
228 Mai 1999 PC Magazin

P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R /
N I L S P I P E N B R I N C K

Das Interesse vieler Computer-
freaks an Science Fiction erklärt
die Existenz unzähliger Welt-

raumspiele für den PC. Sie müssen we-
der ein Freak sein noch jede Folge
Raumschiff Enterprise auswendig ken-
nen, um mit uns in den nächsten drei
Ausgaben des PC Magazin ein kleines
Weltraumspiel für Windows zu schrei-
ben. Als Vorlage dient der Klassiker
Gravity Wars, wie es ihn früher auf Vi-
deospielautomaten oder für PCs mit
Hercules- und CGA-Karte gab.

Bei diesem Spiel steuern zwei Spieler
je einen Raumgleiter über ein zweidi-
mensionales Spielfeld, das den Welt-
raum darstellt. Die Gleiter lassen sich
drehen, beschleunigen und wieder ab-
bremsen. Außerdem stehen jedem Spie-
ler eine Laserkanone sowie Raketen zur
Verfügung, mit denen er versucht, den
Gegner abzuschießen (das alles ist natür-
lich nur ein Spiel, und die Raketen sind
mit harmlosem Joghurt gefüllt).

Jeder Raumgleiter verfügt über Ener-
gie, die der Spieler auf die Waffen- und
Schildsysteme verteilt. Optional können
Sie in der Mitte des Spielfelds noch einen
Planeten plazieren, der alle Objekte wie
Raumgleiter und Raketen anzieht (daher
der Name Gravity Wars). Je nach Lust
und Laune sind zusätzliche Erweiterun-
gen denkbar – einige werden Sie in den
nächsten Ausgaben von PC Under-
ground realisieren.

In diesem ersten Teil legen Sie den
Grundstein für Ihr eigenes Spiel. Damit
es die richtige Atmosphäre bietet, brau-

chen Sie schnelle, flüssige Grafikrouti-
nen, ansprechende Soundeffekte und ei-
ne vernünftige Steuerung.

■ Die Grafikbibliothek
Als Grafikbibliothek verwenden Sie am
besten eine modifizierte Version der De-
mobibliothek, die bereits allen früheren
Programmen in dieser Rubrik als

Grundlage diente. Doch keine Angst: Sie
müssen jetzt keine alten Ausgaben des
PC Magazin durchstöbern, um sich die
Routinen des Grafiksystems wieder in
Erinnerung zu rufen:

In der Textbox „Funktionen der Gra-
fikbibliothek“ auf S. 229 stellen wir Ih-
nen alle Funktionen der Bibliothek noch
einmal vor. Dieses leicht erneuerte Ba-
sissystem finden Sie komplett mit allen
Quellcodes auf der Heft-CD in der
selbstentpackenden Archiv-Datei Basis-
system.exe und auf der Homepage des
PC Magazin.

Der Einsatz in einem Spiel verlangte
einige Änderungen an den bisherigen
Routinen: Um Zugriff auf die Tastatur
zu erhalten, fängt die Hauptschleife des
Programms jetzt die Window-Messages
der Tastatur ab. Der aktuelle Zustand
der Tasten wird im Array KeyState ge-
speichert. In Ihren Anwendungen lesen
Sie damit die Zustände der einzelnen Ta-
sten aus.

Bitte beachten Sie, daß Ihr Programm
nicht mehr automatisch bei jedem Ta-
stendruck beendet wird. Ob die [Esc]-
oder Leertaste gedrückt wurde, über-
prüfen Sie jetzt selbst. Die Hauptschlei-
fe Ihrer Demo bzw. Ihres Spiels sieht da-
mit wie folgt aus:

void demomain (void)
{

short * bild = new short
[SCREEN_X * SCREEN_Y];

while ((DemoRunning) &&
(!KeyState[VK_ESCAPE]))

{
/* hier zeichnen Sie was */
...

BlitGraphic(bild);
}

delete bild;
}

■ Grundlagen
von DirectSound

Mit DirectSound wählen Sie einen mo-
dernen Weg, um einfach Soundeffekte
unter Windows abzuspielen. Die Di-
rectSound-API ist ein Bestandteil von
DirectX. Haben Sie noch keine Erfah-
rung mit DirectX, ist dies gar kein Pro-
blem: Im Gegensatz zu DirectDraw ist
die Soundprogrammierung erfreulich
einfach.

Um das Abspielen von Soundeffekten
so einfach und angenehm wie möglich
zu gestalten, bauen Sie keine spezifi-
schen Aufrufe von DirectSound in das
Hauptprogramm ein. Statt dessen
schreiben Sie eine C++-Klasse, die die
genaue Implementierung versteckt.

Diese Technik bietet einige Vorteile:
Zum einen müssen Sie sich bei der Spie-
leprogrammierung nicht mit den Sy-

Spiele-Programmierung unter Windows 95/98/NT

Klänge für
den Weltraum
Für ein Weltraum-Ballerspiel kapseln Sie

DirectSound-Aufrufe in einer eigenen Klasse und

synthetisieren Soundeffekte.

WAV-DATEIEN ENTHALTEN je einen For-

mat- und einen Daten-Chunk.

„RIFF“
„fmt“

„data“

PC Magazin Mai 1999 229

P C U N D E R G R O U N D
P R A X I S

stemaufrufen von DirectSound herum-
schlagen. Zum anderen können Sie eine
gut durchdachte C++-Klasse auch in an-
deren Programmen wiederverwenden.

Mit DirectSound können Sie – im Ge-
gensatz zum alten Multimedia-System –
mehrere Soundeffekte gleichzeitig ab-
spielen. Außerdem besitzen Sie auch
während des Abspielens die volle Kon-
trolle über Lautstärke, Frequenz und
Position im Stereoraum des Samples.
Um das zu verwirklichen, gingen die
Programmierer von DirectSound einen
ungewöhnlichen Weg.

Nahezu alle herkömmlichen Sound-
bibliotheken unter Windows benutzen
das Konzept der Soundkanäle. Bei der
Initialisierung legen Sie fest, wie viele
Kanäle für das gleichzeitige Abspielen
von Samples bereitstehen. Dabei ist es
egal, ob alle Kanäle einen Soundeffekt
wiedergeben oder jeder Kanal einen an-
deren abspielt. Bei DirectSound sind
Samples und Kanäle direkt miteinander
verbunden. Wenn Sie einen Kanal (im
DirectSound-Jargon heißen diese
DirectSoundBuffer) anlegen, kann die-
ser immer nur einen einzigen Soundef-
fekt abspielen.

Das hat einige Folgen für Sie: Sie müs-
sen schon während der Initialisierung
des Soundsystems festlegen, wie viele
Kanäle Sie zum Beispiel für Schußgeräu-
sche verwenden möchten. Glücklicher-
weise ist DirectSound relativ intelligent.
Soundeffekte, die nicht zu hören sind,
brauchen zwar etwas Speicher, aber
kaum Rechenzeit.

DirectSound ist ein sehr mächtiges
Werkzeug. Deshalb kann dieser Artikel
auch nur die Oberfläche dessen betrach-
ten, was alles mit DirectSound machbar

ist. Bitte beachten Sie,
daß wir aus Platz-
gründen die Abfrage
von Fehlern in den
Beispielcodes wegge-
lassen haben.

■ DirectSound
im Detail
Zunächst legen Sie ein
IDirectSound-Ob-
jekt an. Damit steuern
Sie später die Sound-
karte des PC:

IDirectSound
*DSound;

HWND
FensterHandle;

DirectSoundCreate(NULL,
&DSound,0);

DSound->SetCooperativeLevel
(FensterHandle,DSSCL_EXCLUSIVE)

DirectSoundCreate erzeugt das IDirect-
Sound-Objekt. Durch den Aufruf von
SetCooperativeLevel teilen Sie Win-
dows mit, daß Sie von nun an direkten
Zugriff auf die Soundkarte haben möch-
ten. Das ist zwar nicht unbedingt nötig,
aber Sie vermeiden so eine Menge Ärger.
Programme, die im Hintergrund laufen
und auch auf die Soundkarte zugreifen
möchten, werden nun allerdings
blockiert und können nicht mehr auf
Ressourcen der Soundkarte zugreifen.

Fordern Sie einen Soundpuffer vom
System an. Dafür füllen Sie – wie es all-
gemein bei DirectX üblich ist – einige
Strukturen aus und definieren dabei ge-
nau, in welchem Format der Soundef-
fekt vorliegt. In diesem Beispiel erzeu-
gen Sie ein zwei Sekunden langes 8-Bit-

Mono-Sample mit einer Sampling-Fre-
quenz von 22050 Hertz:

WAVEFORMATEX Format;
DSBUFFERDESC bd;
IDirectSoundBuffer Buffer;

// Strukturen löschen
memset(&Format, 0,

sizeof (WAVEFORMATEX));
memset(&bd, 0, sizeof (bd));

// Benötigte Felder ausfüllen
Format.wFormatTag =

WAVE_FORMAT_PCM;
Format.nChannels = 1;
Format.nSamplesPerSec = 22050;
Format.nAvgBytesPerSec = 22050;
Format.nBlockAlign = 1;
Format.wBitsPerSample = 8;

bd.dwSize = sizeof (bd);
bd.dwFlags =

DSBCAPS_CTRLDEFAULT |
DSBCAPS_STATIC;

bd.dwBufferBytes = 44100;
bd.lpwfxFormat = &Format;

// und den Buffer erstellen.
DSound->CreateSoundBuffer

(&bd, &Buffer, NULL);

Interessant sind hier die Flags, die Sie im
Feld bd.dwFlags übergeben. Dort be-
stimmen Sie, welche Fähigkeiten von
DirectSound Sie benutzen. In diesem
Beispiel setzen Sie die Flags CTRLDE-
FAULT und STATIC.

STATIC sagt DirectSound, daß Sie
den Soundeffekt nicht ständig ändern
möchten. Dadurch kann DirectSound
bei einigen Modellen die Sample-Daten
direkt auf die Soundkarte übertragen
und dort von der Hardware abspielen
lassen. Dies entlastet den Prozessor er-
heblich.

Das CTRLDEFAULT-Flag besagt
nur, daß Sie Frequenz, Lautstärke und
die Stereoposition des Samples kontrol-
lieren möchten.

Jetzt füllen Sie den Puffer mit Sample-
Daten. Dazu rufen Sie die Funktion
Lock auf, die Ihnen einen Pointer auf q

FUNKTIONEN DER GRAFIKBIBLIOTHEK
Um die Grafikbibliothek zu nutzen, imple-

mentieren Sie folgende drei Funktionen in

Ihrem Programm:

• In der Funktion BOOL demoinit() { ... } er-

ledigen Sie alle nur einmal benötigten

Initialisierungen. Sind diese alle geglückt,

gibt die Funktion den Wert true zurück.

Hier belegen Sie auch die Variable Fen-
ster_Modus mit dem gewünschten Bild-

schirmmodus (siehe Quellcode von de-
mosys.h).

• Innerhalb von void demomain() { ... } läuft

Ihr Hauptprogramm wie in einer gewöhn-

lichen main-Funktion.

• In der Funktion void demoquit() { ... }
kann Ihr Programm die zum Programmen-

de notwendigen Einzelschritte durch-

führen.

Sodann nutzen Sie folgende Funktionen:

• void BlitGraphic(void *) stellt den Inhalt

des als Zeiger übergebenen HighColor-

Bildschirmpuffers im Fenster oder im Di-

rectX-Vollbildmodus dar. Im HighColor-

Modus beansprucht jedes Pixel 16 Bit (5

für Rot, 6 für Grün und 5 für Blau).

• unsigned short ColorCode(r,g,b) über-

nimmt für Sie die Berechnung des High-

Color-Farbwerts aus den RGB-Angaben.

Liegen Rot, Grün und Blau jeweils im Be-

reich von 0 bis 255, berechnen Sie aus Ge-

schwindigkeitsgründen den Farbwert wie

folgt:

color = Rtab[R]|Gtab[G]|Btab[B];

• unsigned long GetDemoTime(void) lie-

fert Ihnen die seit dem Programmstart ab-

gelaufene Zeit in Millisekunden.

DIE ADSR-HÜLLKURVE bestimmt mit ihren vier Parametern die

Lautstärke des generierten Tons.

Lautstärke

max. Lautstärke

Attack Decay Sustain Release

Zeit t

230 Mai 1999 PC Magazin

P C U N D E R G R O U N D
P R A X I S

den internen Speicher des Puffers
zurückgibt. Die Funktion Lock ist so
programmiert, daß Sie auch Zugriff auf
die Samples bekommen, wenn der
Sound gerade abgespielt wird. Das ist ein
nützliches Feature, aber für unsere
Zwecke gar nicht nötig.

void *Ptr1;
void *Ptr2;
unsigned long Size1;
unsigned long Size2;

Buffer->Lock(0,44100,&Ptr1,
&Size1,&Ptr2,&Size2,0);

Die ersten beiden Parameter bezeichnen
die Startposition und die Anzahl der
Samples, auf die Sie Zugriff wünschen.
Oben fordern Sie also Zugriff auf das ge-
samte Sample an.

Nachdem Sie die Funktion Lock auf-
gerufen haben, kopieren Sie Ihre Daten
in den Speicherbereich, auf den Ptr1
zeigt. Die beiden Variablen Ptr2 und
Size2 brauchen Sie nur, wenn Sie einen
Teil des Samples ändern möchten. Für
unser Spiel ist dies aber nicht nötig. Jetzt
beginnen Sie bereits mit der Ausgabe:

Buffer->Unlock (Ptr1, Size1,
Ptr2, Size2);

Buffer->Play (0,0,0);

Über den Aufruf von Unlock teilen Sie
DirectSound mit, daß Sie mit dem
Schreiben fertig sind. Play startet das
Abspielen des Samples. Wenn alles ge-
klappt hat, hören Sie jetzt Ihren Sound-
effekt.

■ Die Klasse SoundSystem
DirectSound ist zwar eine übersichtliche
API, bereitet dem Programmierer aber
trotzdem viel Arbeit. Deshalb haben wir
Ihnen – wie bereits angekündigt – eine
einfache Schnittstelle programmiert, mit
der alles einfacher wird. Dieses sehr ein-
fache Soundsystem finden Sie in den Da-
teien soundsys.cpp und soundsys.h. Ein

kleines Beispiel zeigt die Anwendung:
SoundSystem Sound;
int Sample1, int Sample2;

Sound.initialize
(Program_Fenster);

// Boing.WAV + Peng!.WAV laden
// jeweils 10 Soundkanäle für
// Samples vorbereiten
Sample1 = Sound.LoadSound

(“Boing.WAV“, 10);
Sample2 = Sound.LoadSound

(“Peng!.WAV“, 10);

// Zum Test Samples abspielen
Sound.PlaySound (Sample1);
Sound.PlaySound (Sample2);

Die Klasse SoundSystem kümmert sich
um die interne Verwaltung von Sound-
puffern, das Laden von Samples und die
Fehlerbehandlung von DirectSound.

Bevor Sie jetzt loslegen und Ihre
Nachbarn mit komischen Geräuschen
unterhalten, noch ein Hinweis: Falls Sie
einen anderen Compiler als Watcom
C++ benutzen, fügen Sie Ihrem Projekt
bzw. Makefile unbedingt die

Bibliotheksdatei dsound.lib hinzu –
sonst klappt’s nicht mit dem Nachbarn.
Das selbstentpackende zip-Archiv So-
undBeispiel.exe enthält ein kleines De-
moprogramm, das ein Donnergrollen
und ein kurzes Ploppen zeitgleich ab-
spielt.

■ Aufbau einer wav-Datei
In der Windows-Welt sind wav-Datei-
en das Standardformat für Sounds. Des-
halb ist es sinnvoll, dieses Format für das
Soundsystem zu benutzen, auch wenn es
nicht ganz einfach zu lesen ist. Das wav-
Format ist eine Unterform des Resource
Interchange File Format (RIFF), wel-
ches Windows für die meisten Multime-
dia-Daten verwendet (neben Samples

auch Bilder und Ani-
mationen).

Eine RIFF-Datei
setzt sich aus mehre-
ren kleinen Daten-
blöcken (sogenann-
ten Chunks) zusam-
men. Den genauen
Aufbau stellen Sie
sich am besten wie ei-
ne Verzeichnisstruk-
tur vor: Jeder Chunk
kann mehrere Unter-
Chunks besitzen
(vergleichbar mit Un-
terverzeichnissen)
und auch Daten ent-
halten.

Zur eindeutigen
Identifikation tragen
alle Chunks eine aus

vier Buchstaben bestehende Kennung.
Diese nutzen Sie, um Windows gezielt
nach benötigten Daten-Chunks suchen
zu lassen oder sich die Struktur eines un-
bekannten Dateityps anzusehen. Jede
RIFF-Datei beginnt mit einem Chunk
namens RIFF. Dieser Chunk enthält
keine Daten, sondern nur Unter-
Chunks. Er ist sozusagen das Hauptver-
zeichnis der RIFF-Datei. Für das wav-
Format sind die Unter-Chunks genau
definiert (siehe Bild S. 228).

Der erste ist der Format-Chunk mit
der Kennung fmt. Dort gibt eine
WAVEFORMATEX-Struktur genaue
Auskunft über das Sample-Format. Sie
informiert unter anderem über die An-
zahl der verwendeten Kanäle (Mono
oder Stereo), die Abtastrate und Bit-Tie-
fe:

struct WAVEFORMATEX
{

WORD wFormatTag;
WORD nChannels;

GLOSSAR ZUR KLANGSYNTHESE

Begriff Bedeutung
ADSR Abschnitte der Hüllkurve

• Attack = Anschlag

• Decay = Verzögerung nach dem Anschlag

• Sustain = Haltezeit der Lautstärke nach dem Decay

• Release = Abfallzeit der (Rest-)Lautstärke

Filter schwächt oder verstärkt bestimmte Frequenzanteile in einem Klang

Hüllkurve Lautstärkeverlauf für einen Oszillator

Oszillator Schwingkreis, der durch Spannungswerte eine bestimmte Wellenform er-

zeugt

Phase Position innerhalb einer Schwingungsperiode eines Oszillators

Wellenform Art der Schwingung (zum Beispiel Sinus-, Rechteck- oder Sägezahn-

schwingung)

MIT UNSEREM SOUNDEDITOR mischen Sie per Mausklick tolle

Effekte zusammen.

PC Magazin Mai 1999 233

P C U N D E R G R O U N D
P R A X I S

DWORD nSamplesPerSec;
DWORD nAvgBytesPerSec;
WORD nBlockAlign;
WORD wBitsPerSample;
WORD cbSize;

};

Die Felder nAvgBytesPerSec und
nBlockAlign benutzt Windows, um
komprimierte Dateien abzuspielen. Da
Sie unter DirectSound lediglich unkom-
primierte Samples verwenden, können
Sie diese Felder getrost ignorieren.

Direkt auf den Format-Chunk folgt
der Daten-Chunk namens data. Er ent-
hält die rohen Sample-Daten. Eine her-
vorragende Übersicht über den Aufbau
verschiedenster Dateiformate erhalten
Sie – wenn auch in englischer Sprache –
auf der Web-Seite

www.wotsit.org

■ Die Multimedia-
IO-Funktionen
Die Ein- und Ausgabe (IO = Input/
Output) bei Multimedia-Dateien ent-
spricht weitestgehend dem Umgang mit
gewöhnlichen Dateien. Nachdem Sie ei-
ne Multimedia-Datei geöffnet haben,
lassen Sie Windows den RIFF-Chunk
suchen. Zwar steht dieser Chunk in der
Regel am Anfang der Datei, aber es gibt
auch einige wenige RIFF-Dateien, die
davor noch zusätzliche Informationen
bereithalten.

Rufen Sie zum Suchen die Funktion
mmioDescend auf, die dem Wechseln in
ein Unterverzeichnis entspricht. Nun
sind Sie im Haupt-Chunk der wav-Da-
tei. Von hier aus können Sie durch er-
neuten Einsatz von mmioDescend den
Format- und Daten-Chunk suchen und
lesen.

Um in den übergeordneten Chunk
zurückzuwechseln, rufen Sie die Funk-
tion mmioAscend auf. Im DOS-Dateisy-
stem entspräche dieser Befehl dem
Kommando

cd..

Das folgende Beispiel-Listing enthält
aus Platzgründen keine Fehlerabfragen.
Für einen sauberen Programmierstil
sollten Sie dies aber auf keinen Fall ver-
säumen. Eine leicht zu benutzende
C++-Klasse zu wav-Dateien finden Sie
in den Dateien LoadWav.cpp und Load-
Wav.h. Dort haben wir für Sie die Mul-
timedia-IO-Funktionen soweit gekap-
selt, daß Sie sich keine Gedanken um
Details machen müssen.

HMMIO ioHandle;
MMCKINFO ckInRIFF;
MMCKINFO fmtChunk;

MMCKINFO dataChunk;
WAVEFORMATEX format;

IoHandle = mmioOpen
(“test.wav“,0,MMIO_READ);

fmtChunk.ckid = mmioFOURCC
(’f’,’m’,’t’,’ ’);

dataChunk.ckid = mmioFOURCC
(’D’,’A’,’T’,’A’);

// In den RIFF-Chunk wechseln
mmioDescend(ioHandle,

&ckInRIFF, NULL, 0);
// in den Format-Chunk wechseln
mmioDescend(ioHandle,

&fmtChunk, &ckInRIFF,
MMIO_FINDCHUNK);

// Wave-Format lesen
mmioRead(ioHandle, &format,

sizeof (format));
// zurück in den RIFF-Chunk
mmioAscend(ioHandle,

&fmtChunk, 0);

// In den Daten-Chunk wechseln
mmioDescend(ioHandle,

&dataChunk, &ckInRIFF,
MMIO_FINDCHUNK);

// Daten lesen
mmioRead(ioHandle, samples,

dataChunk.cksize);
// und Datei wieder schließen
mmioClose (ioHandle, 0);

Wenn Sie sich intensiver mit der Idee der
auf Chunks basierenden Dateien ausein-
andersetzen, werden Sie sicher viele
Vorteile finden. RIFF-Dateien können
Sie selbstverständlich nicht nur für die
Windows-eigenen Datentypen benut-
zen. Entwerfen Sie Ihren eigenen Datei-
typ und schreiben Sie hinein, was immer
Sie möchten.

■ Klangsynthese
Jetzt, wo Sie wissen, wie Sie wav-Datei-
en abspielen, möchten Sie sicherlich Ih-
re eigenen Soundeffekte für Ihr Spiel ge-
nerieren und speichern. Falls Sie nicht

mit einem Mikrofon losziehen und ech-
te Geräusche aufnehmen (samplen), er-
zeugen Sie die Klänge künstlich. Diese
synthetisierten Klänge können das Er-
gebnis einer elektronischen Schaltung
sein oder aber von einem PC berechnet
werden. Die wichtigsten hier verwende-
ten Begriffe zur Klangsynthese finden
Sie im Glossar auf S. 230.

Wenn Sie einer etwas älteren Sound-
karte lauschen, die noch nicht über
Wavetable-Klänge verfügt, stammen die
Töne wahrscheinlich von OPL2- bzw.
OPL3-Chips. Diese Chips arbeiten nach
der FM-Synthese und sind noch immer
sehr verbreitet, etwa auf den Sound-Bla-

ster-Karten und allen mehr oder weniger
kompatiblen Konkurrenten.

Die Töne, die physikalisch nichts an-
deres sind als Schwingungen, entstehen
in diesen Chips durch mehrere Schwing-
kreise, auch Oszillatoren genannt. Diese
arbeiten entweder unabhängig vonein-
ander oder so gekoppelt, daß beim
OPL2-Chip jeweils zwei (beim OPL3-
Chips sogar vier) Oszillatoren ihre aktu-
elle Phasenposition in Wechselwirkung
beeinflussen. Eine ADSR-Hüllkurve –
die Abkürzung ADSR finden Sie im q

PARAMETER DER OSZILLATOREN BEI DER KLANGSYNTHESE

Parameter Bedeutung Bemerkung
Start- und Endzeit Zeitintervall, in dem der Angabe in Millisekunden

Oszillator einen Klang erzeugt

Start- und Endfrequenz Frequenz, mit der der Oszilla- Graph im linken unteren Eck

tor am Beginn bzw. am Ende des Editorfensters zeigt Ver-

seiner Spielzeit schwingt lauf an

Start- und Endamplitude Anfangs- und Endlautstärke Graph unten in der Mitte zeigt

des Oszillators Verlauf an

Noise Factor Maß für die zufällige Ände- 0 = keine Phasenänderung,

rung der Oszillatorphase 1 = maximale Phasenänderung

(mit dieser Einstellung können

Sie Rauschen erzeugen)

Curve Tone Exponentielle Umrechnung Bei einer Sägezahnschwingung

des Oszillatorausgangs sehen Sie die Auswirkungen

am besten.

Waveform Sinus-, Sägezahn- oder Recht- Im Graphen rechts unten im

eckschwingung Editorfenster erkennen Sie

auch die Auswirkungen des

Noise-Faktors.

IN DIESER SCHEMATISCHEN Beispielzeich-

nung verwendet jeder Operator das da-

rüberliegende Signal als Eingang.

Oszillator 1

Operator Nr.

Oszillator 2

Filter 1

Filter 2

1

2

Zeit

3

4

234 Mai 1999 PC Magazin

P C U N D E R G R O U N D
P R A X I S

„Glossar zur Klangsynthese“, S. 230 –
modifiziert dabei die Ausgabelautstärke
der Schwingkreise (siehe Bild S. 229)

Im Gegensatz zur FM-Synthese
mischt die Wavetable-Synthese zuvor
aufgenommene Samples von echten In-
strumenten, die entweder im ROM oder
RAM der Soundkarte gespeichert sind,
zu einem Klang zusammen. Damit Sie
auch ohne Programmieraufwand Ihre
individuellen Geräusche zusammenstel-
len können, haben wir außer den Routi-
nen zum Laden und Berechnen der
Klänge noch einen komfortablen
Soundeditor geschrieben (siehe Bild S.
230).

Ein Beispielprogramm zur Berech-
nung der Sounds finden Sie in der Ar-
chivdatei MakeSound.exe, den Sound-
editor in der Datei FSSEditor.exe.

Die Klangsynthese, die dieser Editor
verwendet, arbeitet mit einer ganzen
Reihe von (zeitweise) abhängigen Oszil-
latoren und Filtern. Um die Ausgabe der
Oszillatoren zu beeinflussen, stehen Ih-
nen die Parameter aus der Tabelle „Pa-
rameter der Oszillatoren“ auf S. 233 zur
Verfügung.

Filtern Sie die durch die Oszillatoren
erzeugte Schwingung. Dieses Verfahren
verwendet einen relativ einfachen Filte-
ralgorithmus, dessen mathematische
bzw. physikalische Funktionsweise uns
hier nicht weiter beschäftigen soll. Die
damit modellierten Filter besitzen zwei
Parameter:
• Die sogenannte Cut-off-Frequenz
gibt an, welche Frequenz verstärkt
wird. Die Verstärkung betrifft aller-
dings nicht nur genau die eingestellte
Frequenz, sondern einen Frequenzbe-
reich.

• Der zweite Parameter ist die Reso-
nanz, die gewissermaßen die Hervorhe-
bung des gewählten Frequenzbereichs
angibt. Die Werte der Resonanz bewe-
gen sich sehr häufig im Bereich zwischen
0,99 und 1,0.

In unserem Soundeditor ist der linke,
untere Kasten der Frequenz zugeordnet,
der Kasten in der Mitte der Resonanz.
Zusätzlich können Sie jeden der Opera-
toren, also Oszillator oder Filter, einzeln
an- und ausschalten und Oszillatoren
auch allein spielen lassen.

Den Editor bedienen Sie vollständig
über die Maus. Die einzelnen Werte mo-
difizieren Sie, indem Sie mit der Maus
darauf klicken, den Knopf gedrückt hal-
ten und die Maus nach links oder rechts
bewegen. Genauso ändern Sie auch die
Frequenz-, Amplituden- und Reso-
nanzkurven in den Kästen unten im Edi-
torfenster. Sie wechseln bequem zwi-
schen Oszillator und Filter, indem Sie
einfach den entsprechenden Typ an-
wählen. Einstellungen gehen dadurch
nicht verloren. Durch einfaches An-
klicken legen Sie auch eine Wellenform
fest und (de-)aktivieren Operatoren.

Wie bereits erwähnt, sind die Opera-
toren bedingt voneinander abhängig.
Ein Filter beeinflußt die Ausgabe aller
Operatoren mit einer niedrigeren Ope-
ratornummer als die eigene, sofern sich
die Zeitbereiche überlappen. Ein Opera-
tor addiert seinen Ausgang einfach auf
das (Zwischen-)Ergebnis aller Operato-
ren mit niedrigerer Nummer hinzu.

Am besten sehen Sie das an einem klei-
nen Beispiel (siehe Bild S. 233): Oszilla-
tor 2 addiert seinen Ausgang auf Oszil-
lator 1, er mischt ihn also hinzu. Filter 1
filtert das Ergebnis der beiden Oszilla-
toren. Filter 2 filtert zuerst den Ausgang
von Filter 1, und nachdem dieser nicht
mehr aktiv ist, direkt den Ausgang der
beiden Oszillatoren. Sie lernen die ge-
naue Funktionsweise dieser Verfahren
kennen, indem Sie die beigelegten Bei-
spieleffekte durch Herumprobieren ver-
ändern. Mit dem Soundeditor generie-
ren Sie statt Spieleffekte auch problem-
los Instrument- und Schlagzeugsamples.

■ Blick hinter die Kulissen
Um aus den eingestellten Parametern ein
Sample zu berechnen, gehen Sie folgen-
den Weg: Legen Sie für jeden Operator
zusätzliche Variablen für die aktuelle
Phasenposition und das Zwischenergeb-
nis der Berechnung an. Diese setzen Sie
natürlich vor jeder Berechnung eines
Sample-Werts auf 0.

Nun behandeln Sie für jeden Sample-
Wert alle Operatoren nacheinander, die
zum aktuellen Zeitpunkt aktiv sind.
Handelt es sich um einen Oszillator,
dann berechnen Sie anhand der aktuellen
Frequenz die Phasenveränderung seit
dem letzten Sample-Wert und die aktu-
elle Amplitude. Diese beiden Werte er-
geben sich aus der Start- und Endfre-
quenz sowie der exponentiellen Funkti-
on des Frequenzgraphen.

Addieren Sie das Phasendelta auf die
Phasenposition, und zählen Sie noch ei-
nen Zufallswert hinzu, den Sie vorher
mit dem Noise Factor multiplizieren.
Schließlich bestimmen Sie aus der Pha-
senposition den aktuellen Wert der
Schwingung und modifizieren ihn mit
dem Wert von Curve Tone.

Hier noch einmal das Prinzip des Os-
zillators in Pseudoquellcode:

Berechne Amplitude und
Frequenzdelta

Phase+=Frequenzdelta+
Zufallswert*Noise Factor

Ausgangswert=
(Schwingfunktion(Phase)^
Curve Tone)*Amplitude

Zwischenergebnis+=Ausgangswert

Handelt es sich beim aktuellen Operator
hingegen um einen Filter, so schreiben
Sie diesen Wert in den Filter und lesen
das Ergebnis nach dem Filtern wieder
aus. Das Ergebnis erhalten Sie durch in
der Filterstruktur gespeicherte Werte
sowie den neu hinzugekommenen Wert.
Der Pseudocode sieht dann folgender-
maßen aus:

Berechne Cutoff-Frequenz und
Resonanz und setze diese Werte

Schreibe Zwischenergebnis in
den Filter

Zwischenergebnis=Filterergebnis

Die genaue Implementierung sehen Sie
in den Quelltexten ein. Aber auch ohne
dieses Hintergrundwissen zur Klang-
synthese können Sie sich nun die ge-
wünschten Klänge für Ihr Spiel zurecht-
basteln. In der nächsten Ausgabe legen
Sie dann mit der Programmierung von
Sprites und einem Partikel- und Effekt-
system den Grundstein für Ihre Spiele-
grafik. Im übernächsten und letzten Teil
fügen Sie daraus ein vollwertiges Arca-
de-Game zusammen. s P E I / B M

Die Quelltexte und Kompilate der Klangsynthese
sowie des kompletten Soundeditors finden Sie mit
der zugrundeliegenden Grafikbibliothek auf unse-
rer Heft-CD im Verzeichnis praxis\underground
und im Internet-Angebot des PC Magazin unter

www.pc-magazin.de/magazin/
extras.htm

Klicken Sie unter Online Extras im Menü Praxis auf
das entsprechende Download-Feld.

ENTWICKLUNGSSTUFEN
DES SPIELEPROJEKTS

Teil 1:
• Entwicklung des Basissystems

• DirectSound-Programmierung

• Soundeffekt-Programmierung/

Klangsynthese

Teil 2:
• Sprite-Programmierung

• Partikel- und Effektsystem

Teil 3:
• Algorithmen zur Kollisionsabfrage

• Spielelogik

• Spielegrafik und Highscore-Routinen

• Musik

