PC UNDERGROUND

PRAXIS

Spiele-Programmierung unter Windows .__5_3__;5}98/-1\11?

A R
v)
’*i o
QPT.O

-

der Pixel

Im zweiten Teil unseres Spieleprojekts

animieren Sie

mit Hilfe

von Sprites und Partikeleffeken.

CARSTEN DACHSBACHER

achdem Sie in der letzten Aus-
gabe von PC Underground ei-
niges uber Sounds gelernt ha-

ben, dreht sich diesmal alles um die Gra-
fik. Fir unser Projekt eines Weltraum-
Ballerspiels spielt da-
bei die Animation der
fliegenden Raumglei-
ter eine wichtige Rol-
le. Diese Aufgabe be-
wiltigen Sie am be-
sten mit sogenannten
Sprites.

Sprites sind kleine,
auf dem Bildschirm
frei bewegliche Grafi-
ken, die auch durch-
sichtige Stellen auf-
weisen konnen. Sie
tauchen nicht nur in
vielen Spielen auf — das
wohl bekannteste Bei-
spiel eines Sprite ist si-
cherlich Thr Mauszei-

Teil 1 (Ausgabe 5/99):

« Entwicklung des Basissystems

« DirectSound-Programmierung

« Soundeffekt-Programmierung/
Klangsynthese

BE, PC Magazin Demo

Teil 2 (diese Ausgabe):
e Sprite-Programmierung
« Partikel- und Effektsystem

Teil 3 (Ausgabe 7/99):

« Algorithmen zur Kollisionsabfrage

« Spielelogik

« Spielegrafik und Highscore-Routinen
* Musik

228 Juni1999 PC Magazin

ger. Sogar auf Web-Seiten kommen heu-
te Sprites zum Einsatz: Dank der Layer-
Technik kénnen Sie Grafiken schrittwei-
se an immer neuer Stelle plazieren.
Bereits so betagte Heimcomputer wie
der Commodore 64, der Amiga sowie
der Atari haben eine Hardware-Unter-
stiitzung fur Sprites zur Verfigung ge-

SPRITE-ROUTINEN und Partikelsystem im Einsatz

stellt. Auch die meisten Spielekonsolen
bieten diese heute an. Dies spart Re-
chenzeit und vereinfacht den Umgang
mit bewegten Objekten. Auf dem PC al-
lerdings muflten sich Programmierer
schon immer selbst um alles kiimmern.
Dabei will die Darstellung, Bewegung
und eventuell das Wiederherstellen des
Bildschirminhalts beim Weiterbewegen
eines Sprite geschickt implementiert
sein.

Um ein Sprite zu speichern und anzu-
zeigen, gibt es eine einfache Methode:
Sie merken sich dessen Breite und Hohe
und reservieren einen entsprechend gro-
en Speicherbereich fiir die Bilddaten.
Das sieht dann folgendermaflen aus:

typedef struct

{
int size_x, size_y; /| GrolRe
/I Zeiger auf Daten
short *data;

}

Die Grofe des Speicherbereichs betragt
Breite mal Hohe mal Speicherverbrauch
eines Pixels (in unserem Fall 2 Byte).

Fur durchsichtige Stellen des Sprite le-
gen Sie einen gewohnlichen Farbcode
fest, den Sie entbehren konnen. Der
Code mit dem Wert O eignet sich dafir
hervorragend, weil Sie ihn in Assembler-
code besonders schnell abfragen kon-
nen. Zwei verschachtelte Schleifen, je ei-
ne fiir die Hohe und die Breite, zeichnen
das Sprite auf den Monitor:

for (int y=0; y<size_y; y++)
for (int x=0; x<size_x; x++)

short farbcode=
data[x+y*size_x];
if (farbcode!=0)
Bildschirm[x+pos_x+
(y+pos_y)*SCREEN_X]=
farbcode;

}
Am besten ziehen Sie die Adreffberech-
nung des Startpixels vor die Schleife und
ermitteln die restlichen Pixel durch Ad-
ditionen:

short *adresse=Bildschirm+
pos_x+pos_y*SCREEN_X;

for (int y=0; y<size_y; y++)
for (int x=0; x<size_x; x++)

short farbcode=
data[x+y*size_x];

if (farbcode!=0)
*adresse=farbcode;

adresse++;

}
adresse+=SCREEN_X-size_x;
}

Wie Sie sehen, miissen Sie mit dieser Me-
thode immer alle Pixel des Sprite ausle-
sen und auf Gleichheit mit Null prifen,
egal wie viele Pixel gesetzt sind. An die-
ser Stelle ahnen Sie sicher schon, daff es
ein eleganteres Verfahren gibt.

Die folgende Vorgehensweise nutzt
eine Idee aus der Datenkomprimierung,
die sogenannte Lauflingencodierung
(Runlength Encoding, RLE). In der ein-
fachsten Version, wie sie zum Beispiel
Bestandteil mancher Grafikformate ist,
ersetzt der Algorithmus aufeinanderfol-
gende, gleichfarbige Pixel durch die An-
zahl und deren Farbwert. Bei einem ein-
fachen Testszenario erhalten Sie aus

1,1,11,2,2,3,3,3,45,5
folgende Ausgabe:

4,1,2,2,33,1,4,25
Wie Sie der Ausgabe entnehmen, be-
stand die Eingabe aus vier Einsern, ge-

folgt von zwei Zwei-
ern, drei Dreiern, ei-

Pixel O
u=40, v=40

nem Vierer und zwei
Finfern. Bei einem
haufigen Wechsel der
Eingabewerte nimmt
die Datenmenge je-
doch nicht sehr ab. In
diesem Beispiel spart
das Verfahren gerade

Pixel 1
u=41 v=40

Berechnete Position

. ‘——-"'_-_-—U:408 v=41

)

mal zwei Werte ein.

Beim Entpacken
gehen Sie umgekehrt
vor: Zuerst lesen Sie
die Anzahl aus, dann
den Wert, den Sie ent-
sprechend oft kopie-
ren.

Pixel 2
u=40v=41

Pixel 3
u=41,v=41

Eben das nutzen Sie
fur Thre Sprites. Dazu

unterscheiden Sie
zwischen durchsich-
tigen (Farbwert gleich
0) und undurchsichtigen (Farbwert un-
gleich 0) Pixeln des Sprite. Beim Codie-
ren des Sprite zihlen Sie dann innerhalb
einer Zeile die Anzahl der zusammen-
hingenden Pixel. Diese Anzahl spei-
chern Sie und lassen bei undurchsichti-
gen Bereichen die Pixeldaten folgen.

Nun fehlt Thnen noch der Hinweis, ob
sich die Mengenangabe auf einen durch-
oder undurchsichtigen Teil bezieht. Da
Sie die Sprite-Daten als 16-Bit-Werte
vorliegen haben, konnen Sie zur Cha-
rakterisierung das hochstwertige Bit
(Most Significant Bit, MSB), verwenden.
Sie setzen das MSB in einem 16-Bit-
Wert durch eine bitweise Oder-Ver-
kntipfung mit dem Wert 32 768.

Als Beispiel hier die Codierung einer
Sprite-Zeile. Eine Datenreihe wie:

0,0,0,0,1,2,3,4,0,5,6
ergibt codiert:

4 or MSB,4,1,2,3,4,1 or MSB,2,5,6
Der Vorteil dieser Methode ist, daf§ das
Decodieren praktisch keine Zeit kostet
und Sie nur die Sprite-Daten lesen miis-
sen, die undurchsichtige Pixel enthalten.
Ein Vergleich mit dem Wert 0 entfillt
komplett. Am Ende einer Sprite-Zeile
signalisieren Sie noch mit einem festge-
legten Code, daf} die Zeichenroutine in
die nichste Bildschirmzeile springen
muf3.

Natiirlich konnten Sie am Ende einen
durchsichtigen Bereich ins Sprite einfi-
gen, der so grof ist, dafl der Zeiger auf
die Bildschirmdaten danach an der rich-
tigen Stelle steht. Dieser Bereich wire so
groff wie die Breite des Monitors minus
der Breite des Sprite.

ZIEL- UND NACHBARPIXEL bei der bilinearen Interpolation

Dieser Ansatz bringt aber zwei ent-
scheidende Nachteile mit sich: Zum ei-
nen sind die so generierten Sprite-Daten
dann nicht mehr unabhingig von der
Auflésung des Bildschirms. Zum ande-
ren erfordert es zusitzlichen Aufwand
beim Clipping (Abschneiden) der
Sprites am Bildschirmrand.

Daher empfiehlt sich eine spezielle Zei-
lenende-Markierung. Als Escape-Code
fir den Zeilensprung eignet sich zum Bei-
spiel der Wert 65535. Diesen Code
brauchten Sie nur bei 65535 minus
32768 durchsichtigen Pixeln in einer
Sprite-Zeile — doch dieser Fall dirfte
kaum jemals eintreten.

Als zusitzliche Information speichern
Sie noch die Grofle sprite.size des co-
dierten Sprite. Die genaue Codierungs-
routine entnehmen Sie dem Quellcode

Die Fixpunkt-Arithmetik erlaubt die Bear-
beitung von Kommazahlen mit Integer-
Datentypen. Sie erhalten einen Fixpunkt-
wert (Fix Point), indem Sie die entspre-
chende FlieRkommazahl (Floating Point)
mit einer Konstanten multiplizieren und
runden. Diese Konstante sollte idealer-
weise ein Vielfaches von 2 sein, also zum
Beispiel 2 = 65 536:
Fixpoint = Float * 65 536.0f;

Der Nachteil der Fixpunktzahlen ist der
eingeschrankte Zahlenbereich, da Sie
nicht mit Mantisse und Exponent arbei-
ten. Der Vorteil — daher auch die Ver-
wendung fur die Partikel — liegt in der Ge-
schwindigkeit. Sie addieren, subtrahieren
und multiplizieren Fixpunktzahlen ge-

PC UNDERGROUND
PRAXIS

zu diesem Artikel, den Sie wie immer auf
der Heft-CD sowie im Internet-Ange-
bot des PC Magazin finden.

Ein solchermaflen codiertes
zeichnen Sie nun relativ schnell:
int spriteoffset=0;
short *adresse=
X_pos+y_pos*SCREEN_X;
while (spriteoffset<sprite.size)

Sprite

/I Wert auslesen

data=sprite.data[
spriteoffset++];

if (data==NEWLINE)

/I Code fiir neue Zeile
adresse+=
SCREEN_X-sprite.size_x;
} else
if (data & MSB)

/I MSB gesetzt =>
/I Transparente Stelle
adresse+=data-
(unsigned int)MSB;
} else

/' Undurchsichtige Stelle =>
/I ,data“ Pixel kopieren
for (unsigned int i=0;
i<data; i++)
*adresse++=sprite.data[
spriteoffset++];

Zu dieser Routine finden Sie im Source-
Code auch eine optimierte Assembler-
Version, die noch etwas schneller arbei-
tet.

Jetzt bleibt Thnen noch die Aufgabe,
das Clipping zu l6sen, also das Ab-
schneiden der Teile eines Sprite, die
nicht auf den Bildschirm passen. Das
Clipping an der oberen und unteren
Kante gestaltet sich relativ leicht: Ragt
ein Sprite oben iiber den Anzeigebereich
hinaus, lassen Sie entsprechend viele
Sprite-Zeilen aus. >

nauso schnell wie echte Integerzahlen.
Durch einfaches Schieben nach rechts —
im obigen Beispiel um 16 Bit — erhalten
Sie den Vorkommaanteil, den Sie zum Be-
rechnen der Bildschirmposition des Parti-
kels bendtigen.
Bei der Addition bzw. Subtraktion behan-
deln Sie die Werte wie normale Integer-
zahlen. Lediglich bei der Multiplikation
tricksen Sie etwas:
Fix_Mult_A_B=(Fix_A*Fix_B)>>16;
Die Multiplikation arbeitet temporar mit
64-Bit-Integer-Werten. In Assembler pro-
grammieren Sie deshalb registerubergrei-
fend, da das Zwischenergebnis vor der
Shift-Operation mehr als 32 Bit in An-
spruch nehmen kann.

PC Magazin Juni1999 229

PC UNDERGROUND

PRAXIS

In der Praxis lesen Sie die Sprite-Da-
ten aus und zihlen die Anzahl der
Codes, die einen Zeilenwechsel anzei-
gen. Achten Sie bei dieser Routine nur
darauf, dafl Sie dabei die Pixel-Daten
iberspringen und nicht als Steuercodes
interpretieren.

Eine sehr elegante und etwas schnelle-
re Methode bedient sich einer Sprungta-
belle zu jedem Sprite, in der fiir jede Zei-
le der Index auf die Sprite-Daten ver-
merkt ist. Wenn Sie etwa drei Zeilen
uberspringen mochten (Zeile 0 bis 2),
und Zeile 3 bei Index 100 beginnt, stiin-
de in der Tabelle der Eintrag 100.

Das Clipping an der unteren Kante ge-
staltet sich noch einfacher: Sie verwen-
den eine Variable, die Sie mit der y-Start-
koordinaten des Sprite initialisieren. Im-
mer wenn Sie eine neue Sprite-Zeile an-
springen, erhohen Sie diesen Wert. Er-

Zuerst berechnen Sie zu jedem Pixel
an der Stelle x/y des gedrehten Sprite den
zugehorigen Vektor vom Sprite-Mittel-

punkt aus:
for (int y=0; y<spritehoehe;
y ++)
for (int x=0; x<spritebreite;
X++)

vektor.x=x-spritebreite/2;

) vektor.y=y-spritehoehe/2;

Nach einer Rotation dieses Vektors se-
hen Sie dann, auf welches Pixel er im ur-
sprunglichen Sprite zeigt. Dieses Ori-
ginalpixel setzen Sie an die Position x/y
des neuen Sprite.

Durch solche Drehungen entstehen
im berechneten Bild meist unschone
Anomalien. Schuld daran ist das Ab-
schneiden der Nachkommastellen bei
der Konvertierung der Koordinaten
zuriick in Ganzzahlwerte. Wenn Sie die

SEQUENZAUFNAHME der Partikel bei einer Explosion

reicht die Variable einen Wert grofer
oder gleich der Anzahl der Bildschirm-
zeilen, beenden Sie das Zeichnen.

Das Clipping an den Seiten funktio-
niert prinzipiell genauso wie an den an-
deren Kanten: Sie fugen jeweils Zihler
ein, wie viele Pixel Sie noch auslassen
(linke Kante) bzw. nach wie vielen Pi-
xeln Sie zu zeichnen aufhoéren (rechte
Kante). Natiirlich miissen Sie dabei auch
die unsichtbaren Pixel auslesen.

Damit haben Sie alle Routinen, um einen
Sprite zu zeichnen. Thnen fehlen nur
noch die Sprite-Daten selbst. Raum-
schiffe, wie Sie sie im Beispielprogramm
sehen, fertigen Sie mit jedem beliebigen
Zeichen- oder 3D-Modeling-Programm
an. Mochten Sie nicht mit Microsoft
Paint aus dem Windows-Zubehor arbei-
ten, konnen Sie zum Beispiel das Share-
ware-Programm Paintshop Pro von der
Heft-CD benutzen.

Um den Arbeitsaufwand zu vermin-
dern, zeichnen Sie jedes Bild des Raum-
schiffs nur fiir eine Flugrichtung. Fiir al-
le anderen Richtungen lassen Sie sich die
entsprechenden Sprites berechnen. Ein
gedrehtes Sprite erhalten Sie bereits mit
wenigen Zeilen Quelltext.

230 Juni1999 PC Magazin

entsprechenden Nachkommaanteile be-
rucksichtigen, erhalten Sie deutlich
schonere Ergebnisse.

Dazu bedienen Sie sich der bilinearen
Interpolation. Betrachten Sie einmal das
Bild auf Seite 227: Die berechnete Posi-
tion 40,8/40,6 ergibt ohne Beachtung der
Nachkommastellen das Pixel 0 links
oben, obwohl sie schon sehr nahe an der
der anderen Pixel liegt.

Bei der bilinearen Interpolation vertu-
schen Sie diesen Fehler durch eine ge-
wichtete Farbgebung. Dabei berticksich-
tigen Sie fiir jede Position die relative La-
ge zu den vier umliegenden Pixeln. Den
idealen Farbwert erhalten Sie, indem Sie
tiir jede Farbkomponente — hier am Bei-
spiel Rot mit den aktuellen Positions-
werten gezeigt — wie folgt vorgehen:

Rot_oben=(1.0-0.8)*

Rot_Pixel0+0.8*Rot_Pixell

Rot_unten=(1.0-0.8)*

Rot_Pixel2+0.8*Rot_Pixel3

Rot_gesamt=(1.0-0.6)*

Rot_oben+0.6*Rot_unten
Sie lesen also die umgebenden Pixel und
deren Farbkomponenten aus und be-
rechnen mit Hilfe der Nachkommastel-
len die gewichteten Farbanteile. Die so
gewonnene neue Farbe verwenden Sie
fir das Pixel an der Zielposition (in un-
serem Beispiel Pixel 0).

Warum Sie damit, zum Beispiel bei ei-
ner Vergoflerung, einen besseren opti-
schen Effekt erzielen, ist einleuchtend:
Statt grober Pixel sehen Sie fein abge-
stufte Farbnuancen. Bei einer Drehung
konnen Sie sich vorstellen, dafi ein Pixel
nichts anderes ist als ein kleines Quadrat.
Betragt der Drehwinkel etwa 45 Grad,
so liegt dieses Quadrat nicht vollstandig
deckend auf einem Pixel, sondern be-
deckt mehrere davon — diese aber nur
teilweise. Im Sourcecode finden Sie eine
Routine, die Thnen die Berechnung der
Drehschritte abnimmt:

CreateRotationAnimation(
SPRITE *sprite, int steps,
bitmaptype bmp)

Dieser Funktion tibergeben Sie eine Li-
ste von Sprite-Strukturen, die Anzahl der
Drehschritte (steps) sowie eine bitmap-
type-Struktur. In letztere laden Sie zuvor
mit bmp_load(...) eine quadratische Bit-
map. Beachten Sie beim Entwurf der
Sprites, daf} die Farbe 0, also Schwarz, als
transparent interpretiert wird.

Fiir die Darstellung von Explosionen
und aufsteigenden Rauch konnten Sie
ebenfalls Sprites einsetzen. Eleganter
und effizienter programmieren Sie diese
Effekte aber mit einem Partikelsystem.
Auch wenn Sie PC Underground schon
langer verfolgen und die Partikeleffekte
aus der 3D-Engine in Ausgabe 2/99 ken-
nen, sollten Sie weiterlesen. Diesmal ler-
nen Sie noch effizientere Methoden zur
Partikelverwaltung und eine elegante
Steuerung der Partikel-Emitter kennen.

In unserem Fall ist ein Partikel nichts
anderes als ein kleiner, 4 x 4 Pixel grofler
Punkt, dessen Helligkeit auf das aktuel-
le Bild addiert wird. Wie Sie dies elegant
im HiColor-Farbraum erledigen, lesen
Sie in der Textbox ,Halbtransparenz
und additives Shading in HiColor“ auf
S. 231.

Jedes dieser Partikel besitzt eine aktu-
elle Position, eine Bewegungsrichtung
und einen Beschleunigungsvektor. Fiir
diese Werte gentigen natirlich keine
ganzzahligen Werte, Sie brauchen Kom-
mazahlen. Eine schnelle Losung bieten
Fixpunktzahlen mitje 16 Bitfiir die Vor-
und Nachkommastelle (sieche Textbox
,Fixpunkt-Arithmetik“ auf S. 229).

Zusitzlich erhilt jedes Partikel noch
eine Lebensdauer, anhand derer Sie zum
Beispiel dessen aktuelle Farbe berech-
nen. Dieser Wert dient auflerdem dazu,
ein Partikel nach einer bestimmten Zeit-
dauer wieder verschwinden zu lassen.

Fin Partikel besitzt also folgende Ei-
genschaften:

typedef struct
{

int life; // Lebensdauer
int x, y; // Position
int dx, dy; // Bewegung
/I Beschleunigung
int ddx, ddy;

} PARTICLE;

Von dieser Struktur legen Sie eine ganze
Reihe an, in unserem Fall 10 000 Parti-
kel. Fiir eine schone Raumschiffexplosi-
on brauchen Sie davon ca. 5000:

#define MAXPARTICLES 10000

PARTICLE particle[MAXPARTICLES];

Um eine Explosion darzustellen, initia-
lisieren Sie gentigend Partikelstrukturen
und erwecken diese zum Leben. Dazu
miissen Sie aber erst herausfinden, wel-
che der Eintrige in particle noch nicht
belegt sind. Eine Methode wire: Sie su-
chen alle Eintrige durch, bis Sie geni-
gend freie gefunden haben. Bei 10 000
Partikeln kostet das allerdings zu viel
Rechenzeit.

Deshalb verwalten Sie die freien Parti-
kel in einem Stapel (Stack): Legen Sie da-
zu eine Liste an, die genauso viele Inte-
ger-Werte aufnehmen kann wie die ma-
ximale Zahl der Partikel. Auf das obere
Ende des Stapels zeigt ein spezieller Zei-
ger, der sogenannte Stackpointer. Die
Initialisierung nehmen Sie wie folgt vor:

int free_patrticle[
MAXPARTICLES];
int index_free;

Um zwei Farben im Verhaltnis 1:1 zu mi-
schen, addieren Sie theoretisch jeweils die
Rot-, Grun- und Blaukomponenten separat
und teilen sie durch 2. Das ist jedoch sehr
aufwendig, es geht auch wesentlich ele-
ganter. Betrachten Sie ein Pixel im HiColor-
Format, wie im Bild oben zu sehen: Es be-
steht aus jeweils 5 Bit fur die Rot- und Blau-
komponente, 6 Bit sind fur den Grunanteil
reserviert. Jetzt schieben Sie die Bits um ei-
ne Stelle nach rechts. Dies entspricht einer
Division durch 2. Maskieren Sie die Bits mit

der Maske
0111101111101111

aus, die durch das Schieben in die falsche
Farbkomponente gerutscht sind. Addieren
Sie nun zwei so vorbereitete Werte, erhal-
ten Sie wieder einen Farbwert im HiColor-
Format wie im Bild auf S. 230. Dieser ent-
halt fur jede der RGB-Komponenten die
Halfte des urspranglichen Werts, ohne dal3
Sie die Komponenten separat behandelt
haben.

PC UNDERGROUND
PRAXIS

»

for (i=0;

i<MAXPARTICLES;
i++)
free_particle

RRRRR

=i

index_free=
MAXPARTICLES;

Blau

Griin Rot

SHR

In dieser Liste stehen
alle Partikelindizes,

BBBBBRRRR

deren Struktur frei ist
— am Anfang eben al-
le. Jedesmal, wenn Sie

ein Partikel benutzen,
holen Sie sich die

AND

01111011111 01111

Nummer eines freien

Partikels und entneh-
men ihn aus der Liste

"AB B B B

gcccce

AR R R R

(ein sogenannter Pop
vom Stack):
Il keiner frei

if (index_free<=0) return;

nummer=
free_particle[-index_free];

,LStirbt“ ein Partikel, das heift, verlifit es
den Bildschirm oder ist seine Lebens-
dauer abgelaufen, schreiben Sie seine
Nummer wieder in die Liste (entspricht
einem Push auf den Stack):
free_particle[index_free++]=
nummer;

Somit erhalten Sie immer Zugriff auf
freie Strukturen, ohne nach ihnen su-
chen zu miissen.

Jetzt, da Sie eine freie Struktur gefun-
den haben, fiillen Sie sie aus. Werte fiir
eine Explosion an der Stelle x/y sehen
beispielsweise so aus:

Um zwei Farben zu mischen, halbieren Sie
sie zuerst mit dem beschriebenen Verfah-
ren. Danach addieren Sie sie, ohne einen
Uberlauf — und somit einen Farbfehler — zu
riskieren. So erreichen Sie eine Transpa-
renz von 50 Prozent.
Beim additiven Shading méchten Sie aber
eine hellere Farbe erhalten und keine
Mischfarbe. Hier addieren Sie jede der
Farbkomponenten und setzten sie bei ei-
nem Uberlauf auf den maximalen Wert:

Rot_neu=Rot_A+Rot_B;

if (Rot_neu>255) Rot_neu=255;
An den folgenden Formeln fur den Rotan-
teil erkennen Sie leicht, wie Sie aus der
Mischfarbe die additive Farbe ableiten:

/I Transparenz

Rot_Neu=Rot_A/2+Rot_B/2

=0.5%(Rot_A+Rot_B)
/I Additiv
Rot_Neu=Rot_A+Rot_B
=2.0%0.5*(Rot_A+Rot_B)

Die additive Farbe erhalten Sie direkt aus
der Mischfarbe, wenn Sie jede Komponen-
te verdoppeln. Bei dieser Multiplikation

HALBIEREN EINES HiColor-Farbwertes durch einfaches Nach-
rechts-Schieben der Bits und anschlieRende Maskierung

void AddExplosion
(int x, inty, int anzahl)

for (int d=0; d<anzahl; d++)
{
if (index_free<=0) return;
int n=free_particle[
—index_free];

float richtungl=
rand()/32768.0f*PI_2;
float speedl1=
rand()/32768.0f*0.5f;
float richtung2=
rand()/32768.0f*PI_2;
float speed2=
rand()/32768.0f*0.01f;

/I Position, durch Zufalls-
/I werte leicht verschoben
particle[n].x=(x<<16)+
(rand()-16384)*32;
particle[n].y=(y<<16)+

mit 2 hilft Ihnen eine Tabelle:
/I Berechnung der Tabelle
for (i=0; i<65536; i++)
{
/I Farbanteile extrahieren
/l'und skalieren
int r=((i&ROT_MASKE)
>>ROT_POS)*512>ROT_SIZE;
int g9=(((&GRUEN_MASKE)
>>GRUEN_POS)*512
>>GRUEN_SIZE;
int b=((i&BLAU_MASKE)
>>BLAU_POS)*512>BLAU_SIZE;
/I Farbwert berechnen
remappalette[i]=ColorCode(
min(255,r),min(255,9),
min(255,b));

Die Tabelle enthalt also fur jeden mogli-
chen Farbwert der Mischfarbe den Farb-
wert, der sich bei Multiplikation jeder
Komponente mit 2 (und anschlieBender
Korrektur bei einem Uberlauf) ergibt. Ad-
ditives Shading erhalten Sie also aus der

Mischfarbe der zwei Pixel:
additive_Farbe=
remappalette[Mischfarbe];

PC Magazin Juni1999 233

PC UNDERGROUND
PRAXIS

(rand()-16384)*32;
1l Geschwindigkeit
particle[n].dx=
sin(richtungl)*speed1*
65536.0f;
particle[n].dy=
cos(richtungl)*speed1*
65536.0f;
particle[n].ddx=
sin(richtung2)*speed2*
65536.0f;
particle[n].ddy=
cos(richtung2)*speed2*
65536.0f;
particle[n].life=
(128+(rand()/32768.0f*
16.0f))<<16;

}

Nun lassen Sie die Partikel iiber den
Bildschirm fliegen. Dabeti sollten Sie ei-
ne gleichmiflig schnelle Bewegung der
Partikel unabhingig von der Geschwin-
digkeit des Rechners gewihrleisten. Be-
rechnen Sie dazu die Zeitdifferenz zwi-
schen der letzten Bewegung eines Parti-
kels und der aktuellen Zeit, und skalie-
ren Sie die Geschwindigkeit und die Be-
schleunigung entsprechend:

/I Skalierung
step=(65536.0f*(zeit-
alte_zeit)/20.0f);

for (i=0; ikMAXPARTICLES; i++)
if (particle[i].life>0)
{

int dead=0;
particle[i].x+=imul16(
particle[i].dx, step);
particle[i].y+=imul16(
particle[i].dy, step);
particle[i].dx+=imul16(
particle[i].ddx, step);
particle[i].dy+=imul16(
particle[i].ddy, step);
int x=particle[i].x>>16;
int y=particle[i].y>>16;

/I Bildschirm verlassen?

if (x>=SCREEN_X-6) dead=1;
else if (x<0) dead=1;

if (y>=SCREEN_Y-6) dead=1;
else if (y<0) dead=1;

explosion_particle[i].life
-=imul16(65536,step);

/I Lebensdauer abgelaufen?

if (explosion_particleli].
life<=0) dead=1;

if (dead)
/I Partikel freigeben

else
/I Partikel zeichnen

}

Die Funktion imull6 ist hier die Multi-
plikationsroutine fiir Fixpunktzahlen.

Das Partikel zeichnen Sie nun, indem
Sie die Farbe aus der Lebensdauer be-
rechnen und additiv einen kleinen Ka-
sten an seiner Position setzen:

/I Farbwert berechnen und

/I gleich Bitmaske anwenden

life=explosion_particle[i].life

>>17;
r=g=b=16;
if (lfe>48) b+=life-48

234 Juni1999 PC Magazin

else b+=life/4;

if (life>32) g+=life-16

else g+=life/2;

r+=life;

farbe=ColorCode(r,g,b) & mask;

adress=screen+(x+y*SCREEN_X);
for (int b=0; b<4; b++)

for (int a=0; a<4; a++)

{

int back=*adress;
back&=mask;
*adress=remappalette[

(farbe+back)>1];
adress++;

}
adress+=SCREEN_X-4;

Die Zeichenroutine, die Sie im Quelltext
auf der Heft-CD finden, enthilt zusitz-
lich wieder eine Assembler-Version, die
die Pixel an den Parti-

Dieses Beispiel initialisiert eine Explo-
sion, die 250 Millisekunden spiter be-
ginnt. Die Funktion HandleExplosion()
arbeitet nun die Warteschlange ab:

void HandleExplosion()

int time=GetDemoTime();

for (int i=0; i<KMAXQUEUE; i++)

if ((explosion_queue[i].used)
&& (explosion_queueli].time
<=time))

explosion_queueli].used=0;

AddExplosion(
explosion_queueli].x,
explosion_queueli].y,
explosion_queueli].
density);

kelecken abdunkelt.

Dadurch erhalten Sie 0
runder wirkende Par-

RR RR

Yoo ol

tikel, die etwas scho-

ner aussehen.

Nun besitzen Sie + |0

RR RR

e cco ol

das Handwerkszeug,

um Partikelexplosio-

nen zu generieren. Es
fehlt Thnen aber noch
ein eleganter Weg,

RRRRR

groflere zusammen-
gesetzte Explosionen
bequem zu erzeugen.
Dazu bedienen Sie sich des Prinzips ei-
ner Warteschleife:

#define MAXQUEUE 32
typedef struct

/I Position, Dichte, Typ, Flag

int x,y,density,type,used;

/I Zeitangabe fiir Explosion

int time;
JEXPLOSION_QUEUE;

EXPLOSION_QUEUE queue[MAXQUEUE];

Wenn Sie eine zusammengesetzte Ex-
plosion starten wollen, suchen Sie sich
einen freien Eintrag in der Liste und tra-
gen Thre Wunschdaten ein. Die Varia-
blen bestimmen die Position der Explo-
sion, die Dichte (also die Anzahl der Par-
tikel) sowie den Typus, falls Sie ver-
schiedene Typen implementiert haben:
while ((<MAXQUEUE) &&

(explosion_queueli].used))
i++;

/I Warteschlange voll
if (==MAXQUEUE) return;

queuelil.used=1;
queueli].x=Paosition x;
queuelil.y=Position y;
queueli].density=400;
queueli].type=0;
queueli].time=GetDemoTime()+250;

ADDITION der halbierten HiColor-Farbwerte

Die Routine rufen Sie bei jedem Bild-
schirmaufbau auf, die Explosionen star-
ten dann wie gewlnscht. Den optischen
Eindruck einer solchen Explosion sehen
Sie im Bild auf S. 230.

Den Feuerstrahl am Antrieb des
Raumschiffs haben wir ibrigens auch
mit dem Partikelsystem berechnet und
dann dem Sprite des Raumgleiters hin-
zugefligt. Im Sourcecode finden Sie ne-
ben der Explosionsroutine noch analoge
Funktionen fiir Rauch- und Flammenef-
fekte.

An dieser Stelle haben Sie schon fast
alle Grundlagen geschaffen, die Sie fir
das Programmieren des Spiels benoti-
gen. In der nichsten Ausgabe lernen Sie
noch die Algorithmen zur Abfrage von
Sprite-Kollisionen kennen, bevor Sie
sich dann ganz dem Hauptteil des Spiels
widmen. PEI/BM

Die Quelltexte der Sprite-Routinen und des Parti-

kelsystems finden Sie zusammen mit der zugrunde-
liegenden Grafikbibliothek auf unserer Heft-CD im
Verzeichnis praxis\pc-under und im Internet-Ange-

bot des PC Magazin unter
www.pc-magazin.de/magazin/
[extras.htm

Klicken Sie unter Online Extras im Meni Praxis auf
das entsprechende Download-Feld.

