PC UNDERGROUND

PRAXIS

-

Demo-Programmierung unter Windows 95/11!,\ITM//

Am

Band

Einfacher Text palSt kaum zu bunten Grafikeffekten. Deshalb animieren Sie

Laufschriften

CARSTEN DACHSBACHER/
NILS PIPENBRINCK

aufschriften — englisch Scroller
I genannt — kennen Sie aus dem all-
taglichen Leben. Im Abspann von
Kinofilmen, in News-Tickern und auf
Werbetafeln ziehen wandernde Zeichen
Thre Aufmerksamkeit auf sich. Selbst In-
formationen, die eigentlich nicht auf die
Anzeigetafel oder den Bildschirm pas-
sen, schieben Sie mit dieser Methode in
Lesegeschwindigkeit weiter.

Wir schreiben hier zunichst einen ein-
fachen Lauftext, den wir dann um zu-
satzliche Gimmicks wie Bewegungen
und Spiegelungen er-
weitern. Auflerdem
erfahren Sie, wie Sie
den Effekt der legen-
diren Star-Wars-
Laufschrift mit sehr
einfachen Mitteln
nachbilden. Zum Ab-
schluf} dieser Ausga-
be integrieren Sie die-
se Effekte in ein Pro-
gramm, mit dem Sie

A
|

rF

[

i Tk
i TDPARS T
Vil s

".-:'-:'r‘-r:nl' =0 ro=

aus font.cpp und font.h generieren, ver-
waltet Position und Grofle einzelner
Zeichen in einer Bitmap. Zudem stellt sie
Funktionen zur Verfiigung, mit denen
Sie Zeichen oder auch ganze Zeichen-
ketten schnell und flexibel darstellen.

Die Implementierung der Klasse
selbst ist etwas kompliziert. Wenn Sie
daran interessiert sind, sehen Sie sich den
gut kommentierten Quellcode auf der
Heft-CD an.

Einfacher und interessanter ist da
schon die Benutzung:

Font *myFont =

new Font(,chars.bmp®);

So initialisieren Sie eine Instanz der
Font-Klasse. Als Parameter tibergeben

animierte Texte als
ausfithrbare exe-Da-
tel weitergeben kon-
nen.

Die einfachsten Scroller sind wirklich
primitiv: Sie schieben lediglich eine Rei-
he kleiner Bilder mit Buchstaben iiber
den Bildschirm. Unter Windows erzeu-
gen Sie mit TrueType-Fonts zwar
schnell Schriften, als Grundlage fiir De-
mo-Scroller haben diese allerdings einen
entscheidenden Nachteil: Sie sind alle
einfarbig.

Aus diesem Grund stellen wir Thnen
zunichst eine kleine C++-Klasse vor,
mit der Sie auf einfache Weise Texte,
Buchstaben und Laufschrift in Thre De-
mos einbauen. Die Klasse Font, die Sie

260 April 1999 PC Magazin

IN DER DATEI CHAR.BMP legen Sie den Font als Bitmap ab.

Sie den Namen der Bitmap, die die
Buchstaben enthalt. Die Font-Klasse
kann nur mit 256-Farben-Bitmaps um-
gehen.

Pixel mit dem Wert 0 haben eine spe-
zielle Bedeutung: Sie werden beim
Zeichnen ausgelassen. Damit konnen Sie
Bereiche der Buchstaben transparent ge-
stalten.

Mit folgenden Zeilen setzen Sie den
Clipping-Bereich:

myFont->SetClipping

(0,0,SCREEN_X, SCREEN_Y);
Die Routinen zum Zeichnen von Texten
verfligen alle iber ein eingebautes Clip-
ping. Sie brauchen sich also keine Sorgen
zu machen, daff Texte, die linger als der

Bildschirm sind, zu Fehlern fiihren.

Legen Sie nun eine Tabelle an, die die
Plazierung der Buchstaben in der Bit-
map beschreibt. Jede Zeile der Tabelle
entspricht einer Zeile Zeichen in der Bit-
map. Vergleichen Sie dazu das folgende
Array mit der Abbildung links.

static char *fonttable[] =

{
Labcdefghij”,
~Klmnopqrst*,
SUVWXYZ
,0123456789",
W2
NULL

}

myFont->SetFontMetric
(fonttable,16,18);

Die Routine SetFontMetric erwartet als
Parameter diese Tabelle sowie die Mafle
des Rasters, in dem die Buchstaben an-
geordnet sind. Mochten Sie keine festen
Raster verwenden, definieren Sie die
Zeichen einzeln. Dazu benutzen Sie die
Funktion SetCharMetric. Wir empfeh-
len jedoch, von vornherein die Buchsta-
ben im Raster zu plazieren. Das spart ei-
ne Menge Arbeit.

Wenn Sie soweit sind, konnen Sie los-
scrollen:

unsigned char *text =
,Dies ist ein Lauftext";

while (DemoRunning)

{
/[Hintergrund kopieren
memcpy (screen,hintergrund2,
SCREEN_Y*SCREEN_X*2);

/IScroller daruber zeichnen
/(30 Pixel/sec verschieben)

int x = SCREEN_X-
((GetDemoTime()-StartZeit)
*30)/1000;

myFont->Print(screen,palette,
SCREEN_X text,x,120);

/l... und Bild darstellen
BlitGraphic(screen);
}

Wenn Sie diesen Code ausfiihren, stellen
Sie fest, daff die Laufschrift ruckelt. Das
liegt an der ungleichmifligen Verschie-
bung der Laufschrift. Eine gleichmafige

Bewegung erhalten Sie nur, wenn Sie pro
Bildaufbau die Laufschrift immer um
den gleichen Betrag verschieben. Leider
konnen Sie dagegen wenig machen, da
Windows keine brauchbaren Methoden
zur Synchronisation mit der Grafikkar-
te anbietet. Mit GDI (Graphics Device
Interface) haben Sie keine Chance zu er-
fahren, wann die Videokarte das Bild
neu aufgebaut hat.

Unter DirectDraw sieht es da etwas
besser aus. Der Aufruf von BlitGraphic
stellt sicher, daff Sie nicht mehr Bilder
pro Sekunde darstellen, als die Bildwie-
derholfrequenz des Monitors zulfit, der
am Rechner angeschlossen ist.

Aber auch dies hilft Thnen nur bedingt
weiter: Sie wissen ja nicht, ob der Benut-
zer seinen Monitor mit niedrigen 50
oder mit 90 Hz oder mehr betreibt. Sie
konnen nun zwar sicher sein, dafl die
Laufschrift nicht mehr ruckelt — dafir
haben Sie aber keine Kontrolle mehr
dariiber, wie schnell der Scroller liuft.

Da Sie also nicht viel gegen dieses
Manko ausrichten konnen, sorgen Sie
am besten dafiir, dafl der Fehler nicht so
auffillt. Dazu gestalten Sie die Bewe-
gung der Buchstaben etwas komplizier-
ter. Das Auge des Betrachters verliert
dadurch die Orientierung und nimmt
das Ruckeln weniger stark wahr.

Diese Idee mochten wir Thnen mit einem
Scroller demonstrieren, der die Hohe
der einzelnen Buchstaben anhand einer
Tabelle verindert:

for (char *zeichen =
aText; *zeichen; zeichen++)
{
/IZeichen sichtbar?
if (x+(signed) aFont->info
[*zeichen].w)>=0)
{
/[H6he berechnen
int hoehe =
y-bewegungs_tabelle
[x & 1023];
//Zeichen zeichnen
aFont->DrawChar
(dest,palette, SCREEN_X,
*zeichen,x,hoehe);

/Ibis Uber den rechten Rand

/Ihinaus fortfahren

x+=aFont->info[*zeichen].w+2;

if (x>SCREEN_X) return;

}

Dieser Code-Ausschnitt entspricht
weitgehend der Methode Print der Font-
Klasse. Allerdings ist die Hohe der
Buchstaben nun abhingig von der x-Ko-
ordinate. Der Scroller zeichnet den Text
also nicht mehr in eine Zeile, sondern
versetzt jeden Buchstaben etwas in der
Hohe. Dadurch vermeiden Sie zwar

nicht das Ruckeln, aber es ist nicht mehr
ganz so storend. Sie finden den kom-
pletten Code zu den beweglichen Lauf-
schriften in den Dateien sinscrol.cpp und
sinscrol.h.

Sie konnen jetzt Threr Fantasie freien
Lauf lassen und schone Bewegungen
und Erweiterungen programmieren. Als
Anregung finden Sie bei den Quellcodes
zum Artikel eine Laufschrift, die aus-
sieht, als wiirde sie von einer spiegelglat-
ten Oberflache reflektiert.

Einen wahrlich klassischen Effekt bietet
der sogenannte Star-Wars-Scroller. Wie
im Vorspann der gleichnamigen Filme
schiebt sich eine Laufschrift in den
(Welt-)Raum und verschwindet dann
langsam - immer
dunkler werdend —im
Nichts. Der Star-
Wars-Scroller ist ein
Paradebeispiel fur die
gekonnte ~ Anwen-
dung zweier Haupt-
techniken der Com-
putergrafik: Tabellen
und lineare Interpola-
tion.

Dabei benutzen Sie
eine Bitmap-Datei,
die den gewtiinschten
Text enthilt. Entwe-
der Sie fillen die Bit-
map zur Laufzeit mit
den Font-Routinen,
oder Sie erledigen dies
vorher mit einem Zei-
chenprogramm wie
Paint Shop Pro.

Hauptaufgabe des Scrollers ist es, die
einzelnen Zeilen der Bitmap-Textur auf
unterschiedliche Breiten zu skalieren.
Im Prinzip ist das nichts anderes als eine
vereinfachte Form des Texture-Map-
pings (Abbildung einer Textur auf ein
Objekt). Nur brauchen Sie sich hier le-
diglich um eine Achse — die x-Achse —zu
kiimmern.

Die notigen Streckungen berechnen
Sie sehr effizient mit Fixed-Point-Zah-
len. Sind Sie mit dieser Methode nicht
vertraut, erkliren wir Thnen hier kurz
die Grundlagen: Nehmen Sie an, Sie ha-
ben eine Zeile Bilddaten in einem Array
gespeichert. Diese Zeile sei 256 Pixel
breit. Um sie auf eine Linge von 100 Pi-
xeln zu verkleinern, lassen Sie einige Pi-
xel aus.

PC UNDERGROUND
PRAXIS

Hierfiir benutzten Sie die Technik der
Fixed-Point-Berechnung. Ein Code, der
Thr Problem I6st, sicht so aus:

for (int x=0; x<100; i++)

Zielbitmapli] =
Textur[(x * 256)/100];
Das funktioniert sehr gut, aber Sie haben
pro Pixel eine Multiplikation und eine
Division zu berechnen. Insbesondere
Divisionen sind ,,sehr teuer®, was den
Rechenaufwand und somit die Ge-
schwindigkeit betrifft. Daher entfernen
Sie die Division aus der Schleife:
int Steigung=100/256;

int Start = 0;
for (int x=0; x<100; i++)

Zielbitmap[i]=Textur[Start];
Start=Start+Steigung
}
Dieser Code wire erheblich schneller —
er funktioniert aber nicht, da die Varia-

DIE AUF- UND ABBEWEGUNG der Buchstaben verschleiert das
lastige Ruckeln.

ble Steigung ein Integer ist und der Wert
der Division eine FlieRkommazahl.

Der Trick der Fixed-Point-Zahlen ist
es, die Genauigkeit der Integer-Werte zu
erhohen, indem Sie einige Bits der Zahl
fiir die Nachkommastellen nutzen. Die
Umwandlung von Integer in das Fixed-
Point-Format geschieht durch eine ein-
fache Multiplikation und Division. Die
Fixed-Point-Variante in unserem Bei-
spiel sieht dann so aus:

int Steigung=(65535*100)/256;
int Start=0;
for (int x=0; x<100; i++)
Zielbitmapl[i] =
Textur[Start/65536];

Start=Start+Steigung.
}

Der Faktor 65 536 wurde mit Bedacht
gewihlt. Er entspricht dem Wert 216, ©

PC Magazin April 1999 261

£l

5-E]

PC UNDERGROUND
PRAXIS

denn Multiplikationen und Divisionen
mit Potenzen von 2 fithrt die CPU durch
einfache Bit-Shift-Befehle sehr schnell
aus.

Zusitzlich teilt dieser Wert eine Inte-
ger-Zahl in genau zwei Hailften: 16 Bit
fir den ganzzahligen Teil und 16 Bit fiir
die Nachkommastellen. Zugunsten der
erhohten Genauigkeit verlieren Sie 16
Bit im Wertebereich Thres Integers.

Das Format von Fixed-Point-Zahlen
wird gerne mit Doppelpunkten angege-
ben. Im Beispiel haben Sie es mit dem
weit verbreiteten 16:16-Fixed-Point-
Format zu tun. Aber auch andere For-
mate wie 8:24 sind hiufig anzutreffen.
Die Zahl vor dem Doppelpunkt gibt die
Anzahl der Bits fiir den ganzzahligen
Wert an, die dahinterstehende fiir die
Genauigkeit-Bits. So viel zur Skalierung
mit Hilfe von Fix-Point-Zahlen.

Auch die Breite der einzelnen Zeilen
bekommen Sie ohne groflen Aufwand:
Es gibt einen Fluchtpunkt, in dem die
Laufschrift verschwindet. Die Zeilen
darunter werden zunehmend breiter.
Alle diese Daten konnen Sie vor dem
Zeichnen berechnen und in einer Tabel-
le speichern. Im Beispielprogramm erle-
digt dies die Funktion calculate_scrol-
ler_table in der Datei StarScrol.cpp.

Fir die Darstellung auf dem Bild-
schirm bleibt nicht mehr viel zu rechnen
ubrig. Aus der Tabelle lesen Sie zeilen-
weise alle Informationen wie Breite,
Startposition und die Position in der
Textur aus und zeichnen den Text mit ei-
ner einfachen Schleife auf den Monitor.
Der Scroll-Effekt kommt zustande, in-
dem Sie bei jedem Bildaufbau die Textur
etwas nach oben schieben. Im Beispiel-
code haben wir 32 Paletten berechnet

und lassen damit den Scroller — je weiter
er sich dem Fluchtpunkt nihert — dunk-
ler werden. Da Sie die Scroller-Bitmap
beim Zeichnen sowieso von 8 Bit in 16
Bit umwandeln, macht dies zeitlich
kaum einen Unterschied.

Werfen Sie am besten einen Blick auf
die Funktion StarwarsScroller im Modul
StarScrol.cpp. Dort finden Sie noch eini-
ge Tricks, die den Scroller etwas schnel-

EE. PC Magazin Demo

AL-Magan

2600 PIORN\

BEIM STAR-WARS-SCROLLER verschwin-
det die Schrift perspektivisch im Nichts.

ler machen. So merkt sich die Routine in
einer Tabelle, welche Zeilen der Textur
schwarz sind und nicht interpoliert wer-
den miissen.

Sehen Sie sich den Star-Wars-Scroller
genau an: Im unteren Bildbereich wer-
den die Buchstaben stark vergrofiert.
Dadurch ergeben sich unschone Kanten,
die den Eindruck stark beeintrichtigen.
Diesem Problem begegnen Sie mit einer
Technik, deren Name im Zeitalter der
3D-Grafikkarten jedem bekannt sein

Code Parameter Funktion

COLORx — Setzt vordefinierte Zeichenfarbe x (x = 1-8)

FLASHx - Setzt vordefinierte blinkende Zeichenfarbe x (x =
1-8)

FADE Helligkeit (0-255) Blendet auf bestimmte Helligkeit um

FSPEED Geschwindigkeit Setzt Geschwindigkeit folgender FADE-Aufrufe

SPEED Geschwindigkeit (0-255) Setzt Geschwindigkeit der Zeichenbewegung

DELAY Dauer in msec (0-255) Wartet zwischen Erscheinen zweier Zeichen

CLRSCR - Loscht Bildschirm und setzt Cursor links oben

MOVE Anzahl der Zeichen Bewegt Cursor um bestimmte Zeichenzahl weiter

MOVET 2 - Setzt Cursor ein halbes Zeichen nach rechts

NEWLINE - Setzt Cursor auf Beginn der nachsten Zeile

FEED1 2 - Setzt Cursor eine halbe Zeile nach unten

PAUSEx = Wartet x Sekunden (x = 1-4)

EOT - ,End of Text", beendet Programm

262 April1999 PC Magazin

diirfte: der bilinearen Interpolation. Das
Prinzip ist schnell programmiert: Beim
Auslesen der Textur-Pixel mit der Fi-
xed-Point-Berechnung kommt es im-
mer vor, dafl Sie ein Pixel nicht genau
treffen, denn wihrend der Umrechnung
von Fixed-Point auf Integer werfen Sie
die Information des Nachkommaanteils
ja einfach weg.

In der Skizze auf der nichsten Seite ist
das linke Pixel weif}, das rechte schwarz.
Ein Punkt, der zwischen beide Pixel
fall, sollte vorzugsweise die Farbe Grau
erhalten.

Mit ein wenig Mathematik ist dies
kein Problem. Bei der Umwandlung in
Integer verlieren Sie durch die Division
einen Betrag, der im Prinzip die exakte
Position zwischen den beiden Pixeln an-
gibt. Diesen Wert extrahieren Sie aus der
Fixed-Point-Zahl, indem Sie den ganz-
zahligen Teil ausmaskieren. Bei 16:16-
Zahlen gentigt eine Und-Verkniipfung
mit der Maske 65 535.

Den interpolierten Wert erhalten Sie
in Pseudo-Code dann wie folgt:

a = Wert des Pixels bei [x]

b = Wert des Pixels bei [x+1]

wert = Nachkomma-Anteil der

Fixed-Point-Zahl

Punkt = a + ((b-a)*wert)/65536
Dies ist jedoch erst eine einfache lineare
Interpolation. Fiir eine bilineare — also
zweidimensionale — Interpolation, wie
sie bei 3D-Karten tiblich ist, bilden Sie
zwischen vier Punkten einen Mittelwert.

Dazu fihren Sie drei lineare Interpo-
lationen durch, denn Sie suchen einen
Wert, der sowohl zwischen zwei Tex-
turzeilen als auch zwischen zwei Spalten
liegt. Interpolieren Sie also beide Zeilen
einzeln mit dem Nachkommaanteil der
x-Koordinate. Die beiden Ergebnisse in-
terpolieren Sie mit der y-Koordinate:

int xfixed=X-Koordinate
im 16:16-Format

int yfixed=Y-Koordinate
im 16:16-Format

int x=xfixed/65536;
int y=yfixed/65536;

a=texture[x][y] //oben links
b=texture[x+1][y] //oben rechts
c=texture[x][y+1] //unten links
d=texture[x+1][y+1]

/lunten rechts

wert_oben =
linear(a,b,xfixed & 65535);

wert_unten =
linear(c,d,xfixed & 65535);

wert = linear(wert_oben,
wert_unten,yfixed & 65536)

Drei lineare Interpolationen pro Pixel
verbrauchen eine Menge Zeit, aber das
Ergebnis ist deutlich besser: Der Scroller

sicht wesentlich runder aus, und die
durch Interpolation entstandenen Kan-
ten sind verschwunden.

Beachten Sie, dafl Interpolation nur
dort Sinn macht, wo Sie eine Textur ver-
groflern — bei unserem Scroller also nur
im unteren Bildschirmbereich. Beim
Verkleinern wenden Sie das Interpolie-
ren besser nicht an. Statt dessen emp-
fiehlt sich hier MIP-Mapping, um die
Qualitit — und auch die Geschwindig-
keit — Threr Routinen zu erhdhen.

Frither war es Mode — vor allem auf dem
Commodore 64 —, readme-Dateien und
Nachrichten in Form eigener Program-
me zu verbreiten. Diese sogenannten
Letter-Writer zeigten einen Text auf be-
sondere Art und Weise an. So flogen die
Buchstaben zunichst an den Ort, an
dem sie stehen sollten, und der Text
konnte blinken oder seine Farbe indern.

Mit Threm Wissen tiber Laufschriften
schreiben Sie nun auch so einen Textbe-
trachter. Bei Flying Letters — so der Na-
me unseres Letter-Writers — erscheint
der Text zunichst Buchstabe fiir Buch-
stabe. Danach fliegen die einzelnen Zei-
chen an ihren Platz.

Den genauen Ablauf beeinflussen Sie
dabei iiber Steuercodes, die Sie in den
Text einfligen. Sie konnen die Farben
andern, die Zeichen blinken lassen, die
Fluggeschwindigkeit und die Zeit zwi-
schen dem Erscheinen der neuen Zei-
chen festlegen, den Text genau positio-
nieren oder das Bild ein- und ausblen-
den.

Um diese Funktionalitit zu bieten,
benotigen Sie Variablen fir
¢ die Position des (unsichtbaren) Cur-
sors auf dem Bildschirm,

o die aktuell gesetzte Zeichenfarbe,

e die verbleibende Zeit einer eventuellen
Pause,

e die Verzogerung zwischen zwel Zei-
chen,

e die Geschwindigkeit der Zeichen,

e die gewtinschte Helligkeit, auf die Sie
umblenden mochten,

¢ die Geschwindigkeit des Umblendens
sowie

® den aktuellen Helligkeitswert.

Weiterhin miissen Sie natiirlich die auf
dem Bildschirm sichtbaren Schriftzei-
chen verwalten. Dazu speichern Sie, um
welches Zeichen es sich handelt, sowie
dessen Farbe. Zudem benétigen Sie die
Zielposition, die Bewegungsrichtung
dorthin und natiirlich die aktuelle Posi-
tion.

Die dazugehorigen Strukturdefinitio-
nen in C finden Sie im Listing am Ende
des Artikels. In der Hauptschleife tiber-
pruft Flying Letters zuerst, ob eine Pau-
se eingehalten werden soll. Ist das der
Fall, zieht es so lange die seit dem letzten
Schleifendurchlauf vergangene Zeit von
der verbliebenen Pausenzeit ab, bis die-
se kleiner oder gleich Null ist.

Ist keine Pausenanweisung vorhan-
den, liest das Programm das jeweils
nichste Zeichen und untersucht, ob es
ein Textzeichen oder ein Steuercode ist.
Dabei nutzt es die Tatsache, dafl alle
Buchstaben, Zahlen und die Sonderzei-
chen aus dem eigens erstellten Zeichen-
satz einen ASCII-Code kleiner als 128
besitzen. Die ,,oberen® 128 Zeichen die-
nen deshalb als Steuercodes. Die ver-
schiedenen Codetypen (Ablaufsteuer-,
Farb- und Pausencode) unterscheiden

X x+1
|

1 |

DANK LINEARER INTERPOLATION erhalt
das gesuchte Pixel die Farbe Hellgrau.

Sie anhand vordefinierter Bitmasken.

Nachdem der Letter-Writer den
niachsten Wert aus den Daten gelesen
hat, priift er zuerst, ob es sich um das
EOT-Kommando handelt. In diesem
Fall gibt er die angeforderten Ressour-
cen frei und beendet den Programmlauf.
Alle anderen Steuercodes identifizieren
Sie mit einem Ausdruck wie

if ((code & STEUERCODE) ==

STEUERCODE)
Haben Sie den Code zum Beispiel als ei-
nen Ablaufsteuercode erkannt, kdnnen
Sie mit folgender Konstruktion

switch (code) { case ... }
direkt die Auswirkungen programmie-
ren. Bei einem Farb- oder Pausencode
benotigen Sie keine spezielle Fallunter-
scheidung, wenn Sie die Konstanten so
wie in unserem Beispiel definieren. In
diesem Fall berechnen Sie die Farbnum-
mer oder die Pausenlinge direkt aus dem
Wert.

Konnten Sie keinen Steuercode aus-
machen, handelt es sich sicher um ein
Zeichen, das am Bildschirm erscheinen
soll. In diesem Fall tragen Sie die ent-
sprechenden Daten — Zielposition, Far-
be, Bewegungsrichtung usw. — in das
nichste freie Zeichenkonstrukt ein und

PC UNDERGROUND
PRAXIS

»

erhohen dessen Zihler. Fiir die Startpo-
sition des Zeichens verwendet das Bei-
spielprogramm eine von der Zeit abhin-
gige Sinus-/Cosinus-Funktion.

Nun bleiben noch zwei Aufgaben in
der Hauptschleife des Letter-Writers,
die auch ausgefiihrt werden, wenn eine
Pause vorliegt. Die erste Aufgabe ist
natiirlich das Weiterbewegen der Zei-
chen und das Zeichnen an der neuen Po-
sition. Davor loschen Sie den Bild-
schirm.

Die Zeichen sollten sich — unabhingig
von der Rechnergeschwindigkeit und
eventueller Verzogerungen durch das
Betriebssystem — gleichmiafig schnell
bewegen. Deshalb berechnen Sie mit der
Prozedur GetDemoTime() aus der ver-
wendeten Grafikbibliothek demosys.cpp
die verstrichene Zeit seit dem letzten
Weiterbewegen der Zeichen. Dadurch
erhalten Sie einen Faktor fiir den Rich-
tungsvektor jedes Zeichens, den Sie
dann auf die aktuelle Position aufsum-
mieren. Hat ein Zeichen seine Zielposi-
tion erreicht, stellen Sie nur noch sicher,
dafl es jedesmal an der entsprechenden
Stelle gezeichnet wird.

Die zweite Aufgabe ist das Ein- und
Ausblenden der Helligkeit — das soge-
nannte Fading. Helligkeitsinderungen
fihren Sie geschickt durch, indem Sie die
Eintrige der Palette modifizieren, die Sie
zum Zeichnen der Zeichen benutzen.
Die Paletteneintrige sind — jeweils fur
Rot, Griin und Blau — das Produkt der
aktuellen Helligkeit mit dem entspre-
chenden Wert in der zuvor im Pro-
gramm definierten Farbtabelle.

Die momentane Helligkeit berechnen
Sie einfach: Der Steuercode FADE in-
formiert Sie Uiber den angestrebten Hel-
ligkeitswert. Da Sie den aktuellen Wert
ebenfalls kennen, wissen Sie auch, ob Sie
ihn erniedrigen oder erh6hen missen.

Sie fiihren also eine Addition bzw.
Subtraktion der aktuellen Fade-Varia-
blen mit dem durch FSPEED festgeleg-
ten Betrag durch, solange Sie die Ziel-
helligkeit nicht erreicht haben. Den Fak-
tor fir die Berechnung der Farbpalette
erhalten Sie nach einer Division dieses
Fade-Werts durch 256, da der Wertebe-
reich aufgrund des char-Arrays von 0 bis
255 und nicht von 0.0 bis 1.0 reicht.

Um Thren Text zu animieren, editieren
Sie lediglich ein Konstantenfeld. Im Pro-
gramm finden Sie das konstante Ar- ©

PC Magazin April 1999 263

264 April1999 PC Magazin

ray ,char *WRITE[], in dem Sie so-
wohl Text als auch den Ablauf festlegen.
Normalen Text geben Sie in An-
fihrungszeichen an, die Konstanten der
Steuercodes finden Sie in der Tabelle auf
S. 262 mit einer Kurzbeschreibung auf-
gelistet.

Generell existieren zwei Arten von
Steuercodes: Die einfachen Befehle mit
festgelegter Wirkung fligen Sie wie ge-
wohnliche Zeichenketten ein. Die iibri-
gen Kommandos verlangen einen Para-
meter, mit dem Sie bestimmte Eigen-
schaften wie die Geschwindigkeit beim
Ein- und Ausblenden festlegen. Dieser
Parameter folgt direkt auf den Steuerbe-
fehl, eine Zahl wie 123 geben Sie dabei als
»(char)123* an. Ein einfacher Text, der
ein blinkendes PC Underground auf den
Bildschirm fliegen lifit, sieht dann so
aus:

char *WRITE[] =

{

/lZeichengeschwindigkeit = 80
SPEED,(char*)80,
/lZeichenverzdgerung = 80
DELAY,(char*)80,
/12,5 Zeilen nach unten
NEWLINE,NEWLINE,FEED1_2,
/13 Zeichen nach rechts
MOVE,(char*)3,
/Iblinkende Farbe und Text
FLASH1,“PC Underground®,
/I3 Sekunden Pause
PAUSES3,
//mit Geschwindigkeit 4
FSPEED, (char*)4,
/Inach Schwarz (0) abblenden
FADE,(char*)0,
/ldazu 3 Sekunden warten
PAUSES3,
/I\Writer beenden
EOT

h

Um auf die einzelnen Zeichen zugreifen
zu konnen, konvertiert der Letter-Wri-
ter dieses Array aus Zeigern vor dem
Start in eine Zeichenkette

char *array
Durch diesen Umweg konnen Sie die
Steuercodes direkt als Strings im Text
eingeben und miissen nicht spezielle
Sonderzeichen benutzen.

Ab der nichsten Ausgabe startet PC
Magazin eine mehrteilige Serie zum The-
ma Spiele-Programmierung. Viele der
hier gezeigten Effekte wenden Sie dortin
einem richtigen Spiel an. PEI/BM

Die Quelltexte der Laufschriften, die zugrundelie-
gende Grafikbibliothek sowie das komplette Pro-
gramm Flying Letters finden Sie auf unserer Heft-
CD im Verzeichnis praxis\underground und im In-

ternet-Angebot von PC Magazin unter
www.pc-magazin.de/magazin/
O extras.htm

Klicken Sie unter Online Extras im Ment Praxis auf
das entsprechende Download-Feld.

IS NP

© o~ U

38:
39z
40:
41
42:
43:
44:
45:
46:

47:
48:

s [/ Bit masken fur Steuercodes
; #defi ne STEUEROCDE 128+64 // Abl auf -

codes

: #defi ne OOLOROCDE 128432 //Farben-

codes

: #defi ne PAUSEOCCDE 128+16 //Pausen-

codes

: #define EOT (char*)255 //End of Text

: #defi ne QOLCRL (char*)(0] COLOROCDE)
= #define OOLCR2 (char*)(1| OOLOROCDE)
10:
11:
12:
13:
14:
1l
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35z
36:
37:

#define OOLOR3 (char*)(2| OOLOROCDE)
#define OOLCR4 (char*)(3| OOLOROCDE)
#defi ne OOLORS (char*)(4| OOLOROCDE)
#define GOLOR6 (char*)(5| COLOROCDE)
#define OOLOR7 (char*) (6] OOLORCCDE)
#define OOLORB (char*) (7| OOLOROCDE)
#define FLASHL (char*)(8| OOLORCCDE)
#define FLASH2 (char*)(9| OOL

#def i ne FLASH3 (char *) (10| OOLORCCDE)
#define FLASH4 (char*) (11| OOLORCCDE)
#def i ne FLASH5 (char*) (12| OOLOROCDE)
#def i ne FLASH6 (char*) (13| OOLCROCDE)
#define FLASH?7 (char*) (14| OOLCROCDE)
#define FLASHB (char *) (15| OOLCRCCDE)

#define NEWLI NE (char *) (0] STEUERCCDE)
#define CLRSCR (char*) (1| STEUERCCDE)
#defi ne MOVEL_2 (char*) (2| STEUEROCDE)
#define FEEDL_2 (char*) (3| STEUEROCDE)
#defi ne MOVE (char *) (4| STEUEROCDE)

1 I +Zei chenzahl

#def i ne FADE (char *) (5| STEUEROCDE)
I1+Ziel-Helligkeit

#define FSPEED (char*) (6] STEUEROCDE)
I/ +Geschwi ndi gkei t bei m Urbl enden
#define SPEED (char*) (7] STEUEROCDE)
I/ +Geschwi ndi gkeit der Zei chenbewe-
gung

#defi ne DELAY (char*) (8| STEUERCCDE)
/] +Dauer der Verzosgerung

#defi ne PAUSEL (char*) (0] PAUSECCDE)
#defi ne PAUSE2 (char*) (1| PAUSECCDE)
#def i ne PAUSE3 (char*) (2| PAUSEQCDE)
#def i ne PAUSE4 (char*) (3| PAUSEQCDE)

//Definition eines "fliegenden" Zei-
chens

typedef struct

49: {

50:
Silg
52:
53:
54:
5o
56:
57:

58:
59:

float x,y; I/ aktuel | e Position
float zx,zy; //Endposition
float dx,dy; //Richtung dorthin
int color; 1/ Farbe (0-15)
char c; 1/ Zei chen- Code

} z8 OEN

//Definition der Variablen des Wi -
ters

typedef struct

60: {

61:

62:

63:
64:

65:
66:

67:
68:
69:
70:

71:
72:
73:
74:

75

76:

int pos; //Position imDaten-
array
int color;
f ar be
int pause;
int x,y;
tion
int del ay;
int speed;
di gkei t
int fade_to, //Fading-Vérte
f ade,
f ade_speed;
//Platz fur die Zei chen am Bil d-
schirm

I/ aktuel | e Zei chen-

/1 Véartezeit
/laktuell e Z el -Posi -

11 Ver zsger ung
11 Zei chen- Geschwi n-

ZEl CHEN zei chen[2000] ;
/1 Anzahl benutzter ZH CHEN-E ntrage
int anz_zei chen;

} WR TER_STATUS;

Die Belegung der Steuercodes und die Va-
riablen-Strukturen definieren Sie im
Hauptmodul main.cpp des Letter-Writers.

