
228 Juni 1999 PC Magazin

P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R

Nachdem Sie in der letzten Aus-
gabe von PC Underground ei-
niges über Sounds gelernt ha-

ben, dreht sich diesmal alles um die Gra-
fik. Für unser Projekt eines Weltraum-
Ballerspiels spielt da-
bei die Animation der
fliegenden Raumglei-
ter eine wichtige Rol-
le. Diese Aufgabe be-
wältigen Sie am be-
sten mit sogenannten
Sprites.

Sprites sind kleine,
auf dem Bildschirm
frei bewegliche Grafi-
ken, die auch durch-
sichtige Stellen auf-
weisen können. Sie
tauchen nicht nur in
vielen Spielen auf – das
wohl bekannteste Bei-
spiel eines Sprite ist si-
cherlich Ihr Mauszei-

ger. Sogar auf Web-Seiten kommen heu-
te Sprites zum Einsatz: Dank der Layer-
Technik können Sie Grafiken schrittwei-
se an immer neuer Stelle plazieren.

Bereits so betagte Heimcomputer wie
der Commodore 64, der Amiga sowie
der Atari haben eine Hardware-Unter-
stützung für Sprites zur Verfügung ge-

stellt. Auch die meisten Spielekonsolen
bieten diese heute an. Dies spart Re-
chenzeit und vereinfacht den Umgang
mit bewegten Objekten. Auf dem PC al-
lerdings mußten sich Programmierer
schon immer selbst um alles kümmern.
Dabei will die Darstellung, Bewegung
und eventuell das Wiederherstellen des
Bildschirminhalts beim Weiterbewegen
eines Sprite geschickt implementiert
sein.

■ Sprites verwalten
Um ein Sprite zu speichern und anzu-
zeigen, gibt es eine einfache Methode:
Sie merken sich dessen Breite und Höhe
und reservieren einen entsprechend gro-
ßen Speicherbereich für die Bilddaten.
Das sieht dann folgendermaßen aus:

typedef struct
{

int size_x, size_y; // Größe
// Zeiger auf Daten
short *data;

}

Die Größe des Speicherbereichs beträgt
Breite mal Höhe mal Speicherverbrauch
eines Pixels (in unserem Fall 2 Byte).

Für durchsichtige Stellen des Sprite le-
gen Sie einen gewöhnlichen Farbcode
fest, den Sie entbehren können. Der
Code mit dem Wert 0 eignet sich dafür
hervorragend, weil Sie ihn in Assembler-
code besonders schnell abfragen kön-
nen. Zwei verschachtelte Schleifen, je ei-
ne für die Höhe und die Breite, zeichnen
das Sprite auf den Monitor:

for (int y=0; y<size_y; y++)
for (int x=0; x<size_x; x++)
{

short farbcode=
data[x+y*size_x];

if (farbcode!=0)
Bildschirm[x+pos_x+

(y+pos_y)*SCREEN_X]=
farbcode;

}

Am besten ziehen Sie die Adreßberech-
nung des Startpixels vor die Schleife und
ermitteln die restlichen Pixel durch Ad-
ditionen:

short *adresse=Bildschirm+
pos_x+pos_y*SCREEN_X;

for (int y=0; y<size_y; y++)
{

for (int x=0; x<size_x; x++)
{

short farbcode=
data[x+y*size_x];

if (farbcode!=0)
*adresse=farbcode;

adresse++;
}
adresse+=SCREEN_X-size_x;

}

Wie Sie sehen, müssen Sie mit dieser Me-
thode immer alle Pixel des Sprite ausle-
sen und auf Gleichheit mit Null prüfen,
egal wie viele Pixel gesetzt sind. An die-
ser Stelle ahnen Sie sicher schon, daß es
ein eleganteres Verfahren gibt.

Die folgende Vorgehensweise nutzt
eine Idee aus der Datenkomprimierung,
die sogenannte Lauflängencodierung
(Runlength Encoding, RLE). In der ein-
fachsten Version, wie sie zum Beispiel
Bestandteil mancher Grafikformate ist,
ersetzt der Algorithmus aufeinanderfol-
gende, gleichfarbige Pixel durch die An-
zahl und deren Farbwert. Bei einem ein-
fachen Testszenario erhalten Sie aus

1,1,1,1,2,2,3,3,3,4,5,5

folgende Ausgabe:
4,1,2,2,3,3,1,4,2,5

Wie Sie der Ausgabe entnehmen, be-
stand die Eingabe aus vier Einsern, ge-

Spiele-Programmierung unter Windows 95/98/NT

Tanz der Pixel
Im zweiten Teil unseres Spieleprojekts

animieren Sie Raumgleiter mit Hilfe

von Sprites und Partikeleffeken.

SPRITE-ROUTINEN und Partikelsystem im Einsatz

ENTWICKLUNGSSTUFEN
DES SPIELEPROJEKTS

Teil 1 (Ausgabe 5/99):
• Entwicklung des Basissystems

• DirectSound-Programmierung

• Soundeffekt-Programmierung/

Klangsynthese

Teil 2 (diese Ausgabe):
• Sprite-Programmierung

• Partikel- und Effektsystem

Teil 3 (Ausgabe 7/99):
• Algorithmen zur Kollisionsabfrage

• Spielelogik

• Spielegrafik und Highscore-Routinen

• Musik

PC Magazin Juni 1999 229

P C U N D E R G R O U N D
P R A X I S

folgt von zwei Zwei-
ern, drei Dreiern, ei-
nem Vierer und zwei
Fünfern. Bei einem
häufigen Wechsel der
Eingabewerte nimmt
die Datenmenge je-
doch nicht sehr ab. In
diesem Beispiel spart
das Verfahren gerade
mal zwei Werte ein.

Beim Entpacken
gehen Sie umgekehrt
vor: Zuerst lesen Sie
die Anzahl aus, dann
den Wert, den Sie ent-
sprechend oft kopie-
ren.

Eben das nutzen Sie
für Ihre Sprites. Dazu
unterscheiden Sie
zwischen durchsich-
tigen (Farbwert gleich
0) und undurchsichtigen (Farbwert un-
gleich 0) Pixeln des Sprite. Beim Codie-
ren des Sprite zählen Sie dann innerhalb
einer Zeile die Anzahl der zusammen-
hängenden Pixel. Diese Anzahl spei-
chern Sie und lassen bei undurchsichti-
gen Bereichen die Pixeldaten folgen.

Nun fehlt Ihnen noch der Hinweis, ob
sich die Mengenangabe auf einen durch-
oder undurchsichtigen Teil bezieht. Da
Sie die Sprite-Daten als 16-Bit-Werte
vorliegen haben, können Sie zur Cha-
rakterisierung das höchstwertige Bit
(Most Significant Bit, MSB), verwenden.
Sie setzen das MSB in einem 16-Bit-
Wert durch eine bitweise Oder-Ver-
knüpfung mit dem Wert 32 768.

Als Beispiel hier die Codierung einer
Sprite-Zeile. Eine Datenreihe wie:

0,0,0,0,1,2,3,4,0,5,6

ergibt codiert:
4 or MSB,4,1,2,3,4,1 or MSB,2,5,6

Der Vorteil dieser Methode ist, daß das
Decodieren praktisch keine Zeit kostet
und Sie nur die Sprite-Daten lesen müs-
sen, die undurchsichtige Pixel enthalten.
Ein Vergleich mit dem Wert 0 entfällt
komplett. Am Ende einer Sprite-Zeile
signalisieren Sie noch mit einem festge-
legten Code, daß die Zeichenroutine in
die nächste Bildschirmzeile springen
muß.

Natürlich könnten Sie am Ende einen
durchsichtigen Bereich ins Sprite einfü-
gen, der so groß ist, daß der Zeiger auf
die Bildschirmdaten danach an der rich-
tigen Stelle steht. Dieser Bereich wäre so
groß wie die Breite des Monitors minus
der Breite des Sprite.

Dieser Ansatz bringt aber zwei ent-
scheidende Nachteile mit sich: Zum ei-
nen sind die so generierten Sprite-Daten
dann nicht mehr unabhängig von der
Auflösung des Bildschirms. Zum ande-
ren erfordert es zusätzlichen Aufwand
beim Clipping (Abschneiden) der
Sprites am Bildschirmrand.

Daher empfiehlt sich eine spezielle Zei-
lenende-Markierung. Als Escape-Code
für den Zeilensprung eignet sich zum Bei-
spiel der Wert 65 535. Diesen Code
bräuchten Sie nur bei 65 535 minus
32 768 durchsichtigen Pixeln in einer
Sprite-Zeile – doch dieser Fall dürfte
kaum jemals eintreten.

Als zusätzliche Information speichern
Sie noch die Größe sprite.size des co-
dierten Sprite. Die genaue Codierungs-
routine entnehmen Sie dem Quellcode

zu diesem Artikel, den Sie wie immer auf
der Heft-CD sowie im Internet-Ange-
bot des PC Magazin finden.

■ Sprites zeichnen
Ein solchermaßen codiertes Sprite
zeichnen Sie nun relativ schnell:

int spriteoffset=0;
short *adresse=

x_pos+y_pos*SCREEN_X;
while (spriteoffset<sprite.size)
{

// Wert auslesen
data=sprite.data[

spriteoffset++];
if (data==NEWLINE)
{

// Code für neue Zeile
adresse+=

SCREEN_X-sprite.size_x;
} else
if (data & MSB)
{

// MSB gesetzt =>
// Transparente Stelle
adresse+=data-

(unsigned int)MSB;
} else
{

// Undurchsichtige Stelle =>
// „data“ Pixel kopieren
for (unsigned int i=0;

i<data; i++)
*adresse++=sprite.data[

spriteoffset++];
}

}

Zu dieser Routine finden Sie im Source-
Code auch eine optimierte Assembler-
Version, die noch etwas schneller arbei-
tet.

Jetzt bleibt Ihnen noch die Aufgabe,
das Clipping zu lösen, also das Ab-
schneiden der Teile eines Sprite, die
nicht auf den Bildschirm passen. Das
Clipping an der oberen und unteren
Kante gestaltet sich relativ leicht: Ragt
ein Sprite oben über den Anzeigebereich
hinaus, lassen Sie entsprechend viele
Sprite-Zeilen aus. q

FIXPUNKT-ARITHMETIK
Die Fixpunkt-Arithmetik erlaubt die Bear-

beitung von Kommazahlen mit Integer-

Datentypen. Sie erhalten einen Fixpunkt-

wert (Fix Point), indem Sie die entspre-

chende Fließkommazahl (Floating Point)

mit einer Konstanten multiplizieren und

runden. Diese Konstante sollte idealer-

weise ein Vielfaches von 2 sein, also zum

Beispiel 2
16

= 65 536:

Fixpoint = Float * 65 536.0f;

Der Nachteil der Fixpunktzahlen ist der

eingeschränkte Zahlenbereich, da Sie

nicht mit Mantisse und Exponent arbei-

ten. Der Vorteil – daher auch die Ver-

wendung für die Partikel – liegt in der Ge-

schwindigkeit. Sie addieren, subtrahieren

und multiplizieren Fixpunktzahlen ge-

nauso schnell wie echte Integerzahlen.

Durch einfaches Schieben nach rechts –

im obigen Beispiel um 16 Bit – erhalten

Sie den Vorkommaanteil, den Sie zum Be-

rechnen der Bildschirmposition des Parti-

kels benötigen.

Bei der Addition bzw. Subtraktion behan-

deln Sie die Werte wie normale Integer-

zahlen. Lediglich bei der Multiplikation

tricksen Sie etwas:

Fix_Mult_A_B=(Fix_A*Fix_B)>>16;

Die Multiplikation arbeitet temporär mit

64-Bit-Integer-Werten. In Assembler pro-

grammieren Sie deshalb registerübergrei-

fend, da das Zwischenergebnis vor der

Shift-Operation mehr als 32 Bit in An-

spruch nehmen kann.

ZIEL- UND NACHBARPIXEL bei der bilinearen Interpolation

230 Juni 1999 PC Magazin

P C U N D E R G R O U N D
P R A X I S

In der Praxis lesen Sie die Sprite-Da-
ten aus und zählen die Anzahl der
Codes, die einen Zeilenwechsel anzei-
gen. Achten Sie bei dieser Routine nur
darauf, daß Sie dabei die Pixel-Daten
überspringen und nicht als Steuercodes
interpretieren.

Eine sehr elegante und etwas schnelle-
re Methode bedient sich einer Sprungta-
belle zu jedem Sprite, in der für jede Zei-
le der Index auf die Sprite-Daten ver-
merkt ist. Wenn Sie etwa drei Zeilen
überspringen möchten (Zeile 0 bis 2),
und Zeile 3 bei Index 100 beginnt, stün-
de in der Tabelle der Eintrag 100.

Das Clipping an der unteren Kante ge-
staltet sich noch einfacher: Sie verwen-
den eine Variable, die Sie mit der y-Start-
koordinaten des Sprite initialisieren. Im-
mer wenn Sie eine neue Sprite-Zeile an-
springen, erhöhen Sie diesen Wert. Er-

reicht die Variable einen Wert größer
oder gleich der Anzahl der Bildschirm-
zeilen, beenden Sie das Zeichnen.

Das Clipping an den Seiten funktio-
niert prinzipiell genauso wie an den an-
deren Kanten: Sie fügen jeweils Zähler
ein, wie viele Pixel Sie noch auslassen
(linke Kante) bzw. nach wie vielen Pi-
xeln Sie zu zeichnen aufhören (rechte
Kante). Natürlich müssen Sie dabei auch
die unsichtbaren Pixel auslesen.

■ Sprites generieren
Damit haben Sie alle Routinen, um einen
Sprite zu zeichnen. Ihnen fehlen nur
noch die Sprite-Daten selbst. Raum-
schiffe, wie Sie sie im Beispielprogramm
sehen, fertigen Sie mit jedem beliebigen
Zeichen- oder 3D-Modeling-Programm
an. Möchten Sie nicht mit Microsoft
Paint aus dem Windows-Zubehör arbei-
ten, können Sie zum Beispiel das Share-
ware-Programm Paintshop Pro von der
Heft-CD benutzen.

Um den Arbeitsaufwand zu vermin-
dern, zeichnen Sie jedes Bild des Raum-
schiffs nur für eine Flugrichtung. Für al-
le anderen Richtungen lassen Sie sich die
entsprechenden Sprites berechnen. Ein
gedrehtes Sprite erhalten Sie bereits mit
wenigen Zeilen Quelltext.

Zuerst berechnen Sie zu jedem Pixel
an der Stelle x/y des gedrehten Sprite den
zugehörigen Vektor vom Sprite-Mittel-
punkt aus:

for (int y=0; y<spritehoehe;
y ++)
for (int x=0; x<spritebreite;
x++)
{

vektor.x=x-spritebreite/2;
vektor.y=y-spritehoehe/2;

}

Nach einer Rotation dieses Vektors se-
hen Sie dann, auf welches Pixel er im ur-
sprünglichen Sprite zeigt. Dieses Ori-
ginalpixel setzen Sie an die Position x/y
des neuen Sprite.

Durch solche Drehungen entstehen
im berechneten Bild meist unschöne
Anomalien. Schuld daran ist das Ab-
schneiden der Nachkommastellen bei
der Konvertierung der Koordinaten
zurück in Ganzzahlwerte. Wenn Sie die

entsprechenden Nachkommaanteile be-
rücksichtigen, erhalten Sie deutlich
schönere Ergebnisse.

Dazu bedienen Sie sich der bilinearen
Interpolation. Betrachten Sie einmal das
Bild auf Seite 227: Die berechnete Posi-
tion 40,8/40,6 ergibt ohne Beachtung der
Nachkommastellen das Pixel 0 links
oben, obwohl sie schon sehr nahe an der
der anderen Pixel liegt.

Bei der bilinearen Interpolation vertu-
schen Sie diesen Fehler durch eine ge-
wichtete Farbgebung. Dabei berücksich-
tigen Sie für jede Position die relative La-
ge zu den vier umliegenden Pixeln. Den
idealen Farbwert erhalten Sie, indem Sie
für jede Farbkomponente – hier am Bei-
spiel Rot mit den aktuellen Positions-
werten gezeigt – wie folgt vorgehen:

Rot_oben=(1.0-0.8)*
Rot_Pixel0+0.8*Rot_Pixel1

Rot_unten=(1.0-0.8)*
Rot_Pixel2+0.8*Rot_Pixel3

Rot_gesamt=(1.0-0.6)*
Rot_oben+0.6*Rot_unten

Sie lesen also die umgebenden Pixel und
deren Farbkomponenten aus und be-
rechnen mit Hilfe der Nachkommastel-
len die gewichteten Farbanteile. Die so
gewonnene neue Farbe verwenden Sie
für das Pixel an der Zielposition (in un-
serem Beispiel Pixel 0).

Warum Sie damit, zum Beispiel bei ei-
ner Vergößerung, einen besseren opti-
schen Effekt erzielen, ist einleuchtend:
Statt grober Pixel sehen Sie fein abge-
stufte Farbnuancen. Bei einer Drehung
können Sie sich vorstellen, daß ein Pixel
nichts anderes ist als ein kleines Quadrat.
Beträgt der Drehwinkel etwa 45 Grad,
so liegt dieses Quadrat nicht vollständig
deckend auf einem Pixel, sondern be-
deckt mehrere davon – diese aber nur
teilweise. Im Sourcecode finden Sie eine
Routine, die Ihnen die Berechnung der
Drehschritte abnimmt:

CreateRotationAnimation(
SPRITE *sprite, int steps,

bitmaptype bmp)

Dieser Funktion übergeben Sie eine Li-
ste von Sprite-Strukturen, die Anzahl der
Drehschritte (steps) sowie eine bitmap-
type-Struktur. In letztere laden Sie zuvor
mit bmp_load(...) eine quadratische Bit-
map. Beachten Sie beim Entwurf der
Sprites, daß die Farbe 0, also Schwarz, als
transparent interpretiert wird.

■ Partikelsysteme
Für die Darstellung von Explosionen
und aufsteigenden Rauch könnten Sie
ebenfalls Sprites einsetzen. Eleganter
und effizienter programmieren Sie diese
Effekte aber mit einem Partikelsystem.
Auch wenn Sie PC Underground schon
länger verfolgen und die Partikeleffekte
aus der 3D-Engine in Ausgabe 2/99 ken-
nen, sollten Sie weiterlesen. Diesmal ler-
nen Sie noch effizientere Methoden zur
Partikelverwaltung und eine elegante
Steuerung der Partikel-Emitter kennen.

In unserem Fall ist ein Partikel nichts
anderes als ein kleiner, 4 x 4 Pixel großer
Punkt, dessen Helligkeit auf das aktuel-
le Bild addiert wird. Wie Sie dies elegant
im HiColor-Farbraum erledigen, lesen
Sie in der Textbox „Halbtransparenz
und additives Shading in HiColor“ auf
S. 231.

Jedes dieser Partikel besitzt eine aktu-
elle Position, eine Bewegungsrichtung
und einen Beschleunigungsvektor. Für
diese Werte genügen natürlich keine
ganzzahligen Werte, Sie brauchen Kom-
mazahlen. Eine schnelle Lösung bieten
Fixpunktzahlen mit je 16 Bit für die Vor-
und Nachkommastelle (siehe Textbox
„Fixpunkt-Arithmetik“ auf S. 229).

Zusätzlich erhält jedes Partikel noch
eine Lebensdauer, anhand derer Sie zum
Beispiel dessen aktuelle Farbe berech-
nen. Dieser Wert dient außerdem dazu,
ein Partikel nach einer bestimmten Zeit-
dauer wieder verschwinden zu lassen.

SEQUENZAUFNAHME der Partikel bei einer Explosion

PC Magazin Juni 1999 233

P C U N D E R G R O U N D
P R A X I S

Ein Partikel besitzt also folgende Ei-
genschaften:

typedef struct
{

int life; // Lebensdauer
int x, y; // Position
int dx, dy; // Bewegung
// Beschleunigung
int ddx, ddy;

} PARTICLE;

Von dieser Struktur legen Sie eine ganze
Reihe an, in unserem Fall 10 000 Parti-
kel. Für eine schöne Raumschiffexplosi-
on brauchen Sie davon ca. 5000:

#define MAXPARTICLES 10000

PARTICLE particle[MAXPARTICLES];

Um eine Explosion darzustellen, initia-
lisieren Sie genügend Partikelstrukturen
und erwecken diese zum Leben. Dazu
müssen Sie aber erst herausfinden, wel-
che der Einträge in particle noch nicht
belegt sind. Eine Methode wäre: Sie su-
chen alle Einträge durch, bis Sie genü-
gend freie gefunden haben. Bei 10 000
Partikeln kostet das allerdings zu viel
Rechenzeit.

Deshalb verwalten Sie die freien Parti-
kel in einem Stapel (Stack): Legen Sie da-
zu eine Liste an, die genauso viele Inte-
ger-Werte aufnehmen kann wie die ma-
ximale Zahl der Partikel. Auf das obere
Ende des Stapels zeigt ein spezieller Zei-
ger, der sogenannte Stackpointer. Die
Initialisierung nehmen Sie wie folgt vor:

int free_particle[
MAXPARTICLES];

int index_free;

for (i = 0;
i<MAXPARTICLES;
i++)
free_particle
[i]=i;

index_free=
MAXPARTICLES;

In dieser Liste stehen
alle Partikelindizes,
deren Struktur frei ist
– am Anfang eben al-
le. Jedesmal, wenn Sie
ein Partikel benutzen,
holen Sie sich die
Nummer eines freien
Partikels und entneh-
men ihn aus der Liste
(ein sogenannter Pop
vom Stack):

// keiner frei

if (index_free<=0) return;

nummer=
free_particle[–index_free];

„Stirbt“ ein Partikel, das heißt, verläßt es
den Bildschirm oder ist seine Lebens-
dauer abgelaufen, schreiben Sie seine
Nummer wieder in die Liste (entspricht
einem Push auf den Stack):

free_particle[index_free++]=
nummer;

Somit erhalten Sie immer Zugriff auf
freie Strukturen, ohne nach ihnen su-
chen zu müssen.

Jetzt, da Sie eine freie Struktur gefun-
den haben, füllen Sie sie aus. Werte für
eine Explosion an der Stelle x/y sehen
beispielsweise so aus:

void AddExplosion
(int x, int y, int anzahl)

{
for (int d=0; d<anzahl; d++)
{

if (index_free<=0) return;
int n=free_particle[

–index_free];

float richtung1=
rand()/32768.0f*PI_2;

float speed1=
rand()/32768.0f*0.5f;

float richtung2=
rand()/32768.0f*PI_2;

float speed2=
rand()/32768.0f*0.01f;

// Position, durch Zufalls-
// werte leicht verschoben
particle[n].x=(x<<16)+

(rand()-16384)*32;
particle[n].y=(y<<16)+ q

HALBTRANSPARENZ UND ADDITIVES SHADING IN HICOLOR
Um zwei Farben im Verhältnis 1:1 zu mi-

schen, addieren Sie theoretisch jeweils die

Rot-, Grün- und Blaukomponenten separat

und teilen sie durch 2. Das ist jedoch sehr

aufwendig, es geht auch wesentlich ele-

ganter. Betrachten Sie ein Pixel im HiColor-

Format, wie im Bild oben zu sehen: Es be-

steht aus jeweils 5 Bit für die Rot- und Blau-

komponente, 6 Bit sind für den Grünanteil

reserviert. Jetzt schieben Sie die Bits um ei-

ne Stelle nach rechts. Dies entspricht einer

Division durch 2. Maskieren Sie die Bits mit

der Maske

0111101111101111

aus, die durch das Schieben in die falsche

Farbkomponente gerutscht sind. Addieren

Sie nun zwei so vorbereitete Werte, erhal-

ten Sie wieder einen Farbwert im HiColor-

Format wie im Bild auf S. 230. Dieser ent-

hält für jede der RGB-Komponenten die

Hälfte des ursprünglichen Werts, ohne daß

Sie die Komponenten separat behandelt

haben.

Um zwei Farben zu mischen, halbieren Sie

sie zuerst mit dem beschriebenen Verfah-

ren. Danach addieren Sie sie, ohne einen

Überlauf – und somit einen Farbfehler – zu

riskieren. So erreichen Sie eine Transpa-

renz von 50 Prozent.

Beim additiven Shading möchten Sie aber

eine hellere Farbe erhalten und keine

Mischfarbe. Hier addieren Sie jede der

Farbkomponenten und setzten sie bei ei-

nem Überlauf auf den maximalen Wert:

Rot_neu=Rot_A+Rot_B;
if (Rot_neu>255) Rot_neu=255;

An den folgenden Formeln für den Rotan-

teil erkennen Sie leicht, wie Sie aus der

Mischfarbe die additive Farbe ableiten:

// Transparenz
Rot_Neu=Rot_A/2+Rot_B/2

=0.5*(Rot_A+Rot_B)
// Additiv
Rot_Neu=Rot_A+Rot_B

=2.0*0.5*(Rot_A+Rot_B)

Die additive Farbe erhalten Sie direkt aus

der Mischfarbe, wenn Sie jede Komponen-

te verdoppeln. Bei dieser Multiplikation

mit 2 hilft Ihnen eine Tabelle:

// Berechnung der Tabelle
for (i=0; i<65536; i++)
{

// Farbanteile extrahieren
// und skalieren
int r=((i&ROT_MASKE)

>>ROT_POS)*512>ROT_SIZE;
int g=((i&GRUEN_MASKE)

>>GRUEN_POS)*512
>>GRUEN_SIZE;

int b=((i&BLAU_MASKE)
>>BLAU_POS)*512>BLAU_SIZE;

// Farbwert berechnen
remappalette[i]=ColorCode(

min(255,r),min(255,g),
min(255,b));

}

Die Tabelle enthält also für jeden mögli-

chen Farbwert der Mischfarbe den Farb-

wert, der sich bei Multiplikation jeder

Komponente mit 2 (und anschließender

Korrektur bei einem Überlauf) ergibt. Ad-

ditives Shading erhalten Sie also aus der

Mischfarbe der zwei Pixel:

additive_Farbe=
remappalette[Mischfarbe];

HALBIEREN EINES HiColor-Farbwertes durch einfaches Nach-

rechts-Schieben der Bits und anschließende Maskierung

G G G G G G

G G G G G

B B B B B

B B B B

B B B B B R R R R R

R R R R

R R R R

G G G G G G

0

0 0 0

0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1

Blau Grün Rot

SHR
=

AND

=

234 Juni 1999 PC Magazin

P C U N D E R G R O U N D
P R A X I S

(rand()-16384)*32;
// Geschwindigkeit
particle[n].dx=

sin(richtung1)*speed1*
65536.0f;

particle[n].dy=
cos(richtung1)*speed1*
65536.0f;

particle[n].ddx=
sin(richtung2)*speed2*
65536.0f;

particle[n].ddy=
cos(richtung2)*speed2*
65536.0f;

particle[n].life=
(128+(rand()/32768.0f*
16.0f))<<16;

}
}

Nun lassen Sie die Partikel über den
Bildschirm fliegen. Dabei sollten Sie ei-
ne gleichmäßig schnelle Bewegung der
Partikel unabhängig von der Geschwin-
digkeit des Rechners gewährleisten. Be-
rechnen Sie dazu die Zeitdifferenz zwi-
schen der letzten Bewegung eines Parti-
kels und der aktuellen Zeit, und skalie-
ren Sie die Geschwindigkeit und die Be-
schleunigung entsprechend:

// Skalierung
step=(65536.0f*(zeit-

alte_zeit)/20.0f);

for (i=0; i<MAXPARTICLES; i++)
if (particle[i].life>0)
{

int dead=0;
particle[i].x+=imul16(

particle[i].dx, step);
particle[i].y+=imul16(

particle[i].dy, step);
particle[i].dx+=imul16(

particle[i].ddx, step);
particle[i].dy+=imul16(

particle[i].ddy, step);
int x=particle[i].x>>16;
int y=particle[i].y>>16;

// Bildschirm verlassen?
if (x>=SCREEN_X-6) dead=1;
else if (x<0) dead=1;
if (y>=SCREEN_Y-6) dead=1;
else if (y<0) dead=1;

explosion_particle[i].life
-=imul16(65536,step);

// Lebensdauer abgelaufen?
if (explosion_particle[i].

life<=0) dead=1;
if (dead)

// Partikel freigeben
else

// Partikel zeichnen
}

Die Funktion imul16 ist hier die Multi-
plikationsroutine für Fixpunktzahlen.

Das Partikel zeichnen Sie nun, indem
Sie die Farbe aus der Lebensdauer be-
rechnen und additiv einen kleinen Ka-
sten an seiner Position setzen:

// Farbwert berechnen und
// gleich Bitmaske anwenden
life=explosion_particle[i].life

>>17;
r=g=b=16;
if (life>48) b+=life-48

else b+=life/4;
if (life>32) g+=life-16
else g+=life/2;
r+=life;
farbe=ColorCode(r,g,b) & mask;

adress=screen+(x+y*SCREEN_X);
for (int b=0; b<4; b++)
{

for (int a=0; a<4; a++)
{

int back=*adress;
back&=mask;
*adress=remappalette[

(farbe+back)>1];
adress++;

}
adress+=SCREEN_X-4;

}

Die Zeichenroutine, die Sie im Quelltext
auf der Heft-CD finden, enthält zusätz-
lich wieder eine Assembler-Version, die
die Pixel an den Parti-
kelecken abdunkelt.
Dadurch erhalten Sie
runder wirkende Par-
tikel, die etwas schö-
ner aussehen.

Nun besitzen Sie
das Handwerkszeug,
um Partikelexplosio-
nen zu generieren. Es
fehlt Ihnen aber noch
ein eleganter Weg,
größere zusammen-
gesetzte Explosionen
bequem zu erzeugen.
Dazu bedienen Sie sich des Prinzips ei-
ner Warteschleife:

#define MAXQUEUE 32

typedef struct
{

// Position, Dichte, Typ, Flag
int x,y,density,type,used;
// Zeitangabe für Explosion
int time;

}EXPLOSION_QUEUE;

EXPLOSION_QUEUE queue[MAXQUEUE];

Wenn Sie eine zusammengesetzte Ex-
plosion starten wollen, suchen Sie sich
einen freien Eintrag in der Liste und tra-
gen Ihre Wunschdaten ein. Die Varia-
blen bestimmen die Position der Explo-
sion, die Dichte (also die Anzahl der Par-
tikel) sowie den Typus, falls Sie ver-
schiedene Typen implementiert haben:

int i=0;
while ((i<MAXQUEUE) &&

(explosion_queue[i].used))
i++;

// Warteschlange voll
if (i==MAXQUEUE) return;

queue[i].used=1;
queue[i].x=Position x;
queue[i].y=Position y;
queue[i].density=400;
queue[i].type=0;
queue[i].time=GetDemoTime()+250;

Dieses Beispiel initialisiert eine Explo-
sion, die 250 Millisekunden später be-
ginnt. Die Funktion HandleExplosion()
arbeitet nun die Warteschlange ab:

void HandleExplosion()
{

int time=GetDemoTime();

for (int i=0; i<MAXQUEUE; i++)
if ((explosion_queue[i].used)

&& (explosion_queue[i].time
<=time))

{
explosion_queue[i].used=0;
AddExplosion(

explosion_queue[i].x,
explosion_queue[i].y,
explosion_queue[i].
density);

}
}

Die Routine rufen Sie bei jedem Bild-
schirmaufbau auf, die Explosionen star-
ten dann wie gewünscht. Den optischen
Eindruck einer solchen Explosion sehen
Sie im Bild auf S. 230.

Den Feuerstrahl am Antrieb des
Raumschiffs haben wir übrigens auch
mit dem Partikelsystem berechnet und
dann dem Sprite des Raumgleiters hin-
zugefügt. Im Sourcecode finden Sie ne-
ben der Explosionsroutine noch analoge
Funktionen für Rauch- und Flammenef-
fekte.

An dieser Stelle haben Sie schon fast
alle Grundlagen geschaffen, die Sie für
das Programmieren des Spiels benöti-
gen. In der nächsten Ausgabe lernen Sie
noch die Algorithmen zur Abfrage von
Sprite-Kollisionen kennen, bevor Sie
sich dann ganz dem Hauptteil des Spiels
widmen. s P E I / B M

Die Quelltexte der Sprite-Routinen und des Parti-
kelsystems finden Sie zusammen mit der zugrunde-
liegenden Grafikbibliothek auf unserer Heft-CD im
Verzeichnis praxis\pc-under und im Internet-Ange-
bot des PC Magazin unter

www.pc-magazin.de/magazin/
➥extras.htm

Klicken Sie unter Online Extras im Menü Praxis auf
das entsprechende Download-Feld.

ADDITION der halbierten HiColor-Farbwerte

B B B B B R R R R RG G G G G G

G G G G GB B B B R R R R0 0 0

G G G G GB B B B R R R R0 0 0+

=

