PC UNDERGROUND

PRAXIS

Demo-Programmierung unter Windows 95/flt,\IT'r; —

o &

v S
3' 0

ST COY

//

Rot-Grun In

Dank

nehmen Sie Objekte

raumlich wahr. AuBerdem tunen Sie die 3D-Engine

durch schnelleres Clipping und Partikelsysteme.

CARSTEN DACHSBACHER/
NILS PIPENBRINCK

piele warten heutzutage mit faszi-
Snierenden 3D-Grafiken auf. Spezi-

elle 3D-Grafikkarten stillen dabei
den Leistungshunger. Auch in dieser
Rubrik haben wir bereits eine einfache
3D-Grafik-Engine entwickelt, die wir
nun erweitern (letztes Update in Ausga-
be 9/98, ab S. 216). Wenn Sie nicht von
Anfang an dabei waren, finden Sie alle
bisher erschienenen PC-Underground-
Beitrage auf der Heft-CD.

Was genau versteckt sich hinter dem
Schlagwort 3D? Im Bereich der Compu-
tergrafik bedeutet 3D
meist nur, daff die
Grafikobjekte durch
dreidimensionale Ko-
ordinaten reprisen-
tiert sind. Spitestens
fur die Ausgabe am
Monitor werden die
Daten auf die zwei-
dimensionale Bild-
schirmebene herun-
terprojiziert. Die Gra-
fik erscheint somit fiir
jedes Auge gleich. Ei-
nen dreidimensiona-
len Eindruck sugge-

Um ein virtuelles Objekt raumlich
wahrzunehmen, mussen Sie jedem Auge
ein eigenes Teilbild prisentieren. Da die
Augen bei den meisten Menschen etwa
sechseinhalb Zentimeter auseinander
liegen, unterscheiden sich die Teilbilder
dementsprechend in ihrem Kamera-
standpunkt. Wenn Sie beim Betrachten
Thren Kopf zur Seite bewegen, andert
sich Thr Blickwinkel auf das Objekt
nicht — Sie sehen immer noch die glei-
chen Teilbilder. Daher heifit dieses Ver-
fahren auch ,214,D“ oder ,Stereo-Se-
hen®, analog zum Musikgenufl aus zwei
Kanilen.

Diesem Manko begegnen Virtual-
Reality-Helme und Bewegungssenso-

rieren bestenfalls Bild-
merkmale wie die
Grofle eines bekann-
ten Alltagsgegenstan-
des: Je kleiner er ist, um so weiter entfernt
erscheint er. Ebenso hebt sich auf Por-
traitfotos der unscharfe Hintergrund von
der aufgenommenen Person ab und trigt
so zum Eindruck von Tiefe bei.

214 Februar 1999 PC Magazin

MIT EINER ROT-GRUN-BRILLE sieht das linke Auge ausschlieR-
lich die grunen Farbanteile, das rechte Auge nur die roten.

ren. Damit konnen Sie Thren Kopf frei
bewegen und sich interaktiv um ein Ob-
jekt herumbewegen: 3D par excellence.
Ein Computer mufl nur die Bewegungs-
daten der Sensoren auswerten und die

dazu passenden Teilbilder errechnen.
Wir beschranken uns in diesem Artikel
auf die bereits sehr wirkungsvolle Ste-
reo-Betrachtung.

Da Shutter-Brillen (siehe Textbox auf S.
215) noch zu teuer sind und das Polari-
sationsverfahren nicht mit Monitoren
funktioniert, bietet sich die Rot-Griin-
Technik fiir einen Einbau in das Voxel-
programm (vgl. Ausgabe 1/99, ab S. 244)
und die 3D-Engine (vgl. Ausgaben 8/98,
ab S. 234 und 9/98, ab S. 216) an. Hier-
fiir berechnen Sie zwei unabhingige Bil-
der fiir beide Augen. Da die Echtfarben-
Darstellung ohnehin durch die Brille
verlorengeht, gentigen Graustufen-Bil-
der. Die zwei Bilder unterscheiden sich
in den Positionen der betrachtenden vir-
tuellen Kameras. Sie verwenden also fiir
das linke Bild eine Kamera, die ein we-
nig nach links von der Betrachterpositi-
on verschoben ist, und fiir das rechte ei-
ne Kamera etwas rechts davon.

Um die beiden Bilder fir die Ausgabe
auf dem Monitor geschickt zusammen-
zufligen, nutzen Sie die Eigenschaften
des im Demosystem verwendeten Farb-
modells aus. Mit zwei Shading-Tabellen
konnen Sie die darin enthaltenen Farb-
werte so plazieren, daf} Sie jeweils nur
die Pixel der Einzelbilder mit einem bit-
weisen Oder verkntipfen miussen, um
den endgiiltigen Farbwert zu erhalten.

Das Voxelprogramm missen Sie kaum
modifizieren. Sie fiigen nur einige Zeilen
hinzu, um das fertige Programm im Pro-
jektverzeichnis VOXEL3D zu erhalten.
Legen Sie statt einer Shading-Tabelle
fiir den Nebeleffekt zwei Tabellen na-
mens fogtable_red und fogtable_green
an. Diese enthalten den Rot- und den
Grin-Wert fur jede Voxel-Farbe und je-
de Schattierung. Die Berechnung ge-
schieht folgendermaflen:
for (int j=0; j<32; j++)
for (int i=0; i<256; i++)
value=j*j/32;
shade=(colormapbmp.cColors
[i*4+0]*(32-value))/32+
(colormapbmp.cColors
[i*4+1]*(32-value))/32+
(colormapbmp.cColors
[i*4+2]*(32-value))/32;
shade/=3;
fogtable_red][i][j]=
ColorCode(shade,0,0);
fogtable_green([i][j]=
ColorCode(0,shade,0);
}

Die Oder-Verkntpfung, mit der Sie
zwei Pixel fur das endgtiltige Bild verar-

Bei Computergrafiken und Videoaufnah-
men unterstutzen verschiedene Verfah-
ren das raumliche Vorstellungsvermogen
des Menschen. Allen ist gemein, daB sie
mit Spezialbrillen arbeiten.

Eine Methode bedient sich sogenannter
Shutter-Brillen. Ein Computer kann ihre
Glaser unabhangig voneinander zwischen
den Zustanden durchsichtig und undurch-
sichtig umschalten. Diesen Effekt realisie-
ren Flussigkristall-Displays (wie sie auch in
digitalen LCD-Uhren verwendet werden)
in den Brillenglasern. Wahrend der Com-
puter das Bild fur das linke Auge auf den
Monitor zeichnet, schaltet er das rechte
Glas auf undurchsichtig. Danach schaltet
er auf das rechte Teilbild um und versperrt
gleichzeitig die Sicht fur das linke Auge.
Das Verfahren verlangt eine hohe Bild-
wiederholfrequenz des Monitors bzw. der
Grafikkarte, da diese durch das Abwech-
seln der Augen faktisch halbiert wird. Es
kommen also nur Frequenzen um 100 bis
120 Hz — am besten noch héher — in Fra-
ge. Die Brillen sind bislang wenig verbrei-
tet, was sicherlich am hohen Preis liegt,
umgekehrt aber auch eine Entwicklung
hin zur billigen Massenware hemmt.

Das eleganteste Verfahren, fur jedes Auge
ein unabhangiges Bild darzustellen, macht
sich 3D-Brillen mit Polarisationsfiltern zu-
nutze. Sie kdnnen sich einen Lichtstrahl
prinzipiell als ein Bundel von Energiewel-
len vorstellen, das sich entlang der Strahl-
richtung bewegt. Eine solche Welle ver-
lauft auf einer Ebene. In der Natur sind
diese Wellen nicht polarisiert; das heift,
es kommen alle moglichen Drehwinkel
der Ebenen vor, in denen diese Wellen
verlaufen. Nach dem Passieren eines (li-
nearen) Polarisationsfilters besteht das

beiten, bauen Sie direkt in die Zeichen-
routine des Voxelprogramms ein. Diese
einfache Losung bietet sich an, da jeder
Pixel nur ein einziges Mal gezeichnet
wird. Sie andern also in der Prozedur ca-
stray nur die Schleife, die die Pixel setzt:

void castray(int col,int horiz,
int delta_x,int delta_y,
int fogtable[256][32])

”Schnittpunkt
if (h>z)

c=fogtable[colormap8|[ofs]]
[distance>3];

/IDiese Schleife wird durch-
/Ischnittlich 2x durchlaufen
do
{
//Steigung erhéhen
delta_z+=VSCALE;
/IPixel mit OR setzen
screen[pixel]|=c;
//Z erhdhen

Lichtbundel nur noch aus Wellen, die in
einer bestimmten Richtung schwingen.
Bei der Projektion auf eine Leinwand kén-
nen Sie so das Bild fur das linke Auge mit
vertikal polarisierten Licht und das Bild
fur das rechte Auge mit horizontal polari-
sierten Licht darstellen. Damit jedes Auge
nur das ihm zugeordnete Bild empfangt,
tragt der Betrachter eine 3D-Brille mit
entsprechend eingesetzten Filtern. Leider
bleibt diese Methode speziellen Kinos
wie IMAX 3D vorenthalten, da Monitore
kein polarisiertes Licht erzeugen kénnen.
Ziemlich alt, aber immer noch popular,
sind Rot-Grun-Brillen, die unter Verlust
der Echtfarbdarstellung einen dreidimen-
sionalen Eindruck vermitteln. Diese Bril-
len haben vor dem linken Auge einen Rot-
und vor dem rechten Auge einen Grun-Fil-
ter. Der rote Filter absorbiert alle roten
Lichtanteile, der grune Filter umgekehrt
alle grunen Anteile.

Ein rotes Objekt auf schwarzem Hinter-
grund sehen Sie durch den Grun-Filter im
Idealfall gar nicht. Dadurch erreichen Sie,
daR bestimmte Bildteile nur fur ein Auge
sichtbar sind. Bildteile, die beide Augen
wahrnehmen sollen, zeichnen sie in Gelb-
tonen, also der additiven Mischung der
roten und griinen Farbanteile.

Diese Filter funktionieren allerdings nicht
ideal: Sie kénnen meist, wenn auch
schwach, rote Bereiche durch den roten
Filter erkennen und umgekehrt. Die Ursa-
che dafur liegt an den Wellenlangen der
roten und grunen Farbtone. Diese sind im
Farbspektrum benachbart und gehen in-
einander Uber. Eine Losung bote eine Rot-
Blau-Brille, ihr Nachteil ist allerdings die
relativ schwache Abstrahlung von blauer
Farbe bei Monitoren.

z+=ph;
/lin néchsthéhere Bild-
/Ischirmzeile gehen
pixel-=SCREEN_X;
if (pixel<0) return;

} while (h>z);

Wie Sie der geanderten Prozedurdefini-
tion entnehmen, steht Thnen innerhalb
der Prozedur castray die Shading-Tabel-
le fiir die Berechnung beider Bilder zur
Verfiigung. Es fehlt nur noch die neue
Schleife, in der Sie die Position der Ka-
mera nach links und rechts versetzen.
Den Richtungsvektor fiir diese Ver-
schiebung berechnen Sie aus der
Blickrichtung. Da dieser Vektor zweidi-
mensional ist, erhalten Sie das ge-
wiinschte Lot dazu, indem Sie die Kom-
ponenten vertauschen und eine davon
negieren. Eine neue Schleife ist etwa:

PC UNDERGROUND
PRAXIS

=3

XP=XpOS;
YP=Ypos;

for (x=0; x<SCREEN_X; x++)

winkel=(BLICKWINKEL*
(SCREEN_X-x*2))/SCREEN_X;

delta_x=COS(drehwinkel+
winkel)<<(RADIX-16);

delta_y=SIN(drehwinkel+
winkel)<<(RADIX-16);

IIbisher:
/lcastray(x,neigung,delta_x,
/ldelta_y);

float move=-0.002;
Xpos=xp+move*delta_y;
ypos=yp-move*delta_x;
castray(x,neigung,delta_x,
delta_y,fogtable_red);

move=0.002;
Xpos=xp+move*delta_y;
ypos=yp-move*delta_x;
castray(x,neigung,delta_x,
delta_y,fogtable_green);

Der empirisch gewonnene Faktor move
bestimmt den idealen Abstand des Be-
trachters vom Monitor. Damit Sie einen
moglichst optimalen 3D-Effekt bekom-
men, sollten Sie diesen Wert experimen-
tell an Thren Arbeitsplatz anpassen.

Die 3D-Engine der Ausgaben 8/98 (ab S.
234) und 9/98 (ab S. 216) riisten Sie mit
fast ebensowenig Aufwand auf eine ech-
te 3D-Darstellung auf. Im Projektver-
zeichnis ENGINE3D passen Sie
zunichst die Definition der 3D-Objek-
te so an, daf} Sie nicht mehr eine einzige
Palette fiir eine Textur haben, sondern je
eine fiir jedes Teilbild. Entsprechend an-
dern Sie auch die Textur-Laderoutine
LoadTexture(...) im Programmcode der
Dater tpolygon.cpp.

Sie verringern die Anzahl der Sha-
ding-Abstufungen und der Farbeintrige
in diesen Tabellen, indem Sie die Tex-
turfarben nach dem Laden als entspre-
chende Graustufen behandeln. Der Un-
terschied fallt nicht auf, da Sie die Bilder
in Graustufen berechnen. Zudem sparen
Sie etwas Rechenzeit. Passen Sie hierzu
die innere Schleife der Polygon-Zei-
chenroutine an.

Die nichste Anderung nehmen Sie in
der Datei 3dclip.cpp vor. Hier erweitern
Sie die Prozedur clippolygondraw(...)
um einen Zeiger auf die aktuelle Palette.
Nach dem Clipping der Polygone gegen
das Viewing-Fustrum (das Sichtbar-
keits-Volumen) rufen Sie die Polygon-
routine auf. Dieser ibergeben Sie den
Zeiger auf die aktuelle Palette.

Die Methode tobject::draw des Ob-
jekts tobject ruft clippolygondraw(...) ©

PC Magazin Februar1999 215

5o

PC UNDERGROUND
PRAXIS

o F
i PC Magazin Demo

BEI SEHR NAHEN Objekten erkennen Sie
deutlich die unterschiedlichen Teilbilder
in Rot und Gran fur jedes Auge.

auf. Fugen Sie dieser Draw-Methode ei-
nen zusitzlichen Parameter hinzu, in-
dem Sie das zu zeichnende Teilbild an-
geben:

void tobject::draw
(unsigned short *buffer,
tcamera *camera, int redgreen)

{

if (redgreen)
clippolygondraw(
*currentface,*this,
buffer,palette_green);
else
clippolygondraw(
*currentface,*this,
buffer,palette_red);

=

Jetzt haben Sie alle Anderungen in den
Unterprogrammen erledigt und nehmen
sich das Hauptprogramm vor: Bei der
3D-Engine konnen Sie im Gegensatz
zum Voxel nicht beide Bilder gleichzei-
tig zeichnen, sondern missen sie unab-
hingig voneinander bearbeiten. Hierzu
definieren Sie einen neuen Speicherbe-
reich fiir das zweite Bild und eine zu-
satzliche Kamera.

Alle weiteren notwendigen Anderun-
gen betreffen die Prozedur DrawSze-
ne(...). Berechnen Sie aus der Kamerapo-
sition und dem Zielpunkt den Rich-
tungsvektor der Blickrichtung. Das

Kreuzprodukt aus diesem Vektor und
dem up-Vektor der Kamera ergibt den-
jenigen Vektor, der vom Betrachter aus
nach links zeigt. Damit bestimmen Sie
die Verschiebung der beiden Kameras
fiir die zwei Teilbilder. Ein einziger Z-
Buffer geniigt, da dieser nach dem
Zeichnen des ersten Bildes nicht mehr
bendtigt wird.

® Boundary Boxes

Boundary Boxes beschleunigen die Be-
rechnung der 3D-Animation. Es ist
schwierig, in 3D-Grafiken sichtbare Po-
lygone so schnell wie

Als einfache Reprisentation der Geo-
metrie kommen Objekte wie Kugeln
und Quader in Frage. Fiir eine 3D-En-
gine, die auf Echtzeit-Berechnung aus-
gelegt ist, empfehlen sich Quader. Ku-
geln eignen sich aufgrund der mathema-
tisch einfachen Schnittpunktberech-
nung mit Geraden eher fiir Raytracing-
Aufgaben.

Berechnen Sie die acht Eckpunkte des
Quaders, der das Objekt méglichst eng
umschliefit. Sie leiten diese direkt aus
den Minima und Maxima der Vertex-
Koordinaten ab. Die Funktion tboun-

moglich von unsicht-
baren zu trennen.
Wenn Sie ein komple-
xes 3D-Objekt (oder
auch eine Gruppe von
Objekten) durch eine
sehr einfache Struktur
—etwa einen Quader -
ersetzen, geht die Be-
rechnung einfach und
schnell vonstatten.

Priifen Sie zuerst,
ob dieses einfache
Objekt in den Sicht-
barkeitsbereich ~ der
Kamera fille. Falls
nicht, ist auch das da-
rin enthaltene kom-
plexere Objekt nicht
sichtbar. Nur bei ei-
nem positiven Ergebnis stellen Sie weite-
re Untersuchungen zur Sichtbarkeit an.

Um die Eigenschaften der objektori-
entierten Programmierung auszunutzen
und den bereits vorhandenen Pro-
grammcode zu verwenden, sollten Sie
ein Objekt von der Klasse tobject ablei-
ten. Im Beispiel heifit das neue Objekt
tboundedobject. Es ist vom Interface her
natiirlich kompatibel zum alten Objekt.
Die folgenden Anderungen finden Sie
im Unterverzeichnis ENGINEV2.

ROT-GRUN-BRILLE IM EIGENBAU

Falls Sie bei Ihrem Optiker keine Rot-
Grun-Brille erwerben kénnen, hilft viel-
leicht ein Gang zum Buchhandler weiter:
Dort gibt es neben 3D-Comics oft auch in-
teressante Bucher in Rot-Grun-Technik
(Anaglyphen), denen eine einfache Brille
beiliegt.

Ein empfehlenswertes Werk ist Die Mars
Mission von Holger Heuseler (49,95 Mark,
BLV-Verlag, erschienen im Marz 1998,
ISBN: 3405154618) mit einigen schénen
Stereofotos des roten Planeten.

216 Februar 1999 PC Magazin

Zum Nulltarif bekommen Sie lhr Brillen-
gestell diesmal nicht bei Fielmann, son-
dern durch eine kleine Bastelei: Drucken
Sie das Schnittmuster 3D-Glasses.gif (auf
der Heft-CD) aus, kleben Sie es auf ein
Stuck dunne Pappe, und schneiden Sie die
Teile aus. Beim Schreibwarenhandler be-
sorgen Sie sich dann noch transparente
Folien und kleben sie — Rot links, Grin
rechts — in das Gestell. Farbiges Bonbon-
papier eignet sich weniger, da es meist
nicht sehr glatt ist und die Sicht trubt.

EL. PC Magazin Demo

DEN VOXELSPACE der letzten Ausgabe riisten Sie mit wenigen
Zeilen auf raumliche 3D-Darstellung um.

dedobject::calculate_boundarybox() er-
ledigt dies mit einer einfachen Schleife,
die jeden Eckpunkt mit den bisherigen
Hochst- und Tiefstwerten vergleicht.

Die Funktion sollte direkt nach dem
Laden einer 3D-Geometrie ausgefiihrt
werden. Dazu nutzen Sie die Vorziige
objektorientierter Programmierung: Er-
weitern Sie den vererbten Konstruktor
von tboundedobject um den Aufruf von
calculate_bondarybox. Dadurch brau-
chen Sie sich um die Berechnung der
Boundary Box nicht zu kiimmern.

Die Sichtbarkeit der Box priifen Sie,
indem Sie die acht Eckpunkte der
Boundary Box mit dem Sichtbarkeits-
Volumen (dem Viewing-Fustrum) der
Kamera vergleichen. Dies funktioniert
genauso wie das 3D-Clipping.

Dabei testen Sie jeden Punkt einzeln
auf den funf Ebenen des Kamera-Volu-
mens. Diese funf Ebenen schlieffen den
Bereich im 3D-Raum ein, der von der
Kamera aus sichtbar ist. Da Sie einen
rechteckigen Bildausschnitt berechnen,
handelt es sich um die linke, rechte, obe-
re und untere Kante. Zusitzlich miis- ©

5o

PC UNDERGROUND

PRAXIS

sen Sie noch gegen die nahe Z-Ebene
clippen. Objekte hinter der Kamera sind
unsichtbar. Das mathematische Kame-

fr_l-_PC Magazin Demo

AUCH DIE 3D-ENGINE erhalt durch Stereo-
Rendering und Rot-Grin-Brille eine faszi-
nierende Tiefenwirkung.

ramodell, das die 3D-Engine benutzt,
erledigt dies nicht automatisch:

unsigned int fustrum_clipcode
(const tvector v)

{

unsigned int clip=0;

llznear:
if (v.z<znear_distance)
clip|=1,

/ILinks+Rechts

if (dotproduct(fustrum[0],v)<
0) clip|=2;

if (dotproduct(fustrum[1],v)<
0) clip|=4;

//Oben+Unten

if (dotproduct(fustrum[2],v)<
0) clip|=8;

if (dotproduct(fustrum([3],v)<
0) clip|=16;

return clip;

}

Fur jede Ebene, die Sie testen, vergeben
Sie ein bestimmtes Bit eines Integers. Die
so gewonnenen Bitmuster (Clipcodes)
verwenden Sie fiir die Trivial-Clipping-
Methode von Cohen und Sutherland.

Zunichst betrachten wir den zweidi-
mensionalen Raum: Die Abbildung auf
S. 221 oben zeigt alle moglichen Clip-
code-Kombinationen. Der Bereich in
der Mitte entspricht dem sichtbaren
Bildbereich. Bei Punkten links davon ist
das unterste Bit gesetzt. Rechts vom
Bildbereich wird das zweite Bit gesetzt
und so weiter.

Mochten Sie wissen, ob eine Linie
(wenigstens teilweise) sichtbar ist, ver-
kniipfen Sie die Clipcodes ihrer beiden
Endpunkte mit der Und-Funktion. Ist
das Ergebnis ungleich Null, schneidet
sie das mittlere Rechteck nicht und ist
somit nicht sichtbar. Sonst liegt sie ent-
weder ganz (beide Clipcodes sind dann

220 Februar1999 PC Magazin

0000) oder teilweise im Sichtbarkeitsbe-
reich.

Analog gehen Sie bei 3D-Objekten
vor: Sie berechnen zunichst die Clip-
codes fiir alle acht Punkte der Boundary
Box. Durch deren logische Verkniip-
fung erhalten Sie eine Menge Informa-
tionen.

Ist die bitweise Und-Verkniipfung al-
ler Punkte ungleich Null, befindet sich
die Boundary Box auflerhalb des sicht-
baren Bereichs. Da die Boundary Box al-
le Flichen und Eckpunkte unseres Ob-
jekts umschlieflt, mufl auch das Objekt
selbst unsichtbar sein. Sie konnen sich
daher jede weitere Berechnung sparen
und gleich zum nichsten Objekt tiber-
gehen. Wird ein Objekt wie hier sofort
nach dem Auswerten der Und-Ver-
kniipfung eliminiert, spricht man von ei-
nem Trivial Reject Test.

Clipcodes liefern Thnen noch weitere
Informationen. Sind zum Beispiel alle
Clipcodes gleich Null, ergibt auch die
Oder-Verkniipfung diesen Wert. Das
Objekt ist somit vollstindig sichtbar,
und Sie konnen das gesamte Clipping
tiberspringen.

Erhalten Sie ein Ergebnis wie 0001,
miissen Sie das Objekt nur gegen die lin-
ke Ebene clippen. Ahnlich lesen Sie alle
anderen Ebenen aus dem kombinierten
Clipcode ab. Es ist also sinnvoll, der 3D-
Clipping-Funktion den Clipcode des
Objektes mitzuliefern. Unser Pro-
grammbeispiel liuft mit dieser neuen
3D-Clipping-Funktion etwa doppelt so
schnell wie vorher.

Veranschaulichen Sie sich das Kombi-
nieren von Clipcodes einmal auf einem
Blatt Papier. Es ist ein hervorragendes
Verfahren und kommt in der Compu-
tergrafik haufig zum

Behandlung der einzelnen Fille tiber-
nimmt tboundedobject::draw() in der
atei 3dengine.cpp:

void tboundedobject::draw
(unsigned short *buffer,
tcamera *camera)

/[Transformationsmatrix des
//Objektes berechnen
build_Itm(camera);

//IBoundary Box Test:
tvector tempvector;
unsigned int clip_and=31;
unsigned int clip_or=0;
unsigned int clipcode;
for (int i=0; i<8; i++)
{
/[Transformation in den
//3D-Raum der Kamera:

transform(boundarybox(i],
[tm,tempvector);

/IClipcode fir alle Ebenen

/Iberechnen:

clipcode=fustrum_clipcode(
tempvector);

/ILogische Verknuipfungen
/lberechnen:
clip_and&=clipcode;
clip_or|=clipcode;

}

/[Trivial Reject Test:
if (clip_and) return;

=

m Partikelsysteme
Computerspiele setzen gern Partikelsy-
steme ein, um Explosionen, Feuer und
andere Phinomene auf den Bildschirm
zu zaubern. Diese Systeme zu imple-
mentieren ist nicht schwer.

Bei Partikelsystemen werden Objekte
nicht mehr durch Polygone, sondern
durch einzelne Elemente wie zum Bei-
spiel Punkte dargestellt. Diese einzelnen
Teilchen sind stindig in Bewegung. Um

Einsatz. Ob Sie Lini-
enin einer Ebene oder
Polygone im dreidi-
mensionalen Raum
betrachten, ist egal.
Die zunichst un-
berticksichtigte ~ Z-
Near-Ebene repra-
sentieren Sie einfach
durch ein weiteres
Bit. Dabei brauchen
Sie fiir diese Ebene
nur die Z-Koordinate
eines Eckpunkts zu
uberpriifen und kon-
nen auf Skalarpro-
dukte verzichten.

Die Berechnung
der Clipcodes und die

EL'.PE Magazin Demo

PARTIKELSYSTEME simulieren bewegte Objekte wie ein lo-
derndes Feuer sehr realistisch.

starre Korper oder einen Raum zu zeich-
nen, sind Partikel deshalb ungeeignet.
Bei Explosionen, Feuerwerken und der-
gleichen sind sie Polygon-Objekten hin-
gegen weit Uberlegen.

Meist geniigt eine physikalisch sehr
vereinfachte Berechnung der Partikel:

0101 | 0100 | 0110

0001 | 0000 | 0010

1001 | 1000 | 1010

FUR DAS 2D-CLIPPING verwenden Sie die-
se vierstelligen Clipcodes.

Reprisentieren Sie jedes Element durch
eine Struktur, die nicht nur dessen Posi-
tion, sondern auch die Bewegungsrich-
tung und das ,,Alter” speichert:

struct particle

tvector vertice;
tvector direction;
long lifetime;

%

Das Alter dient dazu, den Partikel nach
einiger Zeit wieder verschwinden zu las-
sen, da Partikeleffekte im relativ be-
schrinkten Raum ablaufen sollen. Als
Ausgleich dafir kommen immer wieder
neue Teilchen hinzu.

Unm einen Partikel darzustellen, zeich-
nen Sie an der entsprechenden Position
im 3D-Raum eine kleine Bitmap additiv
auf den Hintergrund. Durch Uberlage-
rung vieler Partikel verwischen die Kan-
ten der Bitmaps, und Sie erhalten den ge-
winschten Effekt. Von der Lebensdau-
er des Partikels hingt die Helligkeit der
Bitmap ab. Alle Routinen zum Zeichnen
von Texturen sind schon in mehreren
Helligkeiten vorhanden.

Die Implementation der Darstellung
finden Sie in der Datei 3dengine.cpp. Das
gesamte Partikelsystem ist als Objekt
tparticleobject vom Basisobjekt tobject
abgeleitet. Dadurch ersparen Sie sich das
erneute Programmieren der 3D-Berech-
nung und das Laden der Texturen.

Partikel konnen sich natiirlich im 3D-
Raum bewegen. Fiir statische Effekte ist
dies tberfliissig, Explosionen oder lo-
dernde Feuer verlangen hingegen Mobi-
litat. Durch die Struktur der Partikel bie-
tet sich ein einfaches, an die Physik an-
gelehntes Modell an.

In der Abbildung rechts sehen Sie ei-
nen Partikel an seiner alten Position A,
seine Richtung als Vektor v sowie seine
neue Position B. Die neue Position be-
stimmen Sie, indem Sie die Richtung v
um die Gravitation ¢ verandern. Hierzu
addieren Sie einfach die Vektor-Kom-
ponenten. Danach verschieben Sie den
Partikel um seine neue Geschwindigkeit
V.

So erreichen Sie eine Bewegung, die
den physikalischen Tatsachen schon
sehr nahe kommt und gut aussieht. Le-
gen Sie noch fest, wie und wo Partikel er-
zeugt werden. Dafiir fassen Sie alle noti-
gen Informationen in einer Struktur na-
mens particleemitter zusammen:

struct particleemitter

{ long maxparticles;

long lifetime;

long output;

tvector position_rand;
tvector speed;
tvector speed_rand;

\ tvector gravity;

Die Eigenschaft maxparticles legt die
maximale Anzahl an Partikeln fest, die
ein Partikel-Objekt gleichzeitig verwal-
ten soll. Deren Lebenszeit lifetime wird
in berechneten Bildern gemessen. Zu-
sitzlich steuert output, wie viele Partikel
pro Bild neu zum Objekt hinzukom-
men.

Wihrend Sie Partikel generieren, ist es

sinnvoll, die Startposition und die Rich-
tung fiir jeden Partikel etwas zu vari-
ieren. Die dafiir notigen Felder sind po-
sition_rand und speed_rand. Aulerdem
legen Sie noch die Grundgeschwindig-
keit speed sowie die Gravitationskraft
gravity fest.
Auch bei diesem Effekt gilt: Experimen-
tieren lohnt sich. Sie konnen damit Feu-
er, Explosionen, Funken und viele ande-
re Lichteffekte nachbilden.

Fiir die Echtzeit-Grafik ist es sinnvoll,
statt einzelner Punkte kleine Bitmaps fiir
die Partikel zu zeichnen. Benutzen Sie
deshalb die gleiche Methode (additives
Shading) wie fiir den Lense-Flare-Effekt
(vgl. Ausgabe 10/98, ab S. 232).

Setzen Sie die Bildpunkte der Partikel
nicht einfach in das Bild ein, sondern
»addieren® Sie sie auf die aktuellen Pix-
elwerte. Dadurch verwischen die Kan-
ten zwischen den Partikeln, und Sie
bendtigen wesentlich weniger einzelne

Teilchen.

PC UNDERGROUND
PRAXIS

Wenn Sie mit dem addierenden Zeich-
nen nicht vertraut sind, stellen Sie sich
mehrere Dia-Projektoren vor, mit denen
Sie verschiedene Bilder auf eine Lein-
wand projizieren. Je mehr Bilder Sie
ubereinander legen, desto heller werden
die Pixel an den Giberlagerten Stellen. Das
additive Zeichnen kostet zwar viel Zeit,
aber da Sie fiir einen realistischen Effekt
wesentlich weniger Partikel brauchen,
schneiden Sie im Zeitvergleich besser ab.

Die Partikel zeichnen Sie immer erst
am Schluf}, da Sie keine Z-Buffer-Werte
fiir die Partikel besitzen. Der Z-Buffer
enthilt nach dem Zeichnen der Objekte
immer den minimalen Abstand zum Be-
trachter fiir einen Pixel. AufSerdem ken-
nen Sie zu jedem Partikel dessen Ab-
stand zum Betrachter.

Vor dem Zeichnen vergleichen Sie ein-
fach diesen Wert mit dem Z-Buffer-
Wert des Bildes an der Stelle, an welcher
der Partikel im zweidimensionalen
Raum sitzt. Ist er naher als ein dort ge-
zeichnetes Polygon, zeichnen Sie ihn
auch dort. Andernfalls ist er nicht sicht-
bar. Beachten Sie aber, dafl Sie den Z-
Buffer keinesfalls indern diirfen, sonst

BEIM WANDERN eines Partikels von A
nach B spielen Bewegungsrichtung und
Gravitation eine Rolle.

konnte ein vorne liegender Partikel ei-
nen hinteren tiberdecken. Das darf nicht
passieren, da alle Partikel transparent
sind.

Solche Partikelobjekte konnen Sie
auch mit Polygonobjekten kombinie-
ren, um etwa die Triebwerke eines
Raumschiffs mit einer Partikelflamme
auszustatten. Die vorgenommenen Er-
weiterungen der 3D-Engine bieten in-
teressante Ansitze, mit denen Sie wei-
terexperimentieren kénnen. ® PEI/JR

Die vollstandige PC-Underground-Demo mit dem
zugehorigen Quellcode finden Sie auf der Heft-CD
und in unserem Internet-Angebot unter

www.pc-magazin.de/magazin/
O extras.html

Klicken Sie in der Tabelle Online Extras unter
Praxis auf das entsprechende Download-Feld.

PC Magazin Februar1999 221

