
224 März 1999 PC Magazin

P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R /
N I L S P I P E N B R I N C K

Windows-Anwendungen stel-
len Grafiken meist über das
Graphics Device Interface

(GDI) dar. Diese Schnittstelle enthält ein
sehr aufwendiges System zur Fenster-
verwaltung. Außerdem bietet sie viele
Funktionen, um einfache grafische Ob-
jekte wie Linien und Rechtecke zu
zeichnen.

Bei der Demo-Programmierung liegt
Ihr Interesse aber we-
niger in der Fenster-
verwaltung als viel-
mehr in maximaler
Geschwindigkeit.
Um dem allgemeinen
Wunsch nach mehr
Grafik-Power ge-
recht zu werden, hat
Microsoft mit dem
Erscheinen von Win-
dows 95 eine zweite
Schnittstelle für
schnellere Grafik ge-
schaffen: Sie heißt Di-
rectX und erfreut sich
vor allem bei Spielen
großer Beliebtheit.

Die Struktur von
DirectX wollen wir
uns genauer ansehen.
Als Anwendungsbei-
spiel schreiben Sie ei-
ne Grafikbibliothek,
die einen echten Vollbildmodus unter
DirectDraw – einem Bestandteil von Di-
rectX – bietet. Sie verwenden dabei rela-
tiv einfache Aufrufe, die mit DirectX ab
Version 3.0 zusammenarbeiten (neuere
Versionen sind abwärtskompatibel).

■ Das Besondere an DirectX

Mit DirectX begann Microsoft, ein neu-
es Modell für Programmierschnittstellen
zu verwenden. Es ist das Component
Object Model (COM). Die alte, auf
Funktionen basierende Schnittstelle
sollte durch eine objektorientierte er-
setzt werden. Dabei traten zwei techni-
sche Probleme auf: Zum einen booten
nicht alle Windows-Programmierspra-
chen objektorientierte Funktionen, zum
anderen lassen sich mit DLL-Bibliothe-
ken keine Objekte exportieren.

Für den C++-Programmierer sieht
der DirectX-Quelltext objektorientiert
aus. In Wirklichkeit täuschen Makros
nur die Objektorientierung vor. Berei-
ten Sie sich daher auf außergewöhnliche
Fehlermeldungen Ihres C-Compilers

vor, denn dieser sieht den Code anders,
als Sie ihn eingeben.

DirectX ist die der Hardware am
nächsten stehende Schnittstelle, die die
Windows-API zu bieten hat. Daher ist
sie besonders fehleranfällig. Sie sollten
stets den Rückgabewert von DirectX-
Funktionen überprüfen: Wenn Sie einen
Fehler ignorieren, kann nicht nur Ihr
Programm, sondern das gesamte Win-
dows-System abstürzen.

Im Gegensatz zu gewöhnlichen C++-
Objekten gibt es bei DirectX keine Kon-
struktoren und Destruktoren. Für jedes
Objekt existiert statt dessen eine Initiali-
sierungs-Funktion. Zusätzlich besitzt
jedes DirectX-Objekt eine Release-
Funktion als Ersatz für einen Objektde-
struktor. Diese Funktionen müssen Sie
selbst aufrufen.

Von Version zu Version hat Microsoft
einige Änderungen und Verbesserungen
an den DirectX-Objekten vorgenom-
men. Um zu alten Programmen und ver-
schiedenen installierten Versionen von
DirectX kompatibel zu bleiben, gibt es
einen interessanten Versions-Mechanis-
mus: Wenn Sie von DirectX ein Objekt
anfordern, bekommen Sie zunächst ein
Objekt der Version 1.0, das Sie nach ei-
ner neueren Version von DirectX fragen
können.

Eine zentrale Rolle spielen die soge-
nannten GUIDs (Globally Unique
Identifiers). Das sind eindeutige Zahlen-
codes, die Windows jedem Objekt zu-
ordnet. So kann Windows die Objekte
voneinander unterscheiden. Wenn Sie
ein DirectDraw-Objekt der Version 3.0
wünschen, sollten Sie die entsprechende
GUID für dieses Objekt kennen.

Laut Microsoft soll der zugrundelie-
gende Algorithmus erst um das Jahr
3400 herum bereits verwendete Identifi-
kationsnummern doppelt vergeben.
Diese Weitsichtigkeit erspart der Com-
puterwelt ein ähnliches Chaos wie beim
Jahr-2000-Problem.

■ DirectDraw und dessen
Objekte
In den abgedruckten Listingzeilen ha-
ben wir der Übersichtlichkeit zuliebe
auf die Fehlerbehandlung verzichtet.
Dieser Code soll Ihnen das Prinzip und
die Schnittstelle nahebringen; guten
Programmierstil bietet dagegen der Co-
de der neuen Demobibliothek auf der
Heft-CD.

Den Zugriff auf eine Grafikkarte lie-
fert Ihnen das Objekt IDirectDraw: q

Demo-Programmierung unter Windows 95/NT

Auf direktem
Wege
Programmieren Sie schnelle Grafik mit DirectX,

und nutzen Sie Ihre Demos als Bildschirmschoner.

BEIM PAGE-FLIPPING vertauscht DirectDraw einfach die sicht-

bare mit der unsichtbaren Oberfläche.

PC Magazin März 1999 225

P C U N D E R G R O U N D
P R A X I S

Echte Computerfreaks warten nicht aufs

Christkind, sondern auf die Zeit danach:

Bereits zum achten Mal öffnete The Party

am 27. Dezember ihre Pforten. Diese De-

mo-Party, ein Treffpunkt von Demo-Pro-

grammierern, Musikern und Grafikern,

zählt zu den größten Ereignissen dieser

Art in Europa.

Drei Tage lang bevölkerten über 2500 –

vorwiegend männliche – Besucher das

Messezentrum der kleinen dänischen

Stadt Aars an der E45 zwischen

Aalborg und Viborg im Norden

Jütlands. Do You Believe in Life

after Christmas? lautete das dies-

jährige Motto, angelehnt an den

Refrain des 98er-Comeback-Hits

der Popdiva Cher.

Traditionell traf sich hier nicht

nur die PC-Szene, auch C64-

Freaks und die Amiga-Gemeinde

waren mit neuen Demos und Ef-

fekten vor Ort. Fast alle Größen

der europäischen Demo-Szene

waren gekommen, um mit

Gleichgesinnten Wissen und

Quellcodes auszutauschen und

auf zahlreichen Wettbewerben

ihr Können unter Beweis zu stel-

len.

Höhepunkte der Party waren wie immer

die Präsentationen der verschiedenen

Wettbewerbsbeiträge. Die Werke wurden

auf einer 10 x 8 Meter großen Leinwand –

unterstützt durch eine leistungsstarke

Soundanlage – vorgeführt und später

vom Publikum bewertet.

Bei den PC-Demos, gewissermaßen der

Königsdisziplin, konnten vor allem zwei

Programme Aufsehen erregen:

• Moai von der Gruppe Nomad wurde

zum Sieger gekürt. Es besteht ausschließ-

lich aus 3D-Szenen und zeigt einen anti-

ken Tempel, der sich in eine Disco ver-

wandelt.

• Das zweitplazierte State of Mind geht

einen anderen Weg: Statt einer Demo mit

eigener Musik schuf die Formation Bomb

ein neues Musikvideo zu einem bereits

vorhandenen Song.

Zu beiden Demos gibt es eine MS-DOS-

und eine Windows-Version. State of Mind

wartet sogar noch mit einer Linux-Varian-

te auf: Ein deutlicher Beweis dafür, daß

begnadete Programmierer heutzutage auf

jeder Plattform Grafik-Demos schreiben

können.

Die Programme,

Grafiken und Musik-

dateien der Wettbe-

werbe sowie allge-

meine Informatio-

nen über The Party

finden Sie online un-

ter

www.theparty.dk

Zusätzlich zu den

üblichen Wettbe-

werbskategorien –

wie Demo, 64K-Intro

(Demo mit einer ma-

ximalen Datengröße

von 64 KByte), Gra-

fik oder Musik –

fand zum ersten mal

ein Hacking-Contest

statt. Dabei ging es darum, in möglichst

kurzer Zeit eine Borderware Firewall zu

umgehen und als Beweis für das Gelingen

eine Datei auf dem „geschützten“ Server

abzulegen.

Im Java-Wettbewerb konnte das Publikum

plattformunabhängige Demos bewun-

dern. Trotz der Leistungseinbußen, die die

Emulation einer Java-Maschine mit sich

bringt, zeigen die Programme in dieser

Disziplin inzwischen einige interessante

Effekte.

Als kleine Kuriosität wurde sogar eine De-

mo auf einer Sony-Playstation präsen-

tiert. Doch die Zukunft der Demo-Pro-

grammierung dürfte weiterhin in der Welt

von PC, Amiga und C64 liegen – zumal es

eine teure Entwicklerversion erfordert, um

für diese Spielekonsole zu programmieren.

Wer nicht nur die Mauskugel über den

Tisch rollen wollte, konnte sein Geschick

bei einem Bowling-Turnier unter Beweis

stellen. Weitere Abwechslung von der

Bildschirmarbeit brachten verschiedene

Live-Auftritte von Rave-Musikern.

Das große, eigens für The Party installierte

Netzwerk lud auch zum Spielen ein: So

mancher Spielefreak vergnügte sich beim

Halflife-Wettbewerb, und nostalgisch ver-

anlagte Naturen traten im C64-Spiel Inter-

national Karate gegeneinander an.

Möchten Sie selbst einmal eine dieser

großen Partys besuchen, brau-

chen Sie nicht unbedingt nach

Dänemark zu reisen. Die näch-

ste große Veranstaltung, die

Mekka & Symposium 2k-1, fin-

det vom 2. bis 5. April 1999 in

Fallingbostel in der Lünebur-

ger Heide statt. Dort gibt es

die üblichen Wettbewerbe je-

weils für PC, Amiga und C64.

Außerdem versuchen die Teil-

nehmer bei dem für diese Par-

ty typischen 32K-Game-Wett-

bewerb, ein komplettes Spiel

– egal welches Genre – mit al-

len Daten in 32 KByte zu pro-

grammieren. Genaue Angaben

zum Veranstaltungsort und

den Teilnahmebedingungen

finden Sie auf der Web-Site

http://ms.demo.org

Um möglichst viele „Scener“ (also Leute

aus der Demo-Szene) anzulocken und

gleichzeitig die hauptsächlich an Spielen

interessierten Besucher fernzuhalten, soll

diesmal das Spielen auf dem Partynetz-

werk unterbunden werden. Eigens für Mul-

tiplayer-Spiele findet eine Woche später

in derselben Halle die sogenannte Planet

Insomnia-Spiele-Party statt, nähere Infos

dazu finden Sie auf der Site

www.planet-insomnia.de

Die Siegerdemos Moai und State of Mind finden Sie
auf der Heft-CD.

THE PARTY: EIN LEBEN NACH WEIHNACHTEN

ERSTER PLATZ bei den PC-Demos: Moai von Nomad

DER GEWINNER des Raytracing-Wettbe-

werbs: Suburbs 2100 von 3D Addict

VERLÄNGERTE FEIERTAGE auf The Party 1998 in Dänemark

226 März 1999 PC Magazin

P C U N D E R G R O U N D
P R A X I S

IDirectDraw * dd = NULL;
GUID * ddGUID = NULL;
DirectDrawCreate(ddGUID,&dd,

NULL);

Dieser Code erzeugt ein IDirectDraw-
Objekt und speichert den Pointer darauf
in dd. ddGUID dient dazu, mehrere im
System installierte Grafikkarten zu un-
terscheiden. Falls Sie – wie hier im Bei-

spiel – ddGUID auf 0 setzen, kommt die
Standard-Grafikkarte zum Einsatz.

Im nächsten Schritt teilen Sie Win-
dows mit, daß Ihr Programm von nun an
der alleinige Besitzer der Grafikkarte
sein soll. Dies erreichen Sie mit

dd->SetCooperativeLevel(
ParentWindow,

DDSCL_EXCLUSIVE |
DDSCL_FULLSCREEN |
DDSCL_ALLOWREBOOT);

Das erste Argument, das Sie übergeben,
ist der Handle eines Fensters. Wie Sie die
Fensterklasse definiert haben, ist egal –
sie muß allerdings vom aktuell laufenden
Programm erzeugt worden sein. Die
drei durch ein logisches Oder verknüpf-
ten Flags im zweiten Parameter geben
Ihnen vollen Zugriff auf die Grafik-
Hardware.
Ist obiger Befehl ausgeführt, wirkt sich
jeder Absturz fatal auf Windows aus.
Sollte Ihr Programm abstürzen, können
Sie den Fehlerdialog weder sehen noch
bedienen, sondern müssen den Rechner
neu starten. Jetzt brauchen Sie eine neue-
re Version des DirectDraw-Objekts:

IDirectDraw2 * dd2 = NULL;
dd->QueryInterface(

IID_IDirectDraw2,
(void **) &dd2);

IDD_IDirectDraw2 ist die GUID der
zweiten Version von DirectDraw. Die
Variable dd2 ist nach Aufruf dieser
Funktion ein Objekt vom Typ Direct-
Draw2. Damit können Sie den Video-
modus wechseln:

dd2->SetDisplayMode(
320,240,16,0,0);

Die ersten drei Parameter stehen für die
Breite, Höhe und Farbtiefe des Video-
modus. Mit dem vierten Parameter än-
dern Sie die Bildwiederholfrequenz. Ei-
ne 0 setzt die Wiederholfrequenz auf
Standardwerte. Das letzte Argument hat
noch keine Bedeutung und ist für späte-
re Erweiterungen von DirectX gedacht.

Die erste Hürde ist genommen: Sie ha-
ben einen Videomodus Ihrer Wahl und
sind im Exclusive-Modus von Direct-
Draw. Aber wie schreiben Sie jetzt Da-
ten in den Grafikspeicher? Dafür brau-
chen Sie weitere Objekte.

■ DirectDraw-Surfaces
Mit den sogenannten Surfaces (Ober-
flächen) verwalten Sie den Videospei-
cher. DirectDraw bietet viele verschie-
dene Arten von Surfaces. Solange Sie nur
an einem einfachen Zugriff auf den Vi-
deospeicher interessiert sind, bleibt alles
relativ einfach:

DDSURFACEDESC SurfaceDesc;
memset(&SurfaceDesc,0,

sizeof(SurfaceDesc));
SurfaceDesc.dwSize =

sizeof(SurfaceDesc);

Um die gewünschten Eigenschaften
festzulegen, füllen Sie eine Struktur vom
Typ DDSURFACEDESC aus. Machen
Sie das sorgfältig, denn (wie bereits er-

DEMOS ALS BILDSCHIRMSCHONER
Sie möchten Ihrem Windows-System eine

persönliche Note geben? Dann verwen-

den Sie Ihre bisher geschriebenen Demos

als Bildschirmschoner.

Ein Windows-Bildschirmschoner mit der

Dateiendung .scr ist vom Aufbau her iden-

tisch mit einer exe-Datei. Wie sich das je-

weilige Programm verhält, entscheidet

sich beim Aufruf:

• Mit dem Kommandozeilenparameter /c

starten Sie einen Konfigurationsdialog,

• mit /s einen Schoner.

• Ein Aufruf ohne Parameter – etwa wenn

Sie selbst eine scr-Datei ausführen – wird

wie ein Start mit dem Argument /s be-

handelt.

Um die Programmierung eigener Bild-

schirmschoner zu erleichtern, stellt

Microsoft über die Win32-API die Biblio-

thek scrnsave.lib bereit, die alle Win-

dows-spezifischen Aufgaben erledigt. Sie

legt automatisch ein Vollbildfenster an,

deaktiviert den Mauszeiger und setzt die

registrierte Fensterklasse auf

WS_EX_TOPMOST, damit sich das Fen-

ster immer im Vordergrund befindet. So

können Sie sich ganz auf die Gestaltung

der Dialoge und des Bildschirmschoners

konzentrieren.

Ebenfalls in dieser Bibliothek befinden

sich die Funktion WinMain und der Mes-

sage-Handler. Letzterer steuert alle für

Bildschirmschoner typischen Verhaltens-

weisen: So wird der Bildschirmschoner

beim Bewegen der Maus oder durch einen

Tastendruck beendet.

In unserer neuen Grafikbibliothek demo-

sys.cpp wählen Sie mit

#define SCREENSAVER

die Kompilierung zum Bildschirmschoner.

In diesem Fall werden die von scrnsave.lib

geforderten Schnittstellen-Prozeduren

definiert und die Header-Datei scrnsave.h

eingebunden. Die Prozedur

LONG WINAPI ScreenSaverProc(...)

enthält Ihren Message-Handler für den

Bildschirmschoner. Alle Nachrichten, die

Sie nicht bearbeiten wollen, übergeben

Sie an den von scrnsave.lib bereitgestell-

ten Message-Handler DefScreenSaver-

Proc(...). Nach dem Empfang der Nach-

richt WM_CREATE initialisieren Sie – wie

bisher in WinMain(...) – die Demobiblio-

thek und starten den Thread des Demos.

Erhalten Sie die Nachricht WM_DEST-

ROY, rufen Sie zum Beenden die demo-

quit()-Funktion der Demo auf.

An der Demo selbst ändert sich nichts. Da-

mit können Sie alle bisher in PC Under-

ground entwickelten Programme ohne

Änderungen als Bildschirmschoner ver-

wenden.

Bei der Prozedur ScreenSaverConfigure-

Dialog(...) handelt es sich auch um einen

Message-Handler, der einen Konfigurati-

onsdialog bereitstellen soll. Sie können

einen solchen Dialog mit einem Ressour-

cen-Editor erzeugen und an dieser Stelle

in das Demosystem einbauen. Die Konfi-

gurationsdaten sollten Sie in der Registry

sichern. Wünschen Sie keinen Konfigurati-

onsdialog, verwenden Sie einfach folgen-

den minimalen Dialog, der nicht einmal

ein Fenster öffnet:

BOOL WINAPI
ScreenSaverConfigureDialog(

➥ HWND hdlg,UINT message,
➥ WPARAM wparam,LPARAM lparam)
{

switch (message)
{

case WM_INITDIALOG:
return TRUE;

case WM_COMMAND:
switch (LOWORD(wparam))
{

case IDOK:
case IDCANCEL:

EndDialog(hdlg,TRUE);
return TRUE;

}
}
return FALSE;

}
BOOL WINAPI

RegisterDialogClasses(
HANDLE hinst)

{
return TRUE;

}

Ein Bildschirmschoner unter Windows

enthält normalerweise alle Daten (Bit-

maps, Wave-Dateien oder Videosequen-

zen) als Ressourcen; das heißt, sie sind in

der exe- bzw. scr-Datei enthalten. Unser

Programmbeispiel PC Underground Scre-

en Saver.scr, das Sie in das Windows- oder

das System32-Verzeichnis kopieren, ver-

langt die Bitmap-Grafik tunnel2.bmp im

Hauptverzeichnis Ihrer Festplatte C:.

Ihren Bildschirmschoner sollten Sie im Di-

rectX-Vollbildmodus laufen lassen, weil

die GDI-Funktion StretchDIBits(...) zum

Skalieren eines Bildes auf Bildschirm-

größe sehr langsam ist.

PC Magazin März 1999 227

P C U N D E R G R O U N D
P R A X I S

wähnt) ist DirectDraw nicht gerade feh-
lertolerant.

Die Struktur SurfaceDesc füllen Sie
zuerst mit Null-Bytes und initialisieren
das Feld dwSize mit der Größe der
Struktur. DirectDraw stellt damit fest,
mit welcher Version von DirectX Sie Ihr
Programm übersetzt haben.

SurfaceDesc.ddsCaps.dwCaps =
DDSCAPS_PRIMARYSURFACE |
DDSCAPS_FLIP |
DDSCAPS_COMPLEX;

SurfaceDesc.dwBackBufferCount=1;

Die Daten im Feld ddsCaps.dwCaps be-
schreiben die Art der Oberfläche, die Sie
anfordern: hier darstellbaren Videospei-
cher (DDSCAPS_PRIMARYSURFA-
CE), der Page-Flipping (DDS-
CAPS_FLIP und DDSCAPS_COM-
PLEX) beherrscht. Das heißt: Sie kön-
nen zwischen mehreren virtuellen Bild-
schirmen hin- und herschalten. Für das
Page-Flipping benötigen Sie mindestens
noch eine zweite Bildschirmseite. In dw-
BackBufferCount geben Sie die Anzahl
der zusätzlichen Bildschirmseiten an
und legen in dwFlags fest, daß Sie fol-
genden Wert setzen wollen:

SurfaceDesc.dwFlags =
DDSD_CAPS |
DDSD_BACKBUFFERCOUNT;

Teilen Sie DirectDraw mit, welche In-
formationen Sie in der Struktur gesetzt
haben. Da viele verschiedene Arten von
Surfaces existieren, muß DirectDraw ge-
nau wissen, welche Art von Surface Sie
haben möchten.

Dieser Code legt die Oberfläche nach
Ihren Wünschen an:

IDirectDrawSurface ddSurface=0;
dd2->CreateSurface(

&SurfaceDesc,&ddSurface,0);

Dabei wird ddSurface – falls Sie keinen
Fehler gemacht haben – mit einem IDi-
rectDrawSurface-Objekt initialisiert.

■ Page-Flipping unter
DirectDraw
Mit dem in DirectDraw eingebauten
Page-Flipping wechseln Sie schnell zwi-
schen mehreren Bildschirmseiten. Das
Prinzip ist sehr einfach: Die Oberfläche,
die Sie eben angelegt haben, besteht aus
zwei Bildschirmseiten. Eine davon ist
sichtbar, während Sie den Inhalt der an-
deren Seite ändern können, ohne Dar-
stellungsfehler zu erhalten. Sie brauchen
sich nicht einmal darum zu kümmern,
welche der Seiten gerade sichtbar ist. Di-
rectDraw übernimmt diese Verwal-
tungsaufgabe für Sie.

Wenn Sie herausfinden wollen, wel-
che Oberfläche Sie gerade ändern dür-
fen, fragen Sie Ihre sichtbare Surface ein-
fach nach dem BackBuffer, also der
zweiten Bildschirmseite. Füllen Sie eine
DDSCAPS-Struktur, und teilen Sie Di-
rectDraw mit, daß Sie am BackBuffer in-
teressiert sind:

DDSCAPS caps;
caps.dwCaps=DDSCAPS_BACKBUFFER;

Nun fordern Sie von der aktiven Surface
die nächste zum Zeichnen verfügbare
Seite an:

IDirectDrawSurface * dds;
ddSurface->GetAttachedSurface(

&caps,&dds);

Die Variable dds wird dabei mit der Hin-
tergrund-Surface initialisiert, und Sie
dürfen mit dem Zeichnen anfangen.

Wenn Sie auf eine Surface zugreifen,
ändern Sie immer automatisch die nicht
sichtbare Bildschirmseite. Sobald Sie Di-
rectDraw mitteilen, daß Sie fertig sind
und umschalten möchten, werden die
beiden Seiten ausgetauscht.

Das kostet kaum Rechenzeit, da der
Wechsel der Bildschirmseiten in der
Grafik-Hardware vonstatten geht. Die
Surfaces befinden sich – sofern genug
Grafikkartenspeicher vorhanden ist – im
Speicher der Karte und nicht im
Hauptspeicher des Computers. Zudem

wartet DirectDraw vor dem Umschal-
ten darauf, daß der Monitor das Bild
komplett aufgebaut hat. Diese Vorge-
hensweise verhindert Darstellungsfeh-
ler, die zum Beispiel entstehen, wenn Sie
während des Bildaufbaus auf das nächste
Bild umschalten.

Page-Flipping mit einem Bild im Hin-
tergrund heißt Double-Buffering. Es
funktioniert aber auch mit zwei (Triple-
Buffering) oder mehr inaktiven Bild-
schirmseiten. Verwenden Sie etwa eine
Zeichenroutine, die ein Bild schneller
aufbaut als der Monitor, können Sie ei-
nige Bilder schon im voraus berechnen.
Diese werden dann automatisch der Rei-
he nach abgespielt.

So starten Sie das Page-Flipping bei
DirectDraw: Nachdem Sie ein Bild voll-
ständig gezeichnet haben, rufen Sie die
Flip-Funktion des IDirectDrawSurface-
Objekts auf:

ddSurface->Flip(
0,DDFLIP_WAIT);

Übergeben Sie der Funktion zwei Para-
meter. Mit dem ersten ändern Sie die au-
tomatische Reihenfolge des Page-Flip-
ping. Für unsere Zwecke ist das uninter-
essant. Der zweite Parameter DDF-
LIP_WAIT signalisiert, daß Sie mit dem
Umschalten warten möchten, bis der
Monitor das Bild komplett aufgebaut
hat. Der Wechsel zwischen den Bild-
schirmseiten geschieht also genau dann,
wenn der Rasterstrahl das untere Ende
des Monitors erreicht hat und wieder
nach oben an den Anfang läuft.

■ Zugriff auf das Surface-
RAM-Flipping
Eine wichtige Frage ist noch unbeant-
wortet: Wie greifen Sie auf den Speicher
des verdeckten Bildes zu, um dessen In-
halt zu ändern? Das Objekt IDirect-
DrawSurface stellt hierfür zwei Funk-
tionen zur Verfügung: Lock und
Unlock. q

DIE KOMPONENTEN DES DIRECTX-SDK

Komponente Funktion
DirectDraw Direktzugriff auf Bitmaps im Grafikspeicher, schnelles Hardware-Flip-

ping

DirectSound Mischen und Wiedergabe von Sounds

DirectPlay Verbindung für Modem- und Netzwerkspiele

Direct3D Komplettes 3D-Grafiksystem mit direkter Kontrolle der Rendering-

Pipeline

DirectInput Eingaberoutinen für Joystick, Maus und Tastatur

DirectSetup Installationsprozedur für DirectX

AutoPlay Automatischer Programmstart

UNSER BILDSCHIRMSCHONER greift für

den Tunnel-Effekt auf diese externe Bit-

map-Datei zu.

228 März 1999 PC Magazin

P C U N D E R G R O U N D
P R A X I S

Erneut kommen Sie nicht daran vor-
bei, eine DirectDraw-Struktur vom Typ
DDSURFACEDESC auszufüllen:

DDSURFACEDESC
SurfaceDescription;

memset(&SurfaceDescription,0,
sizeof(DDSURFACEDESC));

SurfaceDescription.dwSize =
sizeof(SurfaceDescription);

Dann rufen Sie die Funktion Lock auf,
die Ihnen die Speicheradresse der Gra-
fikdaten verrät:

ddSurface->Lock(0,
&SurfaceDescription,

DDLOCK_SURFACEMEMORYPTR |
DDLOCK_WAIT,0);

Der Pointer SurfaceDescription.lpSurfa-
ce zeigt nun auf das Video-RAM. Auch
einige andere Felder der Struktur enthal-
ten wichtige Informationen. So gibt das
Feld SurfaceDescription.lPitch an, wie
viele Bytes Speicher DirectDraw für ei-
ne Bildschirmzeile verwendet. Das mu-
tet im ersten Moment etwas ungewöhn-
lich an, ist aber für viele Grafikkarten er-
forderlich.

Wenn Sie zum Beispiel einen 320 x 240
Pixel großen Videomodus in Highcolor
setzen, belegt eine Grafikzeile genau 640
Byte. Viele Grafikkarten arbeiten jedoch
schneller, wenn dieser Wert zwar etwas
größer, aber rechnerisch einfacher zu
handhaben ist als die mindestens
benötigten Bytes pro Zeile. Sie sollten
dies beim Schreiben in den Videospei-
cher unbedingt beachten.

Nach dem Zeichnen rufen Sie die
Unlock-Funktion auf:

ddSurface->Unlock(
SurfaceDescription.lpSurface);

Halten Sie die Zeit zwischen Lock und
Unlock immer so kurz wie möglich.
Während Sie auf den Videospeicher zu-
greifen, bleibt fast das gesamte Betriebs-
system stehen. Nur noch Sie bzw. Ihr
Programm bekommt Prozessorzeit. Be-
denken Sie: Wenn Sie viel Rechenzeit
beanspruchen, werden eventuell wichti-
ge Systemprozesse behindert.

■ Grün bevorzugt
Jetzt sehen wir uns das 16-Bit-Farbmo-
dell genauer an. Ein 16 Bit breites High-
color-Pixel ist aus drei Feldern aufge-
baut: Sie entsprechen den drei Farbkom-
ponenten Rot, Grün und Blau (RGB). In
der Regel werden die 16 Bits so aufge-
teilt, daß Rot und Blau je 5 Bit bekom-
men, während Grün mit 6 Bit bevorzugt
behandelt wird. Der Grund: Grün ist die
Primärfarbe mit der größten Helligkeit,
das Auge kann sie am besten wahrneh-
men. Im Schema sieht das so aus:

RRRRR GGGGGG BBBBB

Einige Grafikkarten verwalten die Bits
jedoch auf andere Weise. Sie verwenden
einheitlich für jede Primärfarbe 5 Bit
und lassen dafür das oberste Bit unge-
nutzt:

0 RRRRR GGGGG BBBBB

DirectDraw gibt Ihnen auf einigen Gra-
fikkarten diesen 15-Bit-Farbmodus, ob-
wohl Sie einen 16-Bit-Modus setzen
wollten. In diesem Fall wandeln Sie die
Pixel während des Kopierens in das an-

dere Farbformat um, um zur bisher in
PC Undergound verwendeten
Grafikbibliothek kompatibel zu blei-
ben.

Damit Sie sich künftig nicht mehr dar-
um zu kümmern brauchen, enthält der
Code der neuen DirectX-Bibliothek be-
reits eine effiziente Umwandlungsrouti-
ne. Dieser zusätzliche Verwaltungsauf-
wand ist der Preis für die schnelle Gra-
fik. Das Windows-GDI-Interface wür-
de Ihnen auch diese Arbeit abnehmen.

Die Umwandlung von 16 nach 15 Bit
nehmen Sie mit einigen einfachen Ope-
rationen parallel für jeweils zwei Pixel
vor:

unsigned long blau =
pixel & 0x001f001f;

unsigned long rotgrün =
(pixel > 1) & 0xffe0ffe0;

pixel = blau | rotgrün;

Zuerst maskieren Sie den Blau-Anteil
aus, da er sich während der Umwand-
lung nicht ändert. Die beiden Farbkom-
ponenten Rot und Grün schieben Sie
zunächst binär nach rechts und maskie-
ren die gewünschten Bits. Wenn Sie bei-
de Farbanteile mit einer Oder-Verknüp-
fung wieder zusammenfügen, haben Sie
das unterste Grün-Bit weggeworfen und

alle übrigen Farbanteile auf die richtige
Position geschoben.

Wir haben diese Bibliotheksroutine
auch in Assembler programmiert. Sie ist
damit nur minimal langsamer als das di-
rekte Kopieren des Speichers.

Wenn Sie bereits mit der bisher in PC
Underground verwendeten Grafik-
bibliothek experimentiert haben, wird
Ihnen der Einsatz der neuen DirectX-
Erweiterung leichtfallen.

Die einzige auffallende Änderung ist
ein neuer Fenstermodus. Neben den
vordefinierten Konstanten FENSTER,
SKALIERBAR und VOLLBILD für
die GDI-Routinen gibt es zusätzlich
DDVOLLBILD für Vollbilddemos, die
die Geschwindigkeit von DirectDraw
ausnutzen.

■ Kompilation ohne
Komplikation
Um DirectX-Programme zu kompilie-
ren, benötigen Sie das DirectX-SDK
(Software Development Kit) von Micro-
soft. Sie beziehen es über die Internet-
Seite von Microsoft unter

http://msdn.microsoft.com/
➥developer/sdk/directx.htm

Die Aufgaben seiner Komponenten ent-
nehmen Sie der Tabelle (vorige Seite un-
ten). Aber Achtung: Nicht jede Version
von DirectX funktioniert mit jedem
Compiler. Benutzer von Microsoft Vi-
sual C++ sind hier im Vorteil: Sie brau-
chen nichts zu tun.

Bei Watcom C++ sieht das etwas an-
ders aus. Mit Version 11 des Compilers
erhalten Sie das DirectX SDK 3.0. Damit
können Sie die hier entwickelten Pro-
gramme problemlos kompilieren. Wenn
Sie eine neuere Version des SDK instal-
lieren, werden Sie einiges an Handarbeit
leisten müssen, um alles zum Laufen zu
bringen.

Die DirectX-Bibliothek wird nicht –
wie die Standardbibliotheken – automa-
tisch zum Programm gelinkt. Darum
müssen Sie sich selbst kümmern. Für die
Arbeit mit DirectDraw binden Sie die
beiden Libraries ddraw.lib und guids.lib
(bzw. dxguids.lib bei Visual C) ein.

s P E I / B M

Den kompletten Bildschirmschoner, die DirectX-Bi-
bliothek und alle Quelltexte finden Sie auf unserer
Heft-CD, Rubrik Praxis, und im Internet-Angebot
des PC Magazin unter

www.pc-magazin.de/magazin/
➥extras.htm

Klicken Sie unter Online Extras im Menü Praxis auf
das entsprechende Download-Feld.

DEN AKTIVEN BILDSCHIRMSCHONER le-

gen Sie in der Systemsteuerung im Menü-

punkt Anzeige fest.

