PC UNDERGROUND

'S’w Q C W

PRAXIS

g

Spiele-Programmierung unter Windowslg.,5198/=1\I/T9

Diesmal schreiben Sie ein komplettes Weltraum-Ballerspiel. Sie erkennen

Kollisionen,
Musik im Hintergrund.

CARSTEN DACHSBACHER/
NILS PIPENBRINCK

ben Sie die Grundlagen fiir ein an-

spruchsvolles Spiel unter Windows
kennengelernt. Nun ist es an der Zeit,
dieses Wissen zu einem funktionsfihi-
gen und unterhaltsamen Shoot’em-Up-
Spiel zusammenzufiigen.

Doch keine Angst, wenn Sie die letz-
ten beiden Ausgaben der Rubrik PC
Underground nicht verfolgt haben: Alle
benotigten Routinen finden Sie auf der
Heft-CD, Sie konnen sie ohne weitere
Vorkenntnisse einsetzen.

Die Spielidee von Gravity Wars, so
heifSt unser Weltraum-Ballerspiel, sieht
folgendermafien aus: Zwei Spieler steu-
ern je einen Raumgleiter und versuchen
sich gegenseitig abzuschiefflen. Dabei
verfligen sie iiber eine begrenzte Ener-
giemenge. Ein optional in der Mitte des
Spielfelds plazierter Planet zieht dabei
alle Objekte wie Raumgleiter und Rake-
ten an.

PC Magazin 5/99:

» Entwicklung des Basissystems

« DirectSound-Programmierung

« Soundeffekt-Programmierung/
Klangsynthese

In den letzten beiden Ausgaben ha-

PC Magazin 6/99:
e Sprite-Programmierung
« Partikel- und Effektsystem

PC Magazin 7/99 (diese Ausgabe):

* Algorithmen zur Kollisionsabfrage
von Sprites

* Spielelogik und Computergegner

» MIDI-Hintergrundmusik

» Spielegrafik und Highscore-Routinen

216 Juli1999 PC Magazin

An Grafikdaten brauchen Sie das Titel-
bild und die Hintergrundbilder sowie
die Vorlagen der einzelnen Sprites. Aus
diesen Vorlagen erzeugen Sie mit dem
Sprite-Generator SpriteGenerierung.exe
aus dem SPRITE-Verzeichnis die
Sprite-Daten fiir das Spiel. Diese Sprite-
Daten erwartet das Spiel im Unterver-
zeichnis data.

EC; PC Magazin Gravity Wars

DIE STARKE EMISSION von Partikeln verrat hier, daR Sie sich in

der ersten Zeile des Hauptmenus befinden.

Der Sprite-Generator verwendet die
Routine CreateRotationAnimation(...)
aus der Sprite-Bibliothek und speichert
alle Daten der Sprite-Struktur sowie die
mit der RLE-Methode (Runtime Length
Encoding) komprimierten Bilddaten.
Von jedem Sprite werden dabei 64 Ein-
zelbilder — eines fir jeden moglichen
Drehwinkel - erzeugt. Sie konnen
natiirlich auch eigene Sprites zeichnen
und einbinden. Eine Auflistung der ver-
wendeten Dateien finden Sie in der Text-
box ,,Individuelle Grafiken und Hinter-
grundmusik® auf S. 219.

Bevor Sie mit dem Programmieren be-
ginnen, legen Sie das duflere Design des

und spielen MIDI-

Spiels fest. Auf dem Spielfeld, also dem
Hintergrundbild, sollen sich zwei
Raumgleiter bewegen. Als Steuerungs-
optionen stehen eine Links- bzw. eine
Rechtsdrehung sowie das Beschleunigen
der Raumschiffe zur Verfigung.

Ziel des Spiels ist es, den Gegner ab-
zuschieflen. Dazu konnen die Raumglei-
ter eine Rakete abschieflen oder sich mit
Lasersalven bekimpfen. Jeder Raum-
gleiter verfuigt Uiber eine Energiemenge,
die er auf die An-
triebs- und Schildsy-
steme verteilen kann.
Wird ein Raumgleiter
getroffen, verliert er
dadurch Schildener-
gie. Dabei flackert der
Schild kurz auf, was
Sie durch ein zusitzli-
ches Sprite realisie-
ren.

Nach einem Treffer
soll der Spieler seinen
Raumgleiter fiir eine
kurze Zeit nicht mehr
steuern konnen. Bei
schweren Treffern
bekommt das Raum-
schiff auflerdem einen
Schwung um die eige-
nen Achse ab. Hat ein Treffer die Schild-
energie vollstindig aufgebraucht, wird
das Raumschiff zerstort. Es bleibt noch
kurz sichtbar, bis die Explosion das Spri-
te moglichst komplett verdeckt.

Wie Sie sehen, bendtigen Sie eine
ganze Reihe von Variablen, die die zeit-
liche Abfolge der Ereignisse steuern: Sie
brauchen zum Beispiel Informationen
dartiber, wie lange ein Sprite noch sicht-
bar ist oder wann ein Raumschiff wieder
schieffen kann — ganz zu schweigen von
den Statusvariablen fir den Energie-
haushalt, die Richtung der einzelnen
Schiisse, Position, Richtung und Ge-
schwindigkeit der Raumschiffe usw.

All diese Daten fas-

sen Sie am besten in

einem C++-Objekt Aktion Spieler 1 Spieler 2
zusammen, um sie Linksdrehung [Cursor links] D
verniinftig zu glie- Rechtsdrehung [Cursor rechts] G

dern und den Code Beschleunigen [Cursor auf] R
eleganter zu gestalten. Laserschul [Leertaste] w
Schauen Sie sich hier- Raketenabschul [Enter] S

zu den Quelltext der Energieverteilung [Bild auf]/[Bild ab] Q/A

PLAYER-Klasse ge-

nauer an. Nach der

Definition dieser Klasse gilt es nun,
Schritt fir Schritt die gewiinschten
Funktionen zu implementieren.

Die Methode Action() enthalt alle Ak-
tionen zur Steuerung der Raumschiffe,
die der Spieler durch Tastendriicke aus-
losen kann. Die Aktionen sind durchnu-
meriert und tragen symbolische Namen
wie KUP, KLEFT und KRIGHT, die
fiir Key up, Key left und Key right ste-
hen. Auch ein vom PC simulierter Ge-
genspieler sollte fur die Lenkung der
Raumgleiter auf die Action-Methode
zurtickgreifen. Dies spart doppelte Ar-
beit und vermeidet Fehler.

Die Methode MoveAndDrawPlayer()
fragtdie einzelnen Tasten ab. Indem Ar-
ray keys[] stehen dazu die Tastencodes
fur die Steuerung. Mit Hilfe definierter
Indizes fir dieses Array wie KUP,
KLEFT und KRIGHT befragen Sie das
vom Basissystem zur Verfiigung gestell-
te Array KeyStatus[], ob die entspre-
chende Taste gedriickt ist. Ist dies der
Fall, wird die Arbeit einfach an die Rou-
tine Action weitergegeben.

Wie Sie die Raumschiffe mit der Ta-
statur steuern, zeigt Thnen die Tabelle
»Tastaturbefehle zur Steuerung“ oben.
Die Zuordnung der Tasten dndern Sie
nach Belieben im Initialisierungsteil der
Datei gameplay.cpp.

Die Drehung eines Raumschiffs um
die eigenes Achse initiieren Sie beim
Driicken der linken bzw. rechten Cur-
sortaste, indem Sie die Richtungsvaria-
ble r erhohen oder erniedrigen:

case KLEFT:

r++;

break;

case KRIGHT:

[Jréak;
Mit der Blickrichtung aus r konnen Sie
sowohl die Nummer des Sprites berech-
nen, das Sie zeichnen miissen, als auch —
falls notig — den Beschleunigungsvektor
ausrechnen. Die Division durch 32
kommt dadurch zustande, daf§ es fiir ein
Raumschiff 64 Flugrichtungen gibt:

bx=+cos(r/32.0f*Pl);

by=-sin(r/32.0f*Pl);
Nun fehlt noch die Bewegung des
Raumschiffs:

/I Richtungsvektor

dx *= VERZOEGERUNG;
dy *= VERZOEGERUNG;

/I Bewegung

X +=dx;

y +=dy;
Natiirlich plazieren Sie beim Beschleu-
nigen eines Raumschiffs auch Partikel
auf dem Bildschirm und spielen einen
Soundeffekt ab—aus Griinden der Uber-
sichtlichkeit fehlt all dies in den abge-
druckten Beispielen. Die fertige Action-
Methode in den Quellcodes auf der
Heft-CD fihrt Thnen auch diese zusitz-
lichen Spielereien vor.

Da Sie die Raumgleiter nun vollstandig
mandvrieren konnen, bringen Sie thnen
als nachstes das Schieflen bei. Wie bereits
erwiahnt, unterscheiden Sie dabei Laser-
schiisse und Raketen. Pro Raumgleiter
soll immer nur maximal eine Rakete
uber den Bildschirm
fliegen, um das Spiel
tibersichtlich zu hal-
ten. Diese Rakete
fliegt dem gegneri-
schen Raumschiff
hinterher, bis Sie es
entweder getroffen
haben oder der Treib-
stoff der Rakete ver-
braucht ist.

Fur die Rakete bie-
tet sich eine eigene
Klasse an, wir haben
sie Missile genannt.
Der interessante Ab-
schnitt der Raketen-
klasse ist der Steue-
rungsteil HandleMis-
sile(), der die Rakete
zum gegnerischen Raumschiff steuert.

Prinzipiell erfahrt die Rakete immer
eine Beschleunigung in Richtung des
Gegners:

PC UNDERGROUND
PRAXIS

»

/I Richtungsvektor zum

Il Zielraumgleiter
zx=player|ziel]->x-X;
zy=player[ziel]->y-y;

/I Vektor normalisieren
laenge=sqrt(zx*zx+zy*zy);

if (laenge>0)
{

zx/=laenge;
zy/=laenge;

dx*=VERZOEGERUNG;

dy*=VERZOEGERUNG;

dx+=zx;

dy+=2zy;

x+=dx;

y+=dy;
Die Richtungsnummer und damit die
Nummer des Sprites berechnen Sie mit
Hilfe des Arcustangens:

r=64-31*atan2(dy,dx)/Pl;
Die Laserschiisse, von denen eine ganze
Menge auf dem Bildschirm herum-
schwirren konnen, verwalten Sie inner-
halb des PLAYER-Objekts. Thre Bewe-
gung und das Verwalten der freien Ein-
trage in der lasershot-Liste programmie-
ren Sie genauso, wie Sie es von den Par-
tikelroutinen der letzten Ausgabe her
kennen. Der einzige Unterschied ist, daf§
Sie ein Sprite abhingig von der Nummer
der Flugrichtung zeichnen, die sich dann
aber im spiteren Verlauf nicht mehr an-
dert.

Um die einzelnen Objekte wie Raum-
schiffe und Raketen leicht zu handha-
ben, schreiben Sie dafiir eigene Verwal-
tungsroutinen in der Datei game-

o
b
-
ui

G H

&
& . t
YYuuuy

‘ 13'“1”!? iU
NNYNNEE

]

Y]
I

L
=
.3
3
ke
-
b
=2
s
”
E.
(=]
g
-
2

-
=h b)
L0

DIE BESTENLISTE ERSCHEINT nach zehn ereignislosen Sekun-
den automatisch und besitzt eine eingebaute Demofunktion.

play.cpp. Zuerst initialisieren Sie in void
InitGame(...) das Soundsystem, laden
die Sounds und Sprites und legen In-
stanzen der Objekte an. (>

PC Magazin Juli1999 217

PC UNDERGROUND

PRAXIS

Das Herzstlick dieser Datei ist die
Funktion HandleAndDrawGame(), in
der Sie den Spielablauf festlegen. Bevor
nun eine genaue Beschreibung dieser
Routine folgt, sollten Sie sich noch eines
kleinen Problems bewuflt werden: Auf-
grund verschiedener Einfliisse lauft ein
Programm nicht immer gleichmiflig
schnell ab. Deswegen ist die Zeitspanne,
die von der Berechnung eines Bilds zur
Berechnung des nichsten vergeht, nicht
immer konstant.

Diese Unregelmafligkeit sollten Sie
natirlich bei der Berechnung der Be-
schleunigungen, Bewegungen und dem
Ablauf von zeitlichen Werten wie der
Lebensdauer einer Rakete bertcksichti-
gen. Darum berechnen Sie fiir die Zeit-
korrektur einen Faktor aus der aktuellen

KOMMT EIN RAUMSCHIFF dem Planeten
zu nahe, zerschellt es in einem grofRen
Feuerball an der Oberflache.

Zeit, dem Zeitpunkt des letzten Durch-
laufs der Routinen und einer bestimm-
ten Bildrate:

neue_zeit=GetDemoTime();

faktor=

(neue_zeit-alte_zeit)/20.0f;
alte_zeit=neue_zeit;

Dann rufen Sie fiir jedes Raumschiff die
Methode MoveAndDrawPlayer() auf,
die die Tastatursteuerung, die Bewegung
und das Zeichnen der Sprites enthalt.
Anschlieffend berechnet diese Routine
die neuen Positionen der Laserschiisse
und zeichnet sie auf das Spielfeld.

Fiir jeden Laserschufl iiberprift die
Routine auflerdem, ob eine Kollision
mit einem der Raumschiffe vorliegt. Ist
dies der Fall, teilt sie es dem Raum-
schiff(PLAYER)-Objekt tiber den Auf-
ruf HitMe(int damage) mit. Diese Rou-
tine verringert die Schildenergie des
Raumgleiters und veranlaflt bei Bedarf
eine Explosion des Raumschiffs. Bei ei-
nem Zusammenstofl der beiden Raum-
schiffe prallen diese voneinander ab, in-
dem sie einfach die jeweiligen Rich-

218 Juli1999 PC Magazin

tungsvektoren dx und dy der Schiffe an-
dern.

Die Kollisionsabfragen in diesem
Spiel verlassen sich auf eine reine Ab-
standsberechnung — das reicht fur die
verwendeten Objekte vollig aus und ist
leicht zu implementieren. Alle Kollisio-
nen halten Sie in einer Liste fest, um
dann am Ende der HandleAndDraw-
Game()-Routine die entsprechenden
Klinge abzuspielen. Hier ein Auszug:

int NumCollision=0;
int Collision[MAXCOLLISION];

/I Lasertreffer

Collision[++NumCollision]=
CLASER;

/I Crash der Raumschiffe

Collision[++NumCollision]=
CPLAYER1|CPLAYERZ2;

/I Abspielen der Sounds
while (NumCollision>=0)

{
int c=Collision[NumCollision—];
if (c==(CPLAYER1|CPLAYER2))

SoundSys->PlaySound(sCrash);
}

if (c & CLASER)

SoundSys->PlaySound(sHit);
}
}

Fur die grafischen Explosions- und
Raucheffekte setzen Sie das Partikelsy-
stem ein, das Sie in der letzten Ausgabe
entwickelt haben — Sie finden es auch im
Quelltext auf dieser Heft-CD. Immer
wenn ein Laserstrahl auf den Schutz-
schild eines Raumschiffs trifft, eine Ra-
kete detoniert — sei es durch einen Tref-
fer oder durch den Ablauf ihrer Lebens-
dauer — oder ein Raumschiff anderweitig
Schaden nimmt, setzen Sie an der ent-
sprechenden Stelle Explosionspartikel
frei. Beim Bewegen einer Rakete oder
dem Zinden eines Raumgleitertrieb-
werks stoflen Sie Rauchpartikel aus.

Bevor Sie die Methode HandleAnd-
DrawGame() beenden, stellen Sie noch
die verschiedenen Energievorrite der
Raumgleiter als Balkengrafiken dar. Da-
nach Gbernimmt wieder das Hauptpro-
gramm die Kontrolle und kann seiner-
seits das Partikelsystem und andere
Routinen aufrufen.

Da unser Spiel Gravity Wars heifit, soll-
te auch die Anziehungskraft eine wich-
tige Rolle darin spielen. Deshalb plazie-
ren Sie einen groflen Planeten in der Mit-
te des Spielfelds, der sowohl Raumschif-
fe als auch Raketen anzieht. Sie sollten

mit seiner Oberfliche nicht in
Berthrung kommen, da das Raumschiff
sonst daran zerschellt.

Die Berticksichtigung dieser Anzie-
hungskraft im Spiel ist denkbar einfach:
Die Gravitation ist nichts anderes als ei-
ne zusitzliche Beschleunigung des
Raumgleiters bzw. der Rakete in Rich-
tung der Bildschirmmitte, wo sich der
Planet befindet:

/I Richtungsvektor zur
/I Bildschirmmitte
gx=(SCREEN_X/2)-px;
gy=(SCREEN_Y/2)-py;

distanz=sqrt(gx*gx+gy*gy);
if (distanz>0)

gx/=distanz;
gy/=distanz;

}
dx+=gx*ANZIEHUNGSKRAFT;
dy+=gy*ANZIEHUNGSKRAFT;

Das ist schon alles, was Sie fiir diese
Spielvariante, die Sie im Hauptmenti des
Spiels auswéhlen konnen, hinzufiigen
miissen. Die Gravitation wirkt natiirlich
nur auf die Raumschiffe und die Rakete.
Wiren auch die Laserstrahlen betroffen,
hitten Sie es mit einem sogenannten
wSchwarzen Loch“ zu tun, und dem
sollten Sie bekanntermaflen moglichst
fernbleiben.

Jetzt haben Sie ein nettes Ballerspiel fiir
zwel Personen geschrieben. Aber was,
wenn gerade niemand gegen Sie antreten
mochte? Als Ersatz erschaffen Sie des-
halb einen Computergegner.

Nun gibt es 1001 Maoglichkeiten, ei-
nen Computergegner zu programmie-
ren. Zum leichten Einstieg sollten Sie die
Anforderungen jedoch nicht allzu hoch
ansetzen. Gute Computergegner verlan-
gen sehr viel theoretisches Wissen und
Programmierkenntnis.

Wenn Sie das Spiel im Zweispieler-
Modus ausprobieren, werden Sie einen
gewaltigen Unterschied zwischen dem
Spiel mit und ohne Gravitation feststel-
len. Die Anforderungen an den Compu-
tergegner sind fiir beide Spielarten sehr
unterschiedlich: Beim Spiel ohne Gravi-
tationsfeld reicht es aus, wenn sich der
Gegner stindig bewegt und auf Sie — den
Spieler — schiefit.

Fur das Spiel mit Gravitation ist es
zwar auch entscheidend, den Gegner zu
treffen—viel wichtiger ist es aber, sich von
dem Planeten fernzuhalten. Die notigen
Daten des kiunstlichen Spielers definie-
ren Sie als Struktur in der PLAYER-
Klasse:

typedef struct

{
/I Ziel des CPU-Players
float x;
float y;
float r; // Ruhe-Radius
int Angriff; // Angriff?
int isCpuPlayer;
/I Pointer auf den Gegner
PLAYER * enemy;

} CpuPlayerData;

Zunichst zum Spiel ohne Gravitation.
Eine sehr einfache, aber effektive Strate-
gie fir den Computer ist es, seine Ak-
tionen in zwei Phasen aufzuteilen:

* In der Bewegungsphase mandvriert er
sein Raumschiff und ist daher eher de-
fensiv.

® Benutzt er hingegen seine Laserkano-
ne, befindet er sich in der Angriffsphase.
In diesem Fall ist das Status-Flag Angriff
gesetzt. Die Variable IsCpuPlayer zeigt
an, ob die betreffende Instanz eines
Raumschiffs tiberhaupt vom Computer
gelenkt werden soll.

In der Bewegungsphase soll der Com-
putergegner eine Position im Raum an-
fliegen. Da die Steuerung auch fiir den
Computer schwer zu kontrollieren ist,
definieren Sie einen Kreis als ,sichere
Position“ fiir den Computer. Dafiir ge-
ben Sie mit x und y den Mittelpunkt ei-
nes Kreises an, r definiert dessen Radius.
Solange der Computergegner nicht im
Radius war, versucht er, durch Lenkbe-
wegungen in diesen Kreis zu gelangen.

Die Methode

float CpuPlayerTargetTo(

float xx,float yy,int steer)

enthilt die Hauptlogik zum Zielen und
Lenken. In den Parametern xx und yy
teilen Sie dieser Routine eine beliebige
Position im Raum mit. Ist der Parameter
steer gesetzt (steer = 1), probiert der
Computergegner durch Auslosen der
Diisen links und rechts, sich auf diese
Position auszurichten.

Mochten Sie dagegen nur den Winkel
zur Zielposition berechnen, rufen Sie die
Routine mit ungesetztem steer-Flag auf
(steer = 0). Diese Zusatzfunktion nutzen
Sie spiter, um zu entscheiden, ob ein
Schuff mit dem Laser sinnvoll ist oder
nicht.

Die Implementierung der Methode
selbst ist wenig spektakular. Sie berech-
net mit der trigonometrischen Funktion
atan2 den Winkel und ruft je nach Aus-
richtung zum Ziel die Action-Methode
auf. Hierbei zahlt sich ein etwas erhoh-
ter Aufwand aus, um die schnellste
Lenkbewegung zu ermitteln.

Sorgen Sie auch fiir einen flieflenden
Ubergang zwischen 0° und 360°. Den
sogenannten Wrap Around an dieser
Stelle fangen Sie ab und behandeln ihn

DIE RAKETEN RICHTEN ihre Flugbahn im-
mer wieder neu auf das gegnerische
Raumschiff aus.

gesondert. Dann konnen Sie endlich Gas
geben:

/I Winkel messen und

/I Ausrichten:

float d=CpuPlayerTargetTo(
cpu.x,cpu.y,l);

/I Falls nicht zu schnell und

/I Winkel ungefahr stimmt,

/I etwas Schubkraft geben

if ((d<10) && (speed<3.0))

Action(KUP);

Einfach, aber effektiv. Diese beiden Zei-
len bringen den Gegner sicher an sein
Ziel. Sobald der Computerspieler sein
Ziel erreicht hat, geht er in die nichste
Phase, den Angriff, iiber.

PC UNDERGROUND
PRAXIS

»

In dieser Phase gilt es, sich auf den Geg-
ner zu konzentrieren und ihn mit Laser-
schiissen zu beschiftigen. Dazu dient die
bereits entwickelte Routine CpuPlay-
erTargetTo. Damit der Computerspieler
ein nicht allzu leichtes Ziel abgibt, ach-
ten Sie zusitzlich darauf, daff er nicht
immer an einer Stelle steht.

Wird sein Raumschiff zu langsam,
gibt der Computer einfach etwas Schub-
kraft. Der Code hierzu ist dem der ersten
Phase sehr ahnlich:

CpuPlayerTargetTo(

cpu.enemy->x,cpu.enemy->y,1);

if (speed<0.4) Action (KUP);

Sobald der Gegner seinen Bereich ver-
1aflt, sucht er sich per Zufall eine neue
Position, und das Spiel beginnt von vor-
ne. Dies kann zum Beispiel nach einer
Kollision mit dem Gegner oder einer
Rakete notig sein.

Unabhingig von den Bewegungs- und
Angriffsphasen des Computers behan-
deln Sie den Abschuf einer Rakete und
das Verteilen der Energie auf Lenkung
und Schildsysteme. Diese beiden Aktio-
nen werden immer ausgefithrt. Bei der
Verteilung des Energiehaushalts legt der
virtuelle Gegner Prioritit auf seine
Schildenergie. Die Lenkenergie soll im-
mer nur gerade dazu ausreichen, das

Schiff zu bewegen: >

Wollen Sie eigene Grafiken in das Spiel einbauen, sollten Sie diese in GréRe und Pro-
portion an den vorhandenen orientieren. Die Dateien fur die Sprites liegen im Ver-

zeichnis des Sprite-Generators:

laser.bmp Laserschuf®

rocketbmp Rakete

shipx00.bmp Raumschiff x (x =1 oder 2)

shipx01.bmp Raumschiff x mit Laserkanonen

shipx10.bmp Raumschiff x mit aktivem Triebwerk

shipx1.bmp Raumschiff x mit aktivem Triebwerk und Laserkanonen

shipxsl.bmp Raumschiff x mit sichtbarem Schutzschild
Die Dateien, auf die das Spiel letztendlich zugreift, befinden sich im Unterverzeichnis
data:

backl.bmp Hintergrundbild mit Planet

back2.bmp Hintergrundbild ohne Planet

titelbildbmp Bild des Hauptments

*dat aus den Sprites generierte Daten

Auch die MIDI-Datei fur die Hintergrundmusik kénnen Sie ganz einfach austauschen. Es
handelt sich hierbei um eine ganz normale Standard-MIDI-Datei. Das Internet ist eine
gute Quelle fur solche Musikstticke. Die MIDI-Datei gravity.mid hat der Demomusiker
DO)J exklusiv fur dieses Spiel komponiert. DOJ heilt eigentlich Dirk (derartige Fantasie-
namen, auch Handles genannt, sind in der Demoszene ublich) und ist Mitglied der De-
mogruppe Cubic&Seen, der auch die beiden Autoren dieses Beitrags angehéren.

PC Magazin Juli1999 219

PC UNDERGROUND
PRAXIS

if (thrustenergy>20)
Action(KPOWL1);
else Action(KPOW2);

Die Logik fiir den Raketenabschuf} ist
auch nicht viel komplizierter. Hierzu
messen Sie erneut den Winkel zum Geg-
ner. Ist dieser klein genug, schieffen Sie
eine Rakete ab. Da das Spielfeld quasi
unendlich ist, kann eine Rakete den
Gegner auch tiber die Bande des Spiel-
felds treffen.

Bedenken Sie, daf§ die Richtungsanga-
ben der PLAYER-Klasse von 0 bis 64
definiert sind. Im Vergleich

(fabs(d-32)<2.0)
subtrahieren Sie vom Ausrichtungswin-
kel d den Wert 32 (entspricht 180°) und
bilden den Absolutwert. Ist dieser klein
genug, besteht die Chance auf einen
Treffer. Die Methode Action lost dann
den Schuff aus. Dies geschieht allerdings
ganz willkurlich. Sobald die Geschwin-
digkeit den willkiirlich festgelegten
Wert von 4.0 uberschreitet, wird ge-
schossen. Dies passiert in der Regel
dann, wenn das Gefecht im vollen
Gange ist und das Spielfeld so chaotisch
aussicht, dafl die Rakete unentdeckt
thren Weg zum Ziel findet.

/I Winkel zum Feind messen
float d=CpuPlayerTargetTo(
cpu.enemy->x,cpu.enemy->y,0);

/I Lohnt Laser-Schu3?

/I eventuell Gber Bande?

if ((d<6.0) ||
(fabs(d-32)<2.0))
Action(KFIREL);

/I Rakete abschieRRen
if (speed>4.0)
Action(KFIRE2);

Fur das Spiel mit Gravitation ist, wie be-
reits erwihnt, eine etwas andere Strate-
gie sinnvoll. Der Gegner versucht hier-
bei immer, einen Sicherheitsabstand
zum Planeten zu erreichen. Dazu ermit-
teln Sie stindig den Abstand und die
Ausrichtung zum Planeten und berech-
nen in jedem Aufruf eine neue Position.
Die neue Zielposition ist dabei immer et-
was weiter vom Planeten entfernt. Da-
mit der Gegner seine Position dennoch
wechselt, addieren Sie einen kleinen Zu-
fallswert.

Istder Abstand zum Planeten grof} ge-
nug, wechseln Sie in den Angriffsmodus.
Den Quellcode der gesamten Compu-
tersteuerung finden Sie in der Methode
CpuKeyControl() der Klasse PLAYER.

Auch wenn die Strategie des Compu-
terspielers sehr einfach wirkt, ist sie den-
noch duflerst effektiv. Ein Spiel gegen
den computergenerierten Astronauten
macht wirklich Spafi.

220 Juli1999 PC Magazin

Sie konnen auch eigene Ideen in den
Code einfligen, um einen anspruchsvol-
leren Gegner zu programmieren. Senden
Sie uns ruhig Thre Verbesserungen an:

praxis@pc-magazin.de

Wir sind gespannt auf Thre Einfille.

Was wire ein Ballerspiel ohne eine Be-
stenliste (englisch Highscore)? Auch bei
Gravity Wars darf diese nicht fehlen. Ei-
nen Spieler bewerten Sie einfach daran,
wie schnell er seinen Gegner bezwingt.
Das hingt natlirlich auch von der Stirke
des Gegenubers ab, erspart aber eine auf-
wendigere Punkterechnung.

Bei jedem Spiel messen Sie die Zeit.
Wer das Spiel tiberlebt, darf sich — falls er
schnell genug war —in die Highscore-Li-
ste eintragen. Die Implementierung ei-
ner solchen Bestenliste ist relativ leicht.
Sie finden den gesamten Code in der Da-
tei main.cpp. Interessantist es jedoch, die
Anzeige der Highscore-Tabelle mit ei-
nem Demomodus zu kombinieren.

Wenn Sie im Hauptment des Spiels
fir etwa zehn Sekunden keine Taste
drucken, beginnen zwei Computergeg-
ner ein Duell gegeneinander. Auf diesem
bewegten Hintergrund stellen Sie die
Highscore-Tabelle dar. Dazu benutzen
Sie am besten die in den vorangegange-
nen Artikeln entwickelte Font-Klasse.
Sie eignet sich hervorragend, um schnell
und einfach Ausgaben auf den Bild-
schirm zu bringen.

Im ibrigen steuern Sie das gesamte
Programm per Tastatur. Im Hauptmenii
gehen Sie mit den Tasten [Cursor auf]
und [Cursor ab] zum gewiinschten
Mentipunkt. Die aktuelle Position er-
kennen Sie dabei nicht etwa an einem
Rollbalken, sondern an starker Flam-
menaktivitit. Die Auswahl erfolgt dann
mit der [Enter]-Taste.

Musik ist ein hiufig unterschitzter Be-
standteil guter Computerspiele. Viele
Spiele sind gerade wegen ihrer guten
Musik noch heute bekannt. Computer-
veteranen erinnern sich vielleicht noch
an den Spieleklassiker Turrican vom
C64 und Amiga.

Die Bibliotheken, mit denen Sie bisher
in PC Underground Moduldateien
(*.mod und *.xm) abgespielt haben, ver-
tragen sich leider nicht mit dem Spiele-
Soundsystem. Daher beschreiten Sie ei-
nen anderen Weg, und zwar mit den lei-
der etwas aus der Mode gekommenen
MIDI-Dateien.

Die Multimedia-API von Windows
bietet einen erstaunlichen Komfort beim
Abspielen solcher Musikstiicke. Zu-
nachst 6ffnen Sie eine MIDI-Datei tiber
die Multimedia-API:

MCI_OPEN_PARMS mciOpenParms;
DWORD dwReturn;

mciOpenParms.IpstrDeviceType=
“sequencer*;

mciOpenParms.IpstrElementName=
“gravity.mid“

if (dwReturn=mciSendCommand(
NULL,MCI_OPEN,
MCI_OPEN_TYPE]|
MCI_OPEN_ELEMENT,
(DWORD)(LPVOID)
&mciOpenParms)) return(0);

Sequencer ist der Name fiir den Win-
dows-eigenen MIDI-Mapper. Beim
Aufruf des obigen Codes liest Windows
die MIDI-Datei gravity.mid ein und
analysiert, welches der installierten MI-
DI-Gerite zum Abspielen am besten ge-
eignet ist. In der Regel ist das der Syn-
thesizer-Chip auf IThrer Soundkarte.

Die MIDI-Datei ist nun geladen und
muf} nur noch gestartet werden. Sie ver-
zichten darauf, sich Nachrichten iiber
den aktuellen Zustand des Playbacks
schicken zu lassen. Diese belasten das
System zwar nur gering, sind jedoch fiir
den Spielfluff uninteressant.

MCI_PLAY_PARMS mciPlayParms;
DWORD dwReturn;

mciPlayParms.dwCallback=NULL;

if (dwReturn=mciSendCommand(
mciOpenParms.wDevicelD,
MCI_PLAY,MCI_NOTIFY,
(DWORD)(LPVOID)
&mciPlayParms))

mciSendCommand(
mciOpenParms.wDevicelD,
MCI_CLOSE,O,NULL);
return(0);

}

Wenn alles geklappt hat, sollte jetzt Mu-
sik aus Threr Soundkarte tonen. Die Mu-
sikwiedergabe endet automatisch, so-
bald Sie das Programm verlassen.

Soviel zunichst zur Spieleprogram-
mierung. In der nichsten Ausgabe be-
richten wir unter anderem iiber ein elek-
tronisches Magazin aus der Demo-Sze-
neund stellen Thnen verschiedene Effek-
te in Logos vor. PEI/BM

Die Quelltexte zu diesem Beitrag und das fertige
Spiel Gravity Wars finden Sie zusammen mit der
zugrundeliegenden Grafikbibliothek auf unserer
Heft-CD im Verzeichnis praxis\pc-under und im In-

ternet-Angebot des PC Magazin unter
www.pc-magazin.de/magazin/
[extras.htm

Klicken Sie unter Online Extras im Men Praxis auf
das entsprechende Download-Feld.

