
260 April 1999 PC Magazin

P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R /
N I L S P I P E N B R I N C K

Laufschriften – englisch Scroller
genannt – kennen Sie aus dem all-
täglichen Leben. Im Abspann von

Kinofilmen, in News-Tickern und auf
Werbetafeln ziehen wandernde Zeichen
Ihre Aufmerksamkeit auf sich. Selbst In-
formationen, die eigentlich nicht auf die
Anzeigetafel oder den Bildschirm pas-
sen, schieben Sie mit dieser Methode in
Lesegeschwindigkeit weiter.

Wir schreiben hier zunächst einen ein-
fachen Lauftext, den wir dann um zu-
sätzliche Gimmicks wie Bewegungen
und Spiegelungen er-
weitern. Außerdem
erfahren Sie, wie Sie
den Effekt der legen-
dären Star-Wars-
Laufschrift mit sehr
einfachen Mitteln
nachbilden. Zum Ab-
schluß dieser Ausga-
be integrieren Sie die-
se Effekte in ein Pro-
gramm, mit dem Sie
animierte Texte als
ausführbare exe-Da-
tei weitergeben kön-
nen.

■ Erste holprige Schritte
Die einfachsten Scroller sind wirklich
primitiv: Sie schieben lediglich eine Rei-
he kleiner Bilder mit Buchstaben über
den Bildschirm. Unter Windows erzeu-
gen Sie mit TrueType-Fonts zwar
schnell Schriften, als Grundlage für De-
mo-Scroller haben diese allerdings einen
entscheidenden Nachteil: Sie sind alle
einfarbig.

Aus diesem Grund stellen wir Ihnen
zunächst eine kleine C++-Klasse vor,
mit der Sie auf einfache Weise Texte,
Buchstaben und Laufschrift in Ihre De-
mos einbauen. Die Klasse Font, die Sie

aus font.cpp und font.h generieren, ver-
waltet Position und Größe einzelner
Zeichen in einer Bitmap. Zudem stellt sie
Funktionen zur Verfügung, mit denen
Sie Zeichen oder auch ganze Zeichen-
ketten schnell und flexibel darstellen.

Die Implementierung der Klasse
selbst ist etwas kompliziert. Wenn Sie
daran interessiert sind, sehen Sie sich den
gut kommentierten Quellcode auf der
Heft-CD an.

Einfacher und interessanter ist da
schon die Benutzung:

Font *myFont =
new Font(„chars.bmp“);

So initialisieren Sie eine Instanz der
Font-Klasse. Als Parameter übergeben

Sie den Namen der Bitmap, die die
Buchstaben enthält. Die Font-Klasse
kann nur mit 256-Farben-Bitmaps um-
gehen.

Pixel mit dem Wert 0 haben eine spe-
zielle Bedeutung: Sie werden beim
Zeichnen ausgelassen. Damit können Sie
Bereiche der Buchstaben transparent ge-
stalten.

Mit folgenden Zeilen setzen Sie den
Clipping-Bereich:

myFont->SetClipping
(0,0,SCREEN_X, SCREEN_Y);

Die Routinen zum Zeichnen von Texten
verfügen alle über ein eingebautes Clip-
ping. Sie brauchen sich also keine Sorgen
zu machen, daß Texte, die länger als der

Bildschirm sind, zu Fehlern führen.
Legen Sie nun eine Tabelle an, die die

Plazierung der Buchstaben in der Bit-
map beschreibt. Jede Zeile der Tabelle
entspricht einer Zeile Zeichen in der Bit-
map. Vergleichen Sie dazu das folgende
Array mit der Abbildung links.

static char *fonttable[] =
{

„abcdefghij“,
„klmnopqrst“,
„uvwxyz „,
„0123456789“,
„?’.,!“,
NULL

}

myFont->SetFontMetric
(fonttable,16,18);

Die Routine SetFontMetric erwartet als
Parameter diese Tabelle sowie die Maße
des Rasters, in dem die Buchstaben an-
geordnet sind. Möchten Sie keine festen
Raster verwenden, definieren Sie die
Zeichen einzeln. Dazu benutzen Sie die
Funktion SetCharMetric. Wir empfeh-
len jedoch, von vornherein die Buchsta-
ben im Raster zu plazieren. Das spart ei-
ne Menge Arbeit.

Wenn Sie soweit sind, können Sie los-
scrollen:

unsigned char *text =
„Dies ist ein Lauftext“;

while (DemoRunning)
{

//Hintergrund kopieren
memcpy (screen,hintergrund2,

SCREEN_Y*SCREEN_X*2);

//Scroller darüber zeichnen
//(30 Pixel/sec verschieben)

int x = SCREEN_X-
((GetDemoTime()-StartZeit)
*30)/1000;

myFont->Print(screen,palette,
SCREEN_X,text,x,120);

//... und Bild darstellen
BlitGraphic(screen);

}

Wenn Sie diesen Code ausführen, stellen
Sie fest, daß die Laufschrift ruckelt. Das
liegt an der ungleichmäßigen Verschie-
bung der Laufschrift. Eine gleichmäßige

Demo-Programmierung unter Windows 95/NT

Am laufenden Band
Einfacher Text paßt kaum zu bunten Grafikeffekten. Deshalb animieren Sie

Laufschriften in vielen Variationen.

IN DER DATEI CHAR.BMP legen Sie den Font als Bitmap ab.

PC Magazin April 1999 261

P C U N D E R G R O U N D
P R A X I S

Bewegung erhalten Sie nur, wenn Sie pro
Bildaufbau die Laufschrift immer um
den gleichen Betrag verschieben. Leider
können Sie dagegen wenig machen, da
Windows keine brauchbaren Methoden
zur Synchronisation mit der Grafikkar-
te anbietet. Mit GDI (Graphics Device
Interface) haben Sie keine Chance zu er-
fahren, wann die Videokarte das Bild
neu aufgebaut hat.

Unter DirectDraw sieht es da etwas
besser aus. Der Aufruf von BlitGraphic
stellt sicher, daß Sie nicht mehr Bilder
pro Sekunde darstellen, als die Bildwie-
derholfrequenz des Monitors zuläßt, der
am Rechner angeschlossen ist.

Aber auch dies hilft Ihnen nur bedingt
weiter: Sie wissen ja nicht, ob der Benut-
zer seinen Monitor mit niedrigen 50
oder mit 90 Hz oder mehr betreibt. Sie
können nun zwar sicher sein, daß die
Laufschrift nicht mehr ruckelt – dafür
haben Sie aber keine Kontrolle mehr
darüber, wie schnell der Scroller läuft.

Da Sie also nicht viel gegen dieses
Manko ausrichten können, sorgen Sie
am besten dafür, daß der Fehler nicht so
auffällt. Dazu gestalten Sie die Bewe-
gung der Buchstaben etwas komplizier-
ter. Das Auge des Betrachters verliert
dadurch die Orientierung und nimmt
das Ruckeln weniger stark wahr.

■ Elegant hüpfende Zeichen
Diese Idee möchten wir Ihnen mit einem
Scroller demonstrieren, der die Höhe
der einzelnen Buchstaben anhand einer
Tabelle verändert:

for (char *zeichen =
aText; *zeichen; zeichen++)

{
//Zeichen sichtbar?
if ((x+(signed) aFont->info

[*zeichen].w)>=0)
{

//Höhe berechnen
int hoehe =

y-bewegungs_tabelle
[x & 1023];

//Zeichen zeichnen
aFont->DrawChar

(dest,palette,SCREEN_X,
*zeichen,x,hoehe);

}
//bis über den rechten Rand
//hinaus fortfahren
x+=aFont->info[*zeichen].w+2;
if (x>SCREEN_X) return;

}

Dieser Code-Ausschnitt entspricht
weitgehend der Methode Print der Font-
Klasse. Allerdings ist die Höhe der
Buchstaben nun abhängig von der x-Ko-
ordinate. Der Scroller zeichnet den Text
also nicht mehr in eine Zeile, sondern
versetzt jeden Buchstaben etwas in der
Höhe. Dadurch vermeiden Sie zwar

nicht das Ruckeln, aber es ist nicht mehr
ganz so störend. Sie finden den kom-
pletten Code zu den beweglichen Lauf-
schriften in den Dateien sinscrol.cpp und
sinscrol.h.

Sie können jetzt Ihrer Fantasie freien
Lauf lassen und schöne Bewegungen
und Erweiterungen programmieren. Als
Anregung finden Sie bei den Quellcodes
zum Artikel eine Laufschrift, die aus-
sieht, als würde sie von einer spiegelglat-
ten Oberfläche reflektiert.

■ Laufschrift
mit Perspektive
Einen wahrlich klassischen Effekt bietet
der sogenannte Star-Wars-Scroller. Wie
im Vorspann der gleichnamigen Filme
schiebt sich eine Laufschrift in den
(Welt-)Raum und verschwindet dann
langsam – immer
dunkler werdend – im
Nichts. Der Star-
Wars-Scroller ist ein
Paradebeispiel für die
gekonnte Anwen-
dung zweier Haupt-
techniken der Com-
putergrafik: Tabellen
und lineare Interpola-
tion.

Dabei benutzen Sie
eine Bitmap-Datei,
die den gewünschten
Text enthält. Entwe-
der Sie füllen die Bit-
map zur Laufzeit mit
den Font-Routinen,
oder Sie erledigen dies
vorher mit einem Zei-
chenprogramm wie
Paint Shop Pro.

Hauptaufgabe des Scrollers ist es, die
einzelnen Zeilen der Bitmap-Textur auf
unterschiedliche Breiten zu skalieren.
Im Prinzip ist das nichts anderes als eine
vereinfachte Form des Texture-Map-
pings (Abbildung einer Textur auf ein
Objekt). Nur brauchen Sie sich hier le-
diglich um eine Achse – die x-Achse – zu
kümmern.

Die nötigen Streckungen berechnen
Sie sehr effizient mit Fixed-Point-Zah-
len. Sind Sie mit dieser Methode nicht
vertraut, erklären wir Ihnen hier kurz
die Grundlagen: Nehmen Sie an, Sie ha-
ben eine Zeile Bilddaten in einem Array
gespeichert. Diese Zeile sei 256 Pixel
breit. Um sie auf eine Länge von 100 Pi-
xeln zu verkleinern, lassen Sie einige Pi-
xel aus.

Hierfür benutzten Sie die Technik der
Fixed-Point-Berechnung. Ein Code, der
Ihr Problem löst, sieht so aus:

for (int x=0; x<100; i++)
Zielbitmap[i] =

Textur[(x * 256)/100];

Das funktioniert sehr gut, aber Sie haben
pro Pixel eine Multiplikation und eine
Division zu berechnen. Insbesondere
Divisionen sind „sehr teuer“, was den
Rechenaufwand und somit die Ge-
schwindigkeit betrifft. Daher entfernen
Sie die Division aus der Schleife:

int Steigung=100/256;
int Start = 0;
for (int x=0; x<100; i++)
{

Zielbitmap[i]=Textur[Start];
Start=Start+Steigung

}

Dieser Code wäre erheblich schneller –
er funktioniert aber nicht, da die Varia-

ble Steigung ein Integer ist und der Wert
der Division eine Fließkommazahl.

Der Trick der Fixed-Point-Zahlen ist
es, die Genauigkeit der Integer-Werte zu
erhöhen, indem Sie einige Bits der Zahl
für die Nachkommastellen nutzen. Die
Umwandlung von Integer in das Fixed-
Point-Format geschieht durch eine ein-
fache Multiplikation und Division. Die
Fixed-Point-Variante in unserem Bei-
spiel sieht dann so aus:

int Steigung=(65535*100)/256;
int Start=0;
for (int x=0; x<100; i++)
{

Zielbitmap[i] =
Textur[Start/65536];

Start=Start+Steigung.
}

Der Faktor 65 536 wurde mit Bedacht
gewählt. Er entspricht dem Wert 216, q

DIE AUF- UND ABBEWEGUNG der Buchstaben verschleiert das

lästige Ruckeln.

262 April 1999 PC Magazin

P C U N D E R G R O U N D
P R A X I S

denn Multiplikationen und Divisionen
mit Potenzen von 2 führt die CPU durch
einfache Bit-Shift-Befehle sehr schnell
aus.

Zusätzlich teilt dieser Wert eine Inte-
ger-Zahl in genau zwei Hälften: 16 Bit
für den ganzzahligen Teil und 16 Bit für
die Nachkommastellen. Zugunsten der
erhöhten Genauigkeit verlieren Sie 16
Bit im Wertebereich Ihres Integers.

Das Format von Fixed-Point-Zahlen
wird gerne mit Doppelpunkten angege-
ben. Im Beispiel haben Sie es mit dem
weit verbreiteten 16:16-Fixed-Point-
Format zu tun. Aber auch andere For-
mate wie 8:24 sind häufig anzutreffen.
Die Zahl vor dem Doppelpunkt gibt die
Anzahl der Bits für den ganzzahligen
Wert an, die dahinterstehende für die
Genauigkeit-Bits. So viel zur Skalierung
mit Hilfe von Fix-Point-Zahlen.

Auch die Breite der einzelnen Zeilen
bekommen Sie ohne großen Aufwand:
Es gibt einen Fluchtpunkt, in dem die
Laufschrift verschwindet. Die Zeilen
darunter werden zunehmend breiter.
Alle diese Daten können Sie vor dem
Zeichnen berechnen und in einer Tabel-
le speichern. Im Beispielprogramm erle-
digt dies die Funktion calculate_scrol-
ler_table in der Datei StarScrol.cpp.

Für die Darstellung auf dem Bild-
schirm bleibt nicht mehr viel zu rechnen
übrig. Aus der Tabelle lesen Sie zeilen-
weise alle Informationen wie Breite,
Startposition und die Position in der
Textur aus und zeichnen den Text mit ei-
ner einfachen Schleife auf den Monitor.
Der Scroll-Effekt kommt zustande, in-
dem Sie bei jedem Bildaufbau die Textur
etwas nach oben schieben. Im Beispiel-
code haben wir 32 Paletten berechnet

und lassen damit den Scroller – je weiter
er sich dem Fluchtpunkt nähert – dunk-
ler werden. Da Sie die Scroller-Bitmap
beim Zeichnen sowieso von 8 Bit in 16
Bit umwandeln, macht dies zeitlich
kaum einen Unterschied.

Werfen Sie am besten einen Blick auf
die Funktion StarwarsScroller im Modul
StarScrol.cpp. Dort finden Sie noch eini-
ge Tricks, die den Scroller etwas schnel-

ler machen. So merkt sich die Routine in
einer Tabelle, welche Zeilen der Textur
schwarz sind und nicht interpoliert wer-
den müssen.

■ Bilineare Interpolation
des Scrollers
Sehen Sie sich den Star-Wars-Scroller
genau an: Im unteren Bildbereich wer-
den die Buchstaben stark vergrößert.
Dadurch ergeben sich unschöne Kanten,
die den Eindruck stark beeinträchtigen.
Diesem Problem begegnen Sie mit einer
Technik, deren Name im Zeitalter der
3D-Grafikkarten jedem bekannt sein

dürfte: der bilinearen Interpolation. Das
Prinzip ist schnell programmiert: Beim
Auslesen der Textur-Pixel mit der Fi-
xed-Point-Berechnung kommt es im-
mer vor, daß Sie ein Pixel nicht genau
treffen, denn während der Umrechnung
von Fixed-Point auf Integer werfen Sie
die Information des Nachkommaanteils
ja einfach weg.

In der Skizze auf der nächsten Seite ist
das linke Pixel weiß, das rechte schwarz.
Ein Punkt, der zwischen beide Pixel
fällt, sollte vorzugsweise die Farbe Grau
erhalten.

Mit ein wenig Mathematik ist dies
kein Problem. Bei der Umwandlung in
Integer verlieren Sie durch die Division
einen Betrag, der im Prinzip die exakte
Position zwischen den beiden Pixeln an-
gibt. Diesen Wert extrahieren Sie aus der
Fixed-Point-Zahl, indem Sie den ganz-
zahligen Teil ausmaskieren. Bei 16:16-
Zahlen genügt eine Und-Verknüpfung
mit der Maske 65 535.

Den interpolierten Wert erhalten Sie
in Pseudo-Code dann wie folgt:

a = Wert des Pixels bei [x]
b = Wert des Pixels bei [x+1]
wert = Nachkomma-Anteil der

Fixed-Point-Zahl
Punkt = a + ((b-a)*wert)/65536

Dies ist jedoch erst eine einfache lineare
Interpolation. Für eine bilineare – also
zweidimensionale – Interpolation, wie
sie bei 3D-Karten üblich ist, bilden Sie
zwischen vier Punkten einen Mittelwert.

Dazu führen Sie drei lineare Interpo-
lationen durch, denn Sie suchen einen
Wert, der sowohl zwischen zwei Tex-
turzeilen als auch zwischen zwei Spalten
liegt. Interpolieren Sie also beide Zeilen
einzeln mit dem Nachkommaanteil der
x-Koordinate. Die beiden Ergebnisse in-
terpolieren Sie mit der y-Koordinate:

int xfixed=X-Koordinate
im 16:16-Format

int yfixed=Y-Koordinate
im 16:16-Format

int x=xfixed/65536;
int y=yfixed/65536;

a=texture[x][y] //oben links
b=texture[x+1][y] //oben rechts
c=texture[x][y+1] //unten links
d=texture[x+1][y+1]
//unten rechts

wert_oben =
linear(a,b,xfixed & 65535);

wert_unten =
linear(c,d,xfixed & 65535);

wert = linear(wert_oben,
wert_unten,yfixed & 65536)

Drei lineare Interpolationen pro Pixel
verbrauchen eine Menge Zeit, aber das
Ergebnis ist deutlich besser: Der Scroller

STEUERCODES FÜR DEN LETTER-WRITER

Code Parameter Funktion
COLORx – Setzt vordefinierte Zeichenfarbe x (x = 1-8)

FLASHx – Setzt vordefinierte blinkende Zeichenfarbe x (x =

1-8)

FADE Helligkeit (0-255) Blendet auf bestimmte Helligkeit um

FSPEED Geschwindigkeit Setzt Geschwindigkeit folgender FADE-Aufrufe

SPEED Geschwindigkeit (0-255) Setzt Geschwindigkeit der Zeichenbewegung

DELAY Dauer in msec (0-255) Wartet zwischen Erscheinen zweier Zeichen

CLRSCR – Löscht Bildschirm und setzt Cursor links oben

MOVE Anzahl der Zeichen Bewegt Cursor um bestimmte Zeichenzahl weiter

MOVE1_2 – Setzt Cursor ein halbes Zeichen nach rechts

NEWLINE – Setzt Cursor auf Beginn der nächsten Zeile

FEED1_2 – Setzt Cursor eine halbe Zeile nach unten

PAUSEx – Wartet x Sekunden (x = 1-4)

EOT – „End of Text“, beendet Programm

BEIM STAR-WARS-SCROLLER verschwin-

det die Schrift perspektivisch im Nichts.

PC Magazin April 1999 263

P C U N D E R G R O U N D
P R A X I S

sieht wesentlich runder aus, und die
durch Interpolation entstandenen Kan-
ten sind verschwunden.

Beachten Sie, daß Interpolation nur
dort Sinn macht, wo Sie eine Textur ver-
größern – bei unserem Scroller also nur
im unteren Bildschirmbereich. Beim
Verkleinern wenden Sie das Interpolie-
ren besser nicht an. Statt dessen emp-
fiehlt sich hier MIP-Mapping, um die
Qualität – und auch die Geschwindig-
keit – Ihrer Routinen zu erhöhen.

■ Fliegende Buchstaben
Früher war es Mode – vor allem auf dem
Commodore 64 –, readme-Dateien und
Nachrichten in Form eigener Program-
me zu verbreiten. Diese sogenannten
Letter-Writer zeigten einen Text auf be-
sondere Art und Weise an. So flogen die
Buchstaben zunächst an den Ort, an
dem sie stehen sollten, und der Text
konnte blinken oder seine Farbe ändern.

Mit Ihrem Wissen über Laufschriften
schreiben Sie nun auch so einen Textbe-
trachter. Bei Flying Letters – so der Na-
me unseres Letter-Writers – erscheint
der Text zunächst Buchstabe für Buch-
stabe. Danach fliegen die einzelnen Zei-
chen an ihren Platz.

Den genauen Ablauf beeinflussen Sie
dabei über Steuercodes, die Sie in den
Text einfügen. Sie können die Farben
ändern, die Zeichen blinken lassen, die
Fluggeschwindigkeit und die Zeit zwi-
schen dem Erscheinen der neuen Zei-
chen festlegen, den Text genau positio-
nieren oder das Bild ein- und ausblen-
den.

Um diese Funktionalität zu bieten,
benötigen Sie Variablen für
• die Position des (unsichtbaren) Cur-
sors auf dem Bildschirm,
• die aktuell gesetzte Zeichenfarbe,
• die verbleibende Zeit einer eventuellen
Pause,
• die Verzögerung zwischen zwei Zei-
chen,
• die Geschwindigkeit der Zeichen,
• die gewünschte Helligkeit, auf die Sie
umblenden möchten,
• die Geschwindigkeit des Umblendens
sowie
• den aktuellen Helligkeitswert.

Weiterhin müssen Sie natürlich die auf
dem Bildschirm sichtbaren Schriftzei-
chen verwalten. Dazu speichern Sie, um
welches Zeichen es sich handelt, sowie
dessen Farbe. Zudem benötigen Sie die
Zielposition, die Bewegungsrichtung
dorthin und natürlich die aktuelle Posi-
tion.

Die dazugehörigen Strukturdefinitio-
nen in C finden Sie im Listing am Ende
des Artikels. In der Hauptschleife über-
prüft Flying Letters zuerst, ob eine Pau-
se eingehalten werden soll. Ist das der
Fall, zieht es so lange die seit dem letzten
Schleifendurchlauf vergangene Zeit von
der verbliebenen Pausenzeit ab, bis die-
se kleiner oder gleich Null ist.

Ist keine Pausenanweisung vorhan-
den, liest das Programm das jeweils
nächste Zeichen und untersucht, ob es
ein Textzeichen oder ein Steuercode ist.
Dabei nutzt es die Tatsache, daß alle
Buchstaben, Zahlen und die Sonderzei-
chen aus dem eigens erstellten Zeichen-
satz einen ASCII-Code kleiner als 128
besitzen. Die „oberen“ 128 Zeichen die-
nen deshalb als Steuercodes. Die ver-
schiedenen Codetypen (Ablaufsteuer-,
Farb- und Pausencode) unterscheiden

Sie anhand vordefinierter Bitmasken.
Nachdem der Letter-Writer den

nächsten Wert aus den Daten gelesen
hat, prüft er zuerst, ob es sich um das
EOT-Kommando handelt. In diesem
Fall gibt er die angeforderten Ressour-
cen frei und beendet den Programmlauf.
Alle anderen Steuercodes identifizieren
Sie mit einem Ausdruck wie

if ((code & STEUERCODE) ==
STEUERCODE)

Haben Sie den Code zum Beispiel als ei-
nen Ablaufsteuercode erkannt, können
Sie mit folgender Konstruktion

switch (code) { case ... }

direkt die Auswirkungen programmie-
ren. Bei einem Farb- oder Pausencode
benötigen Sie keine spezielle Fallunter-
scheidung, wenn Sie die Konstanten so
wie in unserem Beispiel definieren. In
diesem Fall berechnen Sie die Farbnum-
mer oder die Pausenlänge direkt aus dem
Wert.

Konnten Sie keinen Steuercode aus-
machen, handelt es sich sicher um ein
Zeichen, das am Bildschirm erscheinen
soll. In diesem Fall tragen Sie die ent-
sprechenden Daten – Zielposition, Far-
be, Bewegungsrichtung usw. – in das
nächste freie Zeichenkonstrukt ein und

erhöhen dessen Zähler. Für die Startpo-
sition des Zeichens verwendet das Bei-
spielprogramm eine von der Zeit abhän-
gige Sinus-/Cosinus-Funktion.

Nun bleiben noch zwei Aufgaben in
der Hauptschleife des Letter-Writers,
die auch ausgeführt werden, wenn eine
Pause vorliegt. Die erste Aufgabe ist
natürlich das Weiterbewegen der Zei-
chen und das Zeichnen an der neuen Po-
sition. Davor löschen Sie den Bild-
schirm.

Die Zeichen sollten sich – unabhängig
von der Rechnergeschwindigkeit und
eventueller Verzögerungen durch das
Betriebssystem – gleichmäßig schnell
bewegen. Deshalb berechnen Sie mit der
Prozedur GetDemoTime() aus der ver-
wendeten Grafikbibliothek demosys.cpp
die verstrichene Zeit seit dem letzten
Weiterbewegen der Zeichen. Dadurch
erhalten Sie einen Faktor für den Rich-
tungsvektor jedes Zeichens, den Sie
dann auf die aktuelle Position aufsum-
mieren. Hat ein Zeichen seine Zielposi-
tion erreicht, stellen Sie nur noch sicher,
daß es jedesmal an der entsprechenden
Stelle gezeichnet wird.

Die zweite Aufgabe ist das Ein- und
Ausblenden der Helligkeit – das soge-
nannte Fading. Helligkeitsänderungen
führen Sie geschickt durch, indem Sie die
Einträge der Palette modifizieren, die Sie
zum Zeichnen der Zeichen benutzen.
Die Paletteneinträge sind – jeweils für
Rot, Grün und Blau – das Produkt der
aktuellen Helligkeit mit dem entspre-
chenden Wert in der zuvor im Pro-
gramm definierten Farbtabelle.

Die momentane Helligkeit berechnen
Sie einfach: Der Steuercode FADE in-
formiert Sie über den angestrebten Hel-
ligkeitswert. Da Sie den aktuellen Wert
ebenfalls kennen, wissen Sie auch, ob Sie
ihn erniedrigen oder erhöhen müssen.

Sie führen also eine Addition bzw.
Subtraktion der aktuellen Fade-Varia-
blen mit dem durch FSPEED festgeleg-
ten Betrag durch, solange Sie die Ziel-
helligkeit nicht erreicht haben. Den Fak-
tor für die Berechnung der Farbpalette
erhalten Sie nach einer Division dieses
Fade-Werts durch 256, da der Wertebe-
reich aufgrund des char-Arrays von 0 bis
255 und nicht von 0.0 bis 1.0 reicht.

■ Kleiner Aufwand,
große Wirkung
Um Ihren Text zu animieren, editieren
Sie lediglich ein Konstantenfeld. Im Pro-
gramm finden Sie das konstante Ar- q

DANK LINEARER INTERPOLATION erhält

das gesuchte Pixel die Farbe Hellgrau.

x x+1

264 April 1999 PC Magazin

ray „char *WRITE[]“, in dem Sie so-
wohl Text als auch den Ablauf festlegen.
Normalen Text geben Sie in An-
führungszeichen an, die Konstanten der
Steuercodes finden Sie in der Tabelle auf
S. 262 mit einer Kurzbeschreibung auf-
gelistet.

Generell existieren zwei Arten von
Steuercodes: Die einfachen Befehle mit
festgelegter Wirkung fügen Sie wie ge-
wöhnliche Zeichenketten ein. Die übri-
gen Kommandos verlangen einen Para-
meter, mit dem Sie bestimmte Eigen-
schaften wie die Geschwindigkeit beim
Ein- und Ausblenden festlegen. Dieser
Parameter folgt direkt auf den Steuerbe-
fehl, eine Zahl wie 123 geben Sie dabei als
„(char)123“ an. Ein einfacher Text, der
ein blinkendes PC Underground auf den
Bildschirm fliegen läßt, sieht dann so
aus:

char *WRITE[] =
{
//Zeichengeschwindigkeit = 80

SPEED,(char*)80,
//Zeichenverzögerung = 80
DELAY,(char*)80,
//2,5 Zeilen nach unten
NEWLINE,NEWLINE,FEED1_2,
//3 Zeichen nach rechts
MOVE,(char*)3,
//blinkende Farbe und Text
FLASH1,“PC Underground“,
//3 Sekunden Pause
PAUSE3,
//mit Geschwindigkeit 4
FSPEED,(char*)4,
//nach Schwarz (0) abblenden
FADE,(char*)0,
//dazu 3 Sekunden warten
PAUSE3,
//Writer beenden
EOT

};

Um auf die einzelnen Zeichen zugreifen
zu können, konvertiert der Letter-Wri-
ter dieses Array aus Zeigern vor dem
Start in eine Zeichenkette

char *array

Durch diesen Umweg können Sie die
Steuercodes direkt als Strings im Text
eingeben und müssen nicht spezielle
Sonderzeichen benutzen.

Ab der nächsten Ausgabe startet PC
Magazin eine mehrteilige Serie zum The-
ma Spiele-Programmierung. Viele der
hier gezeigten Effekte wenden Sie dort in
einem richtigen Spiel an. s P E I / B M

Steuercodes/Strukturde-
finitionen in main.cpp

Die Belegung der Steuercodes und die Va-
riablen-Strukturen definieren Sie im
Hauptmodul main.cpp des Letter-Writers.

1:
2:

3:

4:

5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:

38:
39:
40:
41:
42:
43:
44:
45:
46:

47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:

58:
59:
60:
61:

62:

63:
64:

65:
66:

67:
68:
69:
70:

71:
72:
73:
74:
75:
76:

//Bitmasken fÅr Steuercodes
#define STEUERCODE 128+64 //Ablauf-
codes
#define COLORCODE 128+32 //Farben-
codes
#define PAUSECODE 128+16 //Pausen-
codes

#define EOT (char*)255 //End of Text

#define COLOR1 (char*)(0| COLORCODE)
#define COLOR2 (char*)(1| COLORCODE)
#define COLOR3 (char*)(2| COLORCODE)
#define COLOR4 (char*)(3| COLORCODE)
#define COLOR5 (char*)(4| COLORCODE)
#define COLOR6 (char*)(5| COLORCODE)
#define COLOR7 (char*)(6| COLORCODE)
#define COLOR8 (char*)(7| COLORCODE)
#define FLASH1 (char*)(8| COLORCODE)
#define FLASH2 (char*)(9| COLORCODE)
#define FLASH3 (char*)(10| COLORCODE)
#define FLASH4 (char*)(11| COLORCODE)
#define FLASH5 (char*)(12| COLORCODE)
#define FLASH6 (char*)(13| COLORCODE)
#define FLASH7 (char*)(14| COLORCODE)
#define FLASH8 (char*)(15| COLORCODE)

#define NEWLINE (char*)(0| STEUERCODE)
#define CLRSCR (char*)(1| STEUERCODE)
#define MOVE1_2 (char*)(2| STEUERCODE)
#define FEED1_2 (char*)(3| STEUERCODE)
#define MOVE (char*)(4| STEUERCODE)

//+Zeichenzahl
#define FADE (char*)(5| STEUERCODE)
//+Ziel-Helligkeit
#define FSPEED (char*)(6| STEUERCODE)
//+Geschwindigkeit beim Umblenden
#define SPEED (char*)(7| STEUERCODE)
//+Geschwindigkeit der Zeichenbewe-
gung
#define DELAY (char*)(8| STEUERCODE)
//+Dauer der Verzîgerung

#define PAUSE1 (char*)(0| PAUSECODE)
#define PAUSE2 (char*)(1| PAUSECODE)
#define PAUSE3 (char*)(2| PAUSECODE)
#define PAUSE4 (char*)(3| PAUSECODE)

//Definition eines "fliegenden" Zei-
chens

typedef struct
{
float x,y; //aktuelle Position
float zx,zy; //Endposition
float dx,dy; //Richtung dorthin
int color; //Farbe (0-15)
char c; //Zeichen-Code

} ZEICHEN;

//Definition der Variablen des Wri-
ters

typedef struct
{
int pos; //Position im Daten-

array
int color; //aktuelle Zeichen-

farbe
int pause; //Wartezeit
int x,y; //aktuelle Ziel-Posi-

tion
int delay; //Verzîgerung
int speed; //Zeichen-Geschwin-

digkeit
int fade_to, //Fading-Werte

fade,
fade_speed;

//Platz fÅr die Zeichen am Bild-
schirm

ZEICHEN zeichen[2000];
//Anzahl benutzter ZEICHEN-EintrÑge
int anz_zeichen;

} WRITER_STATUS;

Die Quelltexte der Laufschriften, die zugrundelie-
gende Grafikbibliothek sowie das komplette Pro-
gramm Flying Letters finden Sie auf unserer Heft-
CD im Verzeichnis praxis\underground und im In-
ternet-Angebot von PC Magazin unter

www.pc-magazin.de/magazin/
➥extras.htm

Klicken Sie unter Online Extras im Menü Praxis auf
das entsprechende Download-Feld.

