sha-
ding-Abstufungen und der Farbeinträge
in diesen Tabellen, indem Sie die Tex-
turfarben nach dem Laden als entspre-
chende Graustufen behandeln. Der Un-
terschied fällt nicht auf, da Sie die Bilder
in Graustufen berechnen. Zudem sparen
Sie etwas Rechenzeit. Passen Sie hierzu
die innere Schleife der Polygon-Zei-
chenroutine an.

Die nächste Änderung nehmen Sie in
der Datei 3dclip.cpp vor. Hier erweitern
Sie die Prozedur clippolygondraw(...)
um einen Zeiger auf die aktuelle Palette.
Nach dem Clipping der Polygone gegen
das Viewing-Fustrum (das Sichtbar-
keits-Volumen) rufen Sie die Polygon-
routine auf. Dieser übergeben Sie den
Zeiger auf die aktuelle Palette.

Die Methode tobject::draw des Ob-
jekts tobject ruft clippolygondraw(...) q

DER STEREO-EFFEKT AUF IHREM BILDSCHIRM
Bei Computergrafiken und Videoaufnah-

men unterstützen verschiedene Verfah-

ren das räumliche Vorstellungsvermögen

des Menschen. Allen ist gemein, daß sie

mit Spezialbrillen arbeiten.

Eine Methode bedient sich sogenannter

Shutter-Brillen. Ein Computer kann ihre

Gläser unabhängig voneinander zwischen

den Zuständen durchsichtig und undurch-

sichtig umschalten. Diesen Effekt realisie-

ren Flüssigkristall-Displays (wie sie auch in

digitalen LCD-Uhren verwendet werden)

in den Brillengläsern. Während der Com-

puter das Bild für das linke Auge auf den

Monitor zeichnet, schaltet er das rechte

Glas auf undurchsichtig. Danach schaltet

er auf das rechte Teilbild um und versperrt

gleichzeitig die Sicht für das linke Auge.

Das Verfahren verlangt eine hohe Bild-

wiederholfrequenz des Monitors bzw. der

Grafikkarte, da diese durch das Abwech-

seln der Augen faktisch halbiert wird. Es

kommen also nur Frequenzen um 100 bis

120 Hz – am besten noch höher – in Fra-

ge. Die Brillen sind bislang wenig verbrei-

tet, was sicherlich am hohen Preis liegt,

umgekehrt aber auch eine Entwicklung

hin zur billigen Massenware hemmt.

Das eleganteste Verfahren, für jedes Auge

ein unabhängiges Bild darzustellen, macht

sich 3D-Brillen mit Polarisationsfiltern zu-

nutze. Sie können sich einen Lichtstrahl

prinzipiell als ein Bündel von Energiewel-

len vorstellen, das sich entlang der Strahl-

richtung bewegt. Eine solche Welle ver-

läuft auf einer Ebene. In der Natur sind

diese Wellen nicht polarisiert; das heißt,

es kommen alle möglichen Drehwinkel

der Ebenen vor, in denen diese Wellen

verlaufen. Nach dem Passieren eines (li-

nearen) Polarisationsfilters besteht das

Lichtbündel nur noch aus Wellen, die in

einer bestimmten Richtung schwingen.

Bei der Projektion auf eine Leinwand kön-

nen Sie so das Bild für das linke Auge mit

vertikal polarisierten Licht und das Bild

für das rechte Auge mit horizontal polari-

sierten Licht darstellen. Damit jedes Auge

nur das ihm zugeordnete Bild empfängt,

trägt der Betrachter eine 3D-Brille mit

entsprechend eingesetzten Filtern. Leider

bleibt diese Methode speziellen Kinos

wie IMAX 3D vorenthalten, da Monitore

kein polarisiertes Licht erzeugen können.

Ziemlich alt, aber immer noch populär,

sind Rot-Grün-Brillen, die unter Verlust

der Echtfarbdarstellung einen dreidimen-

sionalen Eindruck vermitteln. Diese Bril-

len haben vor dem linken Auge einen Rot-

und vor dem rechten Auge einen Grün-Fil-

ter. Der rote Filter absorbiert alle roten

Lichtanteile, der grüne Filter umgekehrt

alle grünen Anteile.

Ein rotes Objekt auf schwarzem Hinter-

grund sehen Sie durch den Grün-Filter im

Idealfall gar nicht. Dadurch erreichen Sie,

daß bestimmte Bildteile nur für ein Auge

sichtbar sind. Bildteile, die beide Augen

wahrnehmen sollen, zeichnen sie in Gelb-

tönen, also der additiven Mischung der

roten und grünen Farbanteile.

Diese Filter funktionieren allerdings nicht

ideal: Sie können meist, wenn auch

schwach, rote Bereiche durch den roten

Filter erkennen und umgekehrt. Die Ursa-

che dafür liegt an den Wellenlängen der

roten und grünen Farbtöne. Diese sind im

Farbspektrum benachbart und gehen in-

einander über. Eine Lösung böte eine Rot-

Blau-Brille, ihr Nachteil ist allerdings die

relativ schwache Abstrahlung von blauer

Farbe bei Monitoren.

216 Februar 1999 PC Magazin

P C U N D E R G R O U N D
P R A X I S

auf. Fügen Sie dieser Draw-Methode ei-
nen zusätzlichen Parameter hinzu, in-
dem Sie das zu zeichnende Teilbild an-
geben:

void tobject::draw
(unsigned short *buffer,
tcamera *camera, int redgreen)

{
...
if (redgreen)

clippolygondraw(
*currentface,*this,
buffer,palette_green);

else
clippolygondraw(

*currentface,*this,
buffer,palette_red);

...
}

Jetzt haben Sie alle Änderungen in den
Unterprogrammen erledigt und nehmen
sich das Hauptprogramm vor: Bei der
3D-Engine können Sie im Gegensatz
zum Voxel nicht beide Bilder gleichzei-
tig zeichnen, sondern müssen sie unab-
hängig voneinander bearbeiten. Hierzu
definieren Sie einen neuen Speicherbe-
reich für das zweite Bild und eine zu-
sätzliche Kamera.

Alle weiteren notwendigen Änderun-
gen betreffen die Prozedur DrawSze-
ne(...). Berechnen Sie aus der Kamerapo-
sition und dem Zielpunkt den Rich-
tungsvektor der Blickrichtung. Das

Kreuzprodukt aus diesem Vektor und
dem up-Vektor der Kamera ergibt den-
jenigen Vektor, der vom Betrachter aus
nach links zeigt. Damit bestimmen Sie
die Verschiebung der beiden Kameras
für die zwei Teilbilder. Ein einziger Z-
Buffer genügt, da dieser nach dem
Zeichnen des ersten Bildes nicht mehr
benötigt wird.

■ Boundary Boxes
Boundary Boxes beschleunigen die Be-
rechnung der 3D-Animation. Es ist
schwierig, in 3D-Grafiken sichtbare Po-
lygone so schnell wie
möglich von unsicht-
baren zu trennen.
Wenn Sie ein komple-
xes 3D-Objekt (oder
auch eine Gruppe von
Objekten) durch eine
sehr einfache Struktur
– etwa einen Quader –
ersetzen, geht die Be-
rechnung einfach und
schnell vonstatten.

Prüfen Sie zuerst,
ob dieses einfache
Objekt in den Sicht-
barkeitsbereich der
Kamera fällt. Falls
nicht, ist auch das da-
rin enthaltene kom-
plexere Objekt nicht
sichtbar. Nur bei ei-
nem positiven Ergebnis stellen Sie weite-
re Untersuchungen zur Sichtbarkeit an.

Um die Eigenschaften der objektori-
entierten Programmierung auszunutzen
und den bereits vorhandenen Pro-
grammcode zu verwenden, sollten Sie
ein Objekt von der Klasse tobject ablei-
ten. Im Beispiel heißt das neue Objekt
tboundedobject. Es ist vom Interface her
natürlich kompatibel zum alten Objekt.
Die folgenden Änderungen finden Sie
im Unterverzeichnis ENGINEV2.

Als einfache Repräsentation der Geo-
metrie kommen Objekte wie Kugeln
und Quader in Frage. Für eine 3D-En-
gine, die auf Echtzeit-Berechnung aus-
gelegt ist, empfehlen sich Quader. Ku-
geln eignen sich aufgrund der mathema-
tisch einfachen Schnittpunktberech-
nung mit Geraden eher für Raytracing-
Aufgaben.

Berechnen Sie die acht Eckpunkte des
Quaders, der das Objekt möglichst eng
umschließt. Sie leiten diese direkt aus
den Minima und Maxima der Vertex-
Koordinaten ab. Die Funktion tboun-

dedobject::calculate_boundarybox() er-
ledigt dies mit einer einfachen Schleife,
die jeden Eckpunkt mit den bisherigen
Höchst- und Tiefstwerten vergleicht.

Die Funktion sollte direkt nach dem
Laden einer 3D-Geometrie ausgeführt
werden. Dazu nutzen Sie die Vorzüge
objektorientierter Programmierung: Er-
weitern Sie den vererbten Konstruktor
von tboundedobject um den Aufruf von
calculate_bondarybox. Dadurch brau-
chen Sie sich um die Berechnung der
Boundary Box nicht zu kümmern.

Die Sichtbarkeit der Box prüfen Sie,
indem Sie die acht Eckpunkte der
Boundary Box mit dem Sichtbarkeits-
Volumen (dem Viewing-Fustrum) der
Kamera vergleichen. Dies funktioniert
genauso wie das 3D-Clipping.

Dabei testen Sie jeden Punkt einzeln
auf den fünf Ebenen des Kamera-Volu-
mens. Diese fünf Ebenen schließen den
Bereich im 3D-Raum ein, der von der
Kamera aus sichtbar ist. Da Sie einen
rechteckigen Bildausschnitt berechnen,
handelt es sich um die linke, rechte, obe-
re und untere Kante. Zusätzlich müs- q

BEI SEHR NAHEN Objekten erkennen Sie

deutlich die unterschiedlichen Teilbilder

in Rot und Grün für jedes Auge.

ROT-GRÜN-BRILLE IM EIGENBAU
Falls Sie bei Ihrem Optiker keine Rot-

Grün-Brille erwerben können, hilft viel-

leicht ein Gang zum Buchhändler weiter:

Dort gibt es neben 3D-Comics oft auch in-

teressante Bücher in Rot-Grün-Technik

(Anaglyphen), denen eine einfache Brille

beiliegt.

Ein empfehlenswertes Werk ist Die Mars

Mission von Holger Heuseler (49,95 Mark,

BLV-Verlag, erschienen im März 1998,

ISBN: 3405154618) mit einigen schönen

Stereofotos des roten Planeten.

Zum Nulltarif bekommen Sie Ihr Brillen-

gestell diesmal nicht bei Fielmann, son-

dern durch eine kleine Bastelei: Drucken

Sie das Schnittmuster 3D-Glasses.gif (auf

der Heft-CD) aus, kleben Sie es auf ein

Stück dünne Pappe, und schneiden Sie die

Teile aus. Beim Schreibwarenhändler be-

sorgen Sie sich dann noch transparente

Folien und kleben sie – Rot links, Grün

rechts – in das Gestell. Farbiges Bonbon-

papier eignet sich weniger, da es meist

nicht sehr glatt ist und die Sicht trübt.

DEN VOXELSPACE der letzten Ausgabe rüsten Sie mit wenigen

Zeilen auf räumliche 3D-Darstellung um.

220 Februar 1999 PC Magazin

P C U N D E R G R O U N D
P R A X I S

sen Sie noch gegen die nahe Z-Ebene
clippen. Objekte hinter der Kamera sind
unsichtbar. Das mathematische Kame-

ramodell, das die 3D-Engine benutzt,
erledigt dies nicht automatisch:

unsigned int fustrum_clipcode
(const tvector v)

{
unsigned int clip=0;

//znear:
if (v.z<znear_distance)

clip|=1;

//Links+Rechts
if (dotproduct(fustrum[0],v)<

0) clip|=2;
if (dotproduct(fustrum[1],v)<

0) clip|=4;

//Oben+Unten
if (dotproduct(fustrum[2],v)<

0) clip|=8;
if (dotproduct(fustrum[3],v)<

0) clip|=16;

return clip;
}

Für jede Ebene, die Sie testen, vergeben
Sie ein bestimmtes Bit eines Integers. Die
so gewonnenen Bitmuster (Clipcodes)
verwenden Sie für die Trivial-Clipping-
Methode von Cohen und Sutherland.

Zunächst betrachten wir den zweidi-
mensionalen Raum: Die Abbildung auf
S. 221 oben zeigt alle möglichen Clip-
code-Kombinationen. Der Bereich in
der Mitte entspricht dem sichtbaren
Bildbereich. Bei Punkten links davon ist
das unterste Bit gesetzt. Rechts vom
Bildbereich wird das zweite Bit gesetzt
und so weiter.

Möchten Sie wissen, ob eine Linie
(wenigstens teilweise) sichtbar ist, ver-
knüpfen Sie die Clipcodes ihrer beiden
Endpunkte mit der Und-Funktion. Ist
das Ergebnis ungleich Null, schneidet
sie das mittlere Rechteck nicht und ist
somit nicht sichtbar. Sonst liegt sie ent-
weder ganz (beide Clipcodes sind dann

0000) oder teilweise im Sichtbarkeitsbe-
reich.

Analog gehen Sie bei 3D-Objekten
vor: Sie berechnen zunächst die Clip-
codes für alle acht Punkte der Boundary
Box. Durch deren logische Verknüp-
fung erhalten Sie eine Menge Informa-
tionen.

Ist die bitweise Und-Verknüpfung al-
ler Punkte ungleich Null, befindet sich
die Boundary Box außerhalb des sicht-
baren Bereichs. Da die Boundary Box al-
le Flächen und Eckpunkte unseres Ob-
jekts umschließt, muß auch das Objekt
selbst unsichtbar sein. Sie können sich
daher jede weitere Berechnung sparen
und gleich zum nächsten Objekt über-
gehen. Wird ein Objekt wie hier sofort
nach dem Auswerten der Und-Ver-
knüpfung eliminiert, spricht man von ei-
nem Trivial Reject Test.

Clipcodes liefern Ihnen noch weitere
Informationen. Sind zum Beispiel alle
Clipcodes gleich Null, ergibt auch die
Oder-Verknüpfung diesen Wert. Das
Objekt ist somit vollständig sichtbar,
und Sie können das gesamte Clipping
überspringen.

Erhalten Sie ein Ergebnis wie 0001,
müssen Sie das Objekt nur gegen die lin-
ke Ebene clippen. Ähnlich lesen Sie alle
anderen Ebenen aus dem kombinierten
Clipcode ab. Es ist also sinnvoll, der 3D-
Clipping-Funktion den Clipcode des
Objektes mitzuliefern. Unser Pro-
grammbeispiel läuft mit dieser neuen
3D-Clipping-Funktion etwa doppelt so
schnell wie vorher.

Veranschaulichen Sie sich das Kombi-
nieren von Clipcodes einmal auf einem
Blatt Papier. Es ist ein hervorragendes
Verfahren und kommt in der Compu-
tergrafik häufig zum
Einsatz. Ob Sie Lini-
en in einer Ebene oder
Polygone im dreidi-
mensionalen Raum
betrachten, ist egal.
Die zunächst un-
berücksichtigte Z-
Near-Ebene reprä-
sentieren Sie einfach
durch ein weiteres
Bit. Dabei brauchen
Sie für diese Ebene
nur die Z-Koordinate
eines Eckpunkts zu
überprüfen und kön-
nen auf Skalarpro-
dukte verzichten.

Die Berechnung
der Clipcodes und die

Behandlung der einzelnen Fälle über-
nimmt tboundedobject::draw() in der
Datei 3dengine.cpp:

void tboundedobject::draw
(unsigned short *buffer,
tcamera *camera)

{
//Transformationsmatrix des
//Objektes berechnen
build_ltm(camera);

//Boundary Box Test:
tvector tempvector;
unsigned int clip_and=31;
unsigned int clip_or=0;
unsigned int clipcode;

for (int i=0; i<8; i++)
{

//Transformation in den
//3D-Raum der Kamera:
transform(boundarybox[i],

ltm,tempvector);

//Clipcode für alle Ebenen
//berechnen:
clipcode=fustrum_clipcode(

tempvector);

//Logische Verknüpfungen
//berechnen:
clip_and&=clipcode;
clip_or|=clipcode;

}

//Trivial Reject Test:
if (clip_and) return;

...
}

■ Partikelsysteme
Computerspiele setzen gern Partikelsy-
steme ein, um Explosionen, Feuer und
andere Phänomene auf den Bildschirm
zu zaubern. Diese Systeme zu imple-
mentieren ist nicht schwer.

Bei Partikelsystemen werden Objekte
nicht mehr durch Polygone, sondern
durch einzelne Elemente wie zum Bei-
spiel Punkte dargestellt. Diese einzelnen
Teilchen sind ständig in Bewegung. Um

AUCH DIE 3D-ENGINE erhält durch Stereo-

Rendering und Rot-Grün-Brille eine faszi-

nierende Tiefenwirkung.

PARTIKELSYSTEME simulieren bewegte Objekte wie ein lo-

derndes Feuer sehr realistisch.

PC Magazin Februar 1999 221

P C U N D E R G R O U N D
P R A X I S

starre Körper oder einen Raum zu zeich-
nen, sind Partikel deshalb ungeeignet.
Bei Explosionen, Feuerwerken und der-
gleichen sind sie Polygon-Objekten hin-
gegen weit überlegen.

Meist genügt eine physikalisch sehr
vereinfachte Berechnung der Partikel:

Repräsentieren Sie jedes Element durch
eine Struktur, die nicht nur dessen Posi-
tion, sondern auch die Bewegungsrich-
tung und das „Alter“ speichert:

struct particle
{

tvector vertice;
tvector direction;
long lifetime;

};

Das Alter dient dazu, den Partikel nach
einiger Zeit wieder verschwinden zu las-
sen, da Partikeleffekte im relativ be-
schränkten Raum ablaufen sollen. Als
Ausgleich dafür kommen immer wieder
neue Teilchen hinzu.

Um einen Partikel darzustellen, zeich-
nen Sie an der entsprechenden Position
im 3D-Raum eine kleine Bitmap additiv
auf den Hintergrund. Durch Überlage-
rung vieler Partikel verwischen die Kan-
ten der Bitmaps, und Sie erhalten den ge-
wünschten Effekt. Von der Lebensdau-
er des Partikels hängt die Helligkeit der
Bitmap ab. Alle Routinen zum Zeichnen
von Texturen sind schon in mehreren
Helligkeiten vorhanden.

Die Implementation der Darstellung
finden Sie in der Datei 3dengine.cpp. Das
gesamte Partikelsystem ist als Objekt
tparticleobject vom Basisobjekt tobject
abgeleitet. Dadurch ersparen Sie sich das
erneute Programmieren der 3D-Berech-
nung und das Laden der Texturen.

■ Partikel bewegen
Partikel können sich natürlich im 3D-
Raum bewegen. Für statische Effekte ist
dies überflüssig, Explosionen oder lo-
dernde Feuer verlangen hingegen Mobi-
lität. Durch die Struktur der Partikel bie-
tet sich ein einfaches, an die Physik an-
gelehntes Modell an.

In der Abbildung rechts sehen Sie ei-
nen Partikel an seiner alten Position A,
seine Richtung als Vektor v sowie seine
neue Position B. Die neue Position be-
stimmen Sie, indem Sie die Richtung v
um die Gravitation g verändern. Hierzu
addieren Sie einfach die Vektor-Kom-
ponenten. Danach verschieben Sie den
Partikel um seine neue Geschwindigkeit
v’.

So erreichen Sie eine Bewegung, die
den physikalischen Tatsachen schon
sehr nahe kommt und gut aussieht. Le-
gen Sie noch fest, wie und wo Partikel er-
zeugt werden. Dafür fassen Sie alle nöti-
gen Informationen in einer Struktur na-
mens particleemitter zusammen:

struct particleemitter
{

long maxparticles;
long lifetime;
long output;
tvector position_rand;
tvector speed;
tvector speed_rand;
tvector gravity;

};

Die Eigenschaft maxparticles legt die
maximale Anzahl an Partikeln fest, die
ein Partikel-Objekt gleichzeitig verwal-
ten soll. Deren Lebenszeit lifetime wird
in berechneten Bildern gemessen. Zu-
sätzlich steuert output, wie viele Partikel
pro Bild neu zum Objekt hinzukom-
men.

Während Sie Partikel generieren, ist es
sinnvoll, die Startposition und die Rich-
tung für jeden Partikel etwas zu vari-
ieren. Die dafür nötigen Felder sind po-
sition_rand und speed_rand. Außerdem
legen Sie noch die Grundgeschwindig-
keit speed sowie die Gravitationskraft
gravity fest.
Auch bei diesem Effekt gilt: Experimen-
tieren lohnt sich. Sie können damit Feu-
er, Explosionen, Funken und viele ande-
re Lichteffekte nachbilden.

■ Einzelne Partikel
zeichnen
Für die Echtzeit-Grafik ist es sinnvoll,
statt einzelner Punkte kleine Bitmaps für
die Partikel zu zeichnen. Benutzen Sie
deshalb die gleiche Methode (additives
Shading) wie für den Lense-Flare-Effekt
(vgl. Ausgabe 10/98, ab S. 232).

Setzen Sie die Bildpunkte der Partikel
nicht einfach in das Bild ein, sondern
„addieren“ Sie sie auf die aktuellen Pix-
elwerte. Dadurch verwischen die Kan-
ten zwischen den Partikeln, und Sie
benötigen wesentlich weniger einzelne
Teilchen.

Wenn Sie mit dem addierenden Zeich-
nen nicht vertraut sind, stellen Sie sich
mehrere Dia-Projektoren vor, mit denen
Sie verschiedene Bilder auf eine Lein-
wand projizieren. Je mehr Bilder Sie
übereinander legen, desto heller werden
die Pixel an den überlagerten Stellen. Das
additive Zeichnen kostet zwar viel Zeit,
aber da Sie für einen realistischen Effekt
wesentlich weniger Partikel brauchen,
schneiden Sie im Zeitvergleich besser ab.

Die Partikel zeichnen Sie immer erst
am Schluß, da Sie keine Z-Buffer-Werte
für die Partikel besitzen. Der Z-Buffer
enthält nach dem Zeichnen der Objekte
immer den minimalen Abstand zum Be-
trachter für einen Pixel. Außerdem ken-
nen Sie zu jedem Partikel dessen Ab-
stand zum Betrachter.

Vor dem Zeichnen vergleichen Sie ein-
fach diesen Wert mit dem Z-Buffer-
Wert des Bildes an der Stelle, an welcher
der Partikel im zweidimensionalen
Raum sitzt. Ist er näher als ein dort ge-
zeichnetes Polygon, zeichnen Sie ihn
auch dort. Andernfalls ist er nicht sicht-
bar. Beachten Sie aber, daß Sie den Z-
Buffer keinesfalls ändern dürfen, sonst

könnte ein vorne liegender Partikel ei-
nen hinteren überdecken. Das darf nicht
passieren, da alle Partikel transparent
sind.

Solche Partikelobjekte können Sie
auch mit Polygonobjekten kombinie-
ren, um etwa die Triebwerke eines
Raumschiffs mit einer Partikelflamme
auszustatten. Die vorgenommenen Er-
weiterungen der 3D-Engine bieten in-
teressante Ansätze, mit denen Sie wei-
terexperimentieren können. s P E I / J R

BEIM WANDERN eines Partikels von A

nach B spielen Bewegungsrichtung und

Gravitation eine Rolle.

Die vollständige PC-Underground-Demo mit dem
zugehörigen Quellcode finden Sie auf der Heft-CD
und in unserem Internet-Angebot unter

www.pc-magazin.de/magazin/
➥ extras.html

Klicken Sie in der Tabelle Online Extras unter
Praxis auf das entsprechende Download-Feld.

FÜR DAS 2D-CLIPPING verwenden Sie die-

se vierstelligen Clipcodes.

