
216 Juli 1999 PC Magazin

P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R /
N I L S P I P E N B R I N C K

In den letzten beiden Ausgaben ha-
ben Sie die Grundlagen für ein an-
spruchsvolles Spiel unter Windows

kennengelernt. Nun ist es an der Zeit,
dieses Wissen zu einem funktionsfähi-
gen und unterhaltsamen Shoot’em-Up-
Spiel zusammenzufügen.

Doch keine Angst, wenn Sie die letz-
ten beiden Ausgaben der Rubrik PC
Underground nicht verfolgt haben: Alle
benötigten Routinen finden Sie auf der
Heft-CD, Sie können sie ohne weitere
Vorkenntnisse einsetzen.

Die Spielidee von Gravity Wars, so
heißt unser Weltraum-Ballerspiel, sieht
folgendermaßen aus: Zwei Spieler steu-
ern je einen Raumgleiter und versuchen
sich gegenseitig abzuschießen. Dabei
verfügen sie über eine begrenzte Ener-
giemenge. Ein optional in der Mitte des
Spielfelds plazierter Planet zieht dabei
alle Objekte wie Raumgleiter und Rake-
ten an.

■ Grafik und Logik

An Grafikdaten brauchen Sie das Titel-
bild und die Hintergrundbilder sowie
die Vorlagen der einzelnen Sprites. Aus
diesen Vorlagen erzeugen Sie mit dem
Sprite-Generator SpriteGenerierung.exe
aus dem SPRITE-Verzeichnis die
Sprite-Daten für das Spiel. Diese Sprite-
Daten erwartet das Spiel im Unterver-
zeichnis data.

Der Sprite-Generator verwendet die
Routine CreateRotationAnimation(...)
aus der Sprite-Bibliothek und speichert
alle Daten der Sprite-Struktur sowie die
mit der RLE-Methode (Runtime Length
Encoding) komprimierten Bilddaten.
Von jedem Sprite werden dabei 64 Ein-
zelbilder – eines für jeden möglichen
Drehwinkel – erzeugt. Sie können
natürlich auch eigene Sprites zeichnen
und einbinden. Eine Auflistung der ver-
wendeten Dateien finden Sie in der Text-
box „Individuelle Grafiken und Hinter-
grundmusik“ auf S. 219.

Bevor Sie mit dem Programmieren be-
ginnen, legen Sie das äußere Design des

Spiels fest. Auf dem Spielfeld, also dem
Hintergrundbild, sollen sich zwei
Raumgleiter bewegen. Als Steuerungs-
optionen stehen eine Links- bzw. eine
Rechtsdrehung sowie das Beschleunigen
der Raumschiffe zur Verfügung.

Ziel des Spiels ist es, den Gegner ab-
zuschießen. Dazu können die Raumglei-
ter eine Rakete abschießen oder sich mit
Lasersalven bekämpfen. Jeder Raum-
gleiter verfügt über eine Energiemenge,

die er auf die An-
triebs- und Schildsy-
steme verteilen kann.
Wird ein Raumgleiter
getroffen, verliert er
dadurch Schildener-
gie. Dabei flackert der
Schild kurz auf, was
Sie durch ein zusätzli-
ches Sprite realisie-
ren.

Nach einem Treffer
soll der Spieler seinen
Raumgleiter für eine
kurze Zeit nicht mehr
steuern können. Bei
schweren Treffern
bekommt das Raum-
schiff außerdem einen
Schwung um die eige-

nen Achse ab. Hat ein Treffer die Schild-
energie vollständig aufgebraucht, wird
das Raumschiff zerstört. Es bleibt noch
kurz sichtbar, bis die Explosion das Spri-
te möglichst komplett verdeckt.

Wie Sie sehen, benötigen Sie eine
ganze Reihe von Variablen, die die zeit-
liche Abfolge der Ereignisse steuern: Sie
brauchen zum Beispiel Informationen
darüber, wie lange ein Sprite noch sicht-
bar ist oder wann ein Raumschiff wieder
schießen kann – ganz zu schweigen von
den Statusvariablen für den Energie-
haushalt, die Richtung der einzelnen
Schüsse, Position, Richtung und Ge-
schwindigkeit der Raumschiffe usw.

Spiele-Programmierung unter Windows 95/98/NT

Gravitation im Spiel
Diesmal schreiben Sie ein komplettes Weltraum-Ballerspiel. Sie erkennen

Kollisionen, programmieren einen Computergegner und spielen MIDI-

Musik im Hintergrund.

ENTWICKLUNGSSTUFEN
DES SPIELEPROJEKTS

PC Magazin 5/99:
• Entwicklung des Basissystems

• DirectSound-Programmierung

• Soundeffekt-Programmierung/

Klangsynthese

PC Magazin 6/99:
• Sprite-Programmierung

• Partikel- und Effektsystem

PC Magazin 7/99 (diese Ausgabe):
• Algorithmen zur Kollisionsabfrage

von Sprites

• Spielelogik und Computergegner

• MIDI-Hintergrundmusik

• Spielegrafik und Highscore-Routinen

DIE STARKE EMISSION von Partikeln verrät hier, daß Sie sich in

der ersten Zeile des Hauptmenüs befinden.

PC Magazin Juli 1999 217

P C U N D E R G R O U N D
P R A X I S

All diese Daten fas-
sen Sie am besten in
einem C++-Objekt
zusammen, um sie
vernünftig zu glie-
dern und den Code
eleganter zu gestalten.
Schauen Sie sich hier-
zu den Quelltext der
PLAYER-Klasse ge-
nauer an. Nach der
Definition dieser Klasse gilt es nun,
Schritt für Schritt die gewünschten
Funktionen zu implementieren.

■ Steuerbefehle
Die Methode Action() enthält alle Ak-
tionen zur Steuerung der Raumschiffe,
die der Spieler durch Tastendrücke aus-
lösen kann. Die Aktionen sind durchnu-
meriert und tragen symbolische Namen
wie KUP, KLEFT und KRIGHT, die
für Key up, Key left und Key right ste-
hen. Auch ein vom PC simulierter Ge-
genspieler sollte für die Lenkung der
Raumgleiter auf die Action-Methode
zurückgreifen. Dies spart doppelte Ar-
beit und vermeidet Fehler.

Die Methode MoveAndDrawPlayer()
fragt die einzelnen Tasten ab. In dem Ar-
ray keys[] stehen dazu die Tastencodes
für die Steuerung. Mit Hilfe definierter
Indizes für dieses Array wie KUP,
KLEFT und KRIGHT befragen Sie das
vom Basissystem zur Verfügung gestell-
te Array KeyStatus[], ob die entspre-
chende Taste gedrückt ist. Ist dies der
Fall, wird die Arbeit einfach an die Rou-
tine Action weitergegeben.

Wie Sie die Raumschiffe mit der Ta-
statur steuern, zeigt Ihnen die Tabelle
„Tastaturbefehle zur Steuerung“ oben.
Die Zuordnung der Tasten ändern Sie
nach Belieben im Initialisierungsteil der
Datei gameplay.cpp.

Die Drehung eines Raumschiffs um
die eigenes Achse initiieren Sie beim
Drücken der linken bzw. rechten Cur-
sortaste, indem Sie die Richtungsvaria-
ble r erhöhen oder erniedrigen:

case KLEFT:
r++;
break;

case KRIGHT:
r--;
break;

Mit der Blickrichtung aus r können Sie
sowohl die Nummer des Sprites berech-
nen, das Sie zeichnen müssen, als auch –
falls nötig – den Beschleunigungsvektor
ausrechnen. Die Division durch 32
kommt dadurch zustande, daß es für ein
Raumschiff 64 Flugrichtungen gibt:

bx=+cos(r/32.0f*PI);
by=-sin(r/32.0f*PI);

Nun fehlt noch die Bewegung des
Raumschiffs:

// Richtungsvektor
dx *= VERZOEGERUNG;
dy *= VERZOEGERUNG;

// Bewegung
x += dx;
y += dy;

Natürlich plazieren Sie beim Beschleu-
nigen eines Raumschiffs auch Partikel
auf dem Bildschirm und spielen einen
Soundeffekt ab – aus Gründen der Über-
sichtlichkeit fehlt all dies in den abge-
druckten Beispielen. Die fertige Action-
Methode in den Quellcodes auf der
Heft-CD führt Ihnen auch diese zusätz-
lichen Spielereien vor.

■ Waffensysteme
Da Sie die Raumgleiter nun vollständig
manövrieren können, bringen Sie ihnen
als nächstes das Schießen bei. Wie bereits
erwähnt, unterscheiden Sie dabei Laser-
schüsse und Raketen. Pro Raumgleiter
soll immer nur maximal eine Rakete
über den Bildschirm
fliegen, um das Spiel
übersichtlich zu hal-
ten. Diese Rakete
fliegt dem gegneri-
schen Raumschiff
hinterher, bis Sie es
entweder getroffen
haben oder der Treib-
stoff der Rakete ver-
braucht ist.

Für die Rakete bie-
tet sich eine eigene
Klasse an, wir haben
sie Missile genannt.
Der interessante Ab-
schnitt der Raketen-
klasse ist der Steue-
rungsteil HandleMis-
sile(), der die Rakete
zum gegnerischen Raumschiff steuert.

Prinzipiell erfährt die Rakete immer
eine Beschleunigung in Richtung des
Gegners:

// Richtungsvektor zum
// Zielraumgleiter
zx=player[ziel]->x-x;
zy=player[ziel]->y-y;

// Vektor normalisieren
laenge=sqrt(zx*zx+zy*zy);

if (laenge>0)
{

zx/=laenge;
zy/=laenge;

}

dx*=VERZOEGERUNG;
dy*=VERZOEGERUNG;
dx+=zx;
dy+=zy;
x+=dx;
y+=dy;

Die Richtungsnummer und damit die
Nummer des Sprites berechnen Sie mit
Hilfe des Arcustangens:

r=64-31*atan2(dy,dx)/PI;

Die Laserschüsse, von denen eine ganze
Menge auf dem Bildschirm herum-
schwirren können, verwalten Sie inner-
halb des PLAYER-Objekts. Ihre Bewe-
gung und das Verwalten der freien Ein-
träge in der lasershot-Liste programmie-
ren Sie genauso, wie Sie es von den Par-
tikelroutinen der letzten Ausgabe her
kennen. Der einzige Unterschied ist, daß
Sie ein Sprite abhängig von der Nummer
der Flugrichtung zeichnen, die sich dann
aber im späteren Verlauf nicht mehr än-
dert.

■ Spielablauf
Um die einzelnen Objekte wie Raum-
schiffe und Raketen leicht zu handha-
ben, schreiben Sie dafür eigene Verwal-
tungsroutinen in der Datei game-

play.cpp. Zuerst initialisieren Sie in void
InitGame(...) das Soundsystem, laden
die Sounds und Sprites und legen In-
stanzen der Objekte an. q

TASTATURBEFEHLE ZUR STEUERUNG

Aktion Spieler 1 Spieler 2
Linksdrehung [Cursor links] D
Rechtsdrehung [Cursor rechts] G
Beschleunigen [Cursor auf] R
Laserschuß [Leertaste] W
Raketenabschuß [Enter] S
Energieverteilung [Bild auf]/[Bild ab] Q/A

DIE BESTENLISTE ERSCHEINT nach zehn ereignislosen Sekun-

den automatisch und besitzt eine eingebaute Demofunktion.

218 Juli 1999 PC Magazin

P C U N D E R G R O U N D
P R A X I S

Das Herzstück dieser Datei ist die
Funktion HandleAndDrawGame(), in
der Sie den Spielablauf festlegen. Bevor
nun eine genaue Beschreibung dieser
Routine folgt, sollten Sie sich noch eines
kleinen Problems bewußt werden: Auf-
grund verschiedener Einflüsse läuft ein
Programm nicht immer gleichmäßig
schnell ab. Deswegen ist die Zeitspanne,
die von der Berechnung eines Bilds zur
Berechnung des nächsten vergeht, nicht
immer konstant.

Diese Unregelmäßigkeit sollten Sie
natürlich bei der Berechnung der Be-
schleunigungen, Bewegungen und dem
Ablauf von zeitlichen Werten wie der
Lebensdauer einer Rakete berücksichti-
gen. Darum berechnen Sie für die Zeit-
korrektur einen Faktor aus der aktuellen

Zeit, dem Zeitpunkt des letzten Durch-
laufs der Routinen und einer bestimm-
ten Bildrate:

neue_zeit=GetDemoTime();
faktor=

(neue_zeit-alte_zeit)/20.0f;
alte_zeit=neue_zeit;

Dann rufen Sie für jedes Raumschiff die
Methode MoveAndDrawPlayer() auf,
die die Tastatursteuerung, die Bewegung
und das Zeichnen der Sprites enthält.
Anschließend berechnet diese Routine
die neuen Positionen der Laserschüsse
und zeichnet sie auf das Spielfeld.

Für jeden Laserschuß überprüft die
Routine außerdem, ob eine Kollision
mit einem der Raumschiffe vorliegt. Ist
dies der Fall, teilt sie es dem Raum-
schiff(PLAYER)-Objekt über den Auf-
ruf HitMe(int damage) mit. Diese Rou-
tine verringert die Schildenergie des
Raumgleiters und veranlaßt bei Bedarf
eine Explosion des Raumschiffs. Bei ei-
nem Zusammenstoß der beiden Raum-
schiffe prallen diese voneinander ab, in-
dem sie einfach die jeweiligen Rich-

tungsvektoren dx und dy der Schiffe än-
dern.

Die Kollisionsabfragen in diesem
Spiel verlassen sich auf eine reine Ab-
standsberechnung – das reicht für die
verwendeten Objekte völlig aus und ist
leicht zu implementieren. Alle Kollisio-
nen halten Sie in einer Liste fest, um
dann am Ende der HandleAndDraw-
Game()-Routine die entsprechenden
Klänge abzuspielen. Hier ein Auszug:

int NumCollision=0;
int Collision[MAXCOLLISION];

// Lasertreffer
Collision[++NumCollision]=

CLASER;
// Crash der Raumschiffe
Collision[++NumCollision]=

CPLAYER1|CPLAYER2;

...

// Abspielen der Sounds
while (NumCollision>=0)
{

int c=Collision[NumCollision–];
if (c==(CPLAYER1|CPLAYER2))
{

SoundSys->PlaySound(sCrash);
}

if (c & CLASER)
{

SoundSys->PlaySound(sHit);
}

}

Für die grafischen Explosions- und
Raucheffekte setzen Sie das Partikelsy-
stem ein, das Sie in der letzten Ausgabe
entwickelt haben – Sie finden es auch im
Quelltext auf dieser Heft-CD. Immer
wenn ein Laserstrahl auf den Schutz-
schild eines Raumschiffs trifft, eine Ra-
kete detoniert – sei es durch einen Tref-
fer oder durch den Ablauf ihrer Lebens-
dauer – oder ein Raumschiff anderweitig
Schaden nimmt, setzen Sie an der ent-
sprechenden Stelle Explosionspartikel
frei. Beim Bewegen einer Rakete oder
dem Zünden eines Raumgleitertrieb-
werks stoßen Sie Rauchpartikel aus.

Bevor Sie die Methode HandleAnd-
DrawGame() beenden, stellen Sie noch
die verschiedenen Energievorräte der
Raumgleiter als Balkengrafiken dar. Da-
nach übernimmt wieder das Hauptpro-
gramm die Kontrolle und kann seiner-
seits das Partikelsystem und andere
Routinen aufrufen.

■ Gravitationskräfte
Da unser Spiel Gravity Wars heißt, soll-
te auch die Anziehungskraft eine wich-
tige Rolle darin spielen. Deshalb plazie-
ren Sie einen großen Planeten in der Mit-
te des Spielfelds, der sowohl Raumschif-
fe als auch Raketen anzieht. Sie sollten

mit seiner Oberfläche nicht in
Berührung kommen, da das Raumschiff
sonst daran zerschellt.

Die Berücksichtigung dieser Anzie-
hungskraft im Spiel ist denkbar einfach:
Die Gravitation ist nichts anderes als ei-
ne zusätzliche Beschleunigung des
Raumgleiters bzw. der Rakete in Rich-
tung der Bildschirmmitte, wo sich der
Planet befindet:

// Richtungsvektor zur
// Bildschirmmitte
gx=(SCREEN_X/2)-px;
gy=(SCREEN_Y/2)-py;

distanz=sqrt(gx*gx+gy*gy);

if (distanz>0)
{

gx/=distanz;
gy/=distanz;

}
dx+=gx*ANZIEHUNGSKRAFT;
dy+=gy*ANZIEHUNGSKRAFT;

Das ist schon alles, was Sie für diese
Spielvariante, die Sie im Hauptmenü des
Spiels auswählen können, hinzufügen
müssen. Die Gravitation wirkt natürlich
nur auf die Raumschiffe und die Rakete.
Wären auch die Laserstrahlen betroffen,
hätten Sie es mit einem sogenannten
„Schwarzen Loch“ zu tun, und dem
sollten Sie bekanntermaßen möglichst
fernbleiben.

■ Computergegner
Jetzt haben Sie ein nettes Ballerspiel für
zwei Personen geschrieben. Aber was,
wenn gerade niemand gegen Sie antreten
möchte? Als Ersatz erschaffen Sie des-
halb einen Computergegner.

Nun gibt es 1001 Möglichkeiten, ei-
nen Computergegner zu programmie-
ren. Zum leichten Einstieg sollten Sie die
Anforderungen jedoch nicht allzu hoch
ansetzen. Gute Computergegner verlan-
gen sehr viel theoretisches Wissen und
Programmierkenntnis.

Wenn Sie das Spiel im Zweispieler-
Modus ausprobieren, werden Sie einen
gewaltigen Unterschied zwischen dem
Spiel mit und ohne Gravitation feststel-
len. Die Anforderungen an den Compu-
tergegner sind für beide Spielarten sehr
unterschiedlich: Beim Spiel ohne Gravi-
tationsfeld reicht es aus, wenn sich der
Gegner ständig bewegt und auf Sie – den
Spieler – schießt.

Für das Spiel mit Gravitation ist es
zwar auch entscheidend, den Gegner zu
treffen – viel wichtiger ist es aber, sich von
dem Planeten fernzuhalten. Die nötigen
Daten des künstlichen Spielers definie-
ren Sie als Struktur in der PLAYER-
Klasse:

KOMMT EIN RAUMSCHIFF dem Planeten

zu nahe, zerschellt es in einem großen

Feuerball an der Oberfläche.

PC Magazin Juli 1999 219

P C U N D E R G R O U N D
P R A X I S

typedef struct
{

// Ziel des CPU-Players
float x;
float y;
float r; // Ruhe-Radius
int Angriff; // Angriff?
int isCpuPlayer;
// Pointer auf den Gegner
PLAYER * enemy;

} CpuPlayerData;

Zunächst zum Spiel ohne Gravitation.
Eine sehr einfache, aber effektive Strate-
gie für den Computer ist es, seine Ak-
tionen in zwei Phasen aufzuteilen:
• In der Bewegungsphase manövriert er
sein Raumschiff und ist daher eher de-
fensiv.
• Benutzt er hingegen seine Laserkano-
ne, befindet er sich in der Angriffsphase.
In diesem Fall ist das Status-Flag Angriff
gesetzt. Die Variable IsCpuPlayer zeigt
an, ob die betreffende Instanz eines
Raumschiffs überhaupt vom Computer
gelenkt werden soll.

■ Bewegungsphase
In der Bewegungsphase soll der Com-
putergegner eine Position im Raum an-
fliegen. Da die Steuerung auch für den
Computer schwer zu kontrollieren ist,
definieren Sie einen Kreis als „sichere
Position“ für den Computer. Dafür ge-
ben Sie mit x und y den Mittelpunkt ei-
nes Kreises an, r definiert dessen Radius.
Solange der Computergegner nicht im
Radius war, versucht er, durch Lenkbe-
wegungen in diesen Kreis zu gelangen.

Die Methode
float CpuPlayerTargetTo(

float xx,float yy,int steer)

enthält die Hauptlogik zum Zielen und
Lenken. In den Parametern xx und yy
teilen Sie dieser Routine eine beliebige
Position im Raum mit. Ist der Parameter
steer gesetzt (steer = 1), probiert der
Computergegner durch Auslösen der
Düsen links und rechts, sich auf diese
Position auszurichten.

Möchten Sie dagegen nur den Winkel
zur Zielposition berechnen, rufen Sie die
Routine mit ungesetztem steer-Flag auf
(steer = 0). Diese Zusatzfunktion nutzen
Sie später, um zu entscheiden, ob ein
Schuß mit dem Laser sinnvoll ist oder
nicht.

Die Implementierung der Methode
selbst ist wenig spektakulär. Sie berech-
net mit der trigonometrischen Funktion
atan2 den Winkel und ruft je nach Aus-
richtung zum Ziel die Action-Methode
auf. Hierbei zahlt sich ein etwas erhöh-
ter Aufwand aus, um die schnellste
Lenkbewegung zu ermitteln.

Sorgen Sie auch für einen fließenden
Übergang zwischen 0° und 360°. Den
sogenannten Wrap Around an dieser
Stelle fangen Sie ab und behandeln ihn

gesondert. Dann können Sie endlich Gas
geben:

// Winkel messen und
// Ausrichten:
float d=CpuPlayerTargetTo(

cpu.x,cpu.y,1);

// Falls nicht zu schnell und
// Winkel ungefähr stimmt,
// etwas Schubkraft geben
if ((d<10) && (speed<3.0))

Action(KUP);

Einfach, aber effektiv. Diese beiden Zei-
len bringen den Gegner sicher an sein
Ziel. Sobald der Computerspieler sein
Ziel erreicht hat, geht er in die nächste
Phase, den Angriff, über.

■ Angriffsphase

In dieser Phase gilt es, sich auf den Geg-
ner zu konzentrieren und ihn mit Laser-
schüssen zu beschäftigen. Dazu dient die
bereits entwickelte Routine CpuPlay-
erTargetTo. Damit der Computerspieler
ein nicht allzu leichtes Ziel abgibt, ach-
ten Sie zusätzlich darauf, daß er nicht
immer an einer Stelle steht.

Wird sein Raumschiff zu langsam,
gibt der Computer einfach etwas Schub-
kraft. Der Code hierzu ist dem der ersten
Phase sehr ähnlich:

CpuPlayerTargetTo(
cpu.enemy->x,cpu.enemy->y,1);

if (speed<0.4) Action (KUP);

Sobald der Gegner seinen Bereich ver-
läßt, sucht er sich per Zufall eine neue
Position, und das Spiel beginnt von vor-
ne. Dies kann zum Beispiel nach einer
Kollision mit dem Gegner oder einer
Rakete nötig sein.

■ Allgemeine Aktionen
Unabhängig von den Bewegungs- und
Angriffsphasen des Computers behan-
deln Sie den Abschuß einer Rakete und
das Verteilen der Energie auf Lenkung
und Schildsysteme. Diese beiden Aktio-
nen werden immer ausgeführt. Bei der
Verteilung des Energiehaushalts legt der
virtuelle Gegner Priorität auf seine
Schildenergie. Die Lenkenergie soll im-
mer nur gerade dazu ausreichen, das
Schiff zu bewegen: q

INDIVIDUELLE GRAFIKEN UND HINTERGRUNDMUSIK
Wollen Sie eigene Grafiken in das Spiel einbauen, sollten Sie diese in Größe und Pro-

portion an den vorhandenen orientieren. Die Dateien für die Sprites liegen im Ver-

zeichnis des Sprite-Generators:

laser.bmp Laserschuß

rocket.bmp Rakete

shipx00.bmp Raumschiff x (x = 1 oder 2)

shipx01.bmp Raumschiff x mit Laserkanonen

shipx10.bmp Raumschiff x mit aktivem Triebwerk

shipx11.bmp Raumschiff x mit aktivem Triebwerk und Laserkanonen

shipxs1.bmp Raumschiff x mit sichtbarem Schutzschild

Die Dateien, auf die das Spiel letztendlich zugreift, befinden sich im Unterverzeichnis

data:

back1.bmp Hintergrundbild mit Planet

back2.bmp Hintergrundbild ohne Planet

titelbild.bmp Bild des Hauptmenüs

*.dat aus den Sprites generierte Daten

Auch die MIDI-Datei für die Hintergrundmusik können Sie ganz einfach austauschen. Es

handelt sich hierbei um eine ganz normale Standard-MIDI-Datei. Das Internet ist eine

gute Quelle für solche Musikstücke. Die MIDI-Datei gravity.mid hat der Demomusiker

DOJ exklusiv für dieses Spiel komponiert. DOJ heißt eigentlich Dirk (derartige Fantasie-

namen, auch Handles genannt, sind in der Demoszene üblich) und ist Mitglied der De-

mogruppe Cubic&Seen, der auch die beiden Autoren dieses Beitrags angehören.

DIE RAKETEN RICHTEN ihre Flugbahn im-

mer wieder neu auf das gegnerische

Raumschiff aus.

220 Juli 1999 PC Magazin

P C U N D E R G R O U N D
P R A X I S

if (thrustenergy>20)
Action(KPOW1);

else Action(KPOW2);

Die Logik für den Raketenabschuß ist
auch nicht viel komplizierter. Hierzu
messen Sie erneut den Winkel zum Geg-
ner. Ist dieser klein genug, schießen Sie
eine Rakete ab. Da das Spielfeld quasi
unendlich ist, kann eine Rakete den
Gegner auch über die Bande des Spiel-
felds treffen.

Bedenken Sie, daß die Richtungsanga-
ben der PLAYER-Klasse von 0 bis 64
definiert sind. Im Vergleich

(fabs(d-32)<2.0)

subtrahieren Sie vom Ausrichtungswin-
kel d den Wert 32 (entspricht 180°) und
bilden den Absolutwert. Ist dieser klein
genug, besteht die Chance auf einen
Treffer. Die Methode Action löst dann
den Schuß aus. Dies geschieht allerdings
ganz willkürlich. Sobald die Geschwin-
digkeit den willkürlich festgelegten
Wert von 4.0 überschreitet, wird ge-
schossen. Dies passiert in der Regel
dann, wenn das Gefecht im vollen
Gange ist und das Spielfeld so chaotisch
aussieht, daß die Rakete unentdeckt
ihren Weg zum Ziel findet.

// Winkel zum Feind messen
float d=CpuPlayerTargetTo(

cpu.enemy->x,cpu.enemy->y,0);

// Lohnt Laser-Schuß?
// eventuell über Bande?
if ((d<6.0) ||

(fabs(d-32)<2.0))
Action(KFIRE1);

// Rakete abschießen
if (speed>4.0)

Action(KFIRE2);

Für das Spiel mit Gravitation ist, wie be-
reits erwähnt, eine etwas andere Strate-
gie sinnvoll. Der Gegner versucht hier-
bei immer, einen Sicherheitsabstand
zum Planeten zu erreichen. Dazu ermit-
teln Sie ständig den Abstand und die
Ausrichtung zum Planeten und berech-
nen in jedem Aufruf eine neue Position.
Die neue Zielposition ist dabei immer et-
was weiter vom Planeten entfernt. Da-
mit der Gegner seine Position dennoch
wechselt, addieren Sie einen kleinen Zu-
fallswert.

Ist der Abstand zum Planeten groß ge-
nug, wechseln Sie in den Angriffsmodus.
Den Quellcode der gesamten Compu-
tersteuerung finden Sie in der Methode
CpuKeyControl() der Klasse PLAYER.

Auch wenn die Strategie des Compu-
terspielers sehr einfach wirkt, ist sie den-
noch äußerst effektiv. Ein Spiel gegen
den computergenerierten Astronauten
macht wirklich Spaß.

Sie können auch eigene Ideen in den
Code einfügen, um einen anspruchsvol-
leren Gegner zu programmieren. Senden
Sie uns ruhig Ihre Verbesserungen an:

praxis@pc-magazin.de

Wir sind gespannt auf Ihre Einfälle.

■ Bestenliste
Was wäre ein Ballerspiel ohne eine Be-
stenliste (englisch Highscore)? Auch bei
Gravity Wars darf diese nicht fehlen. Ei-
nen Spieler bewerten Sie einfach daran,
wie schnell er seinen Gegner bezwingt.
Das hängt natürlich auch von der Stärke
des Gegenübers ab, erspart aber eine auf-
wendigere Punkterechnung.

Bei jedem Spiel messen Sie die Zeit.
Wer das Spiel überlebt, darf sich – falls er
schnell genug war – in die Highscore-Li-
ste eintragen. Die Implementierung ei-
ner solchen Bestenliste ist relativ leicht.
Sie finden den gesamten Code in der Da-
tei main.cpp. Interessant ist es jedoch, die
Anzeige der Highscore-Tabelle mit ei-
nem Demomodus zu kombinieren.

Wenn Sie im Hauptmenü des Spiels
für etwa zehn Sekunden keine Taste
drücken, beginnen zwei Computergeg-
ner ein Duell gegeneinander. Auf diesem
bewegten Hintergrund stellen Sie die
Highscore-Tabelle dar. Dazu benutzen
Sie am besten die in den vorangegange-
nen Artikeln entwickelte Font-Klasse.
Sie eignet sich hervorragend, um schnell
und einfach Ausgaben auf den Bild-
schirm zu bringen.

Im übrigen steuern Sie das gesamte
Programm per Tastatur. Im Hauptmenü
gehen Sie mit den Tasten [Cursor auf]
und [Cursor ab] zum gewünschten
Menüpunkt. Die aktuelle Position er-
kennen Sie dabei nicht etwa an einem
Rollbalken, sondern an starker Flam-
menaktivität. Die Auswahl erfolgt dann
mit der [Enter]-Taste.

■ Musik liegt in der Luft
Musik ist ein häufig unterschätzter Be-
standteil guter Computerspiele. Viele
Spiele sind gerade wegen ihrer guten
Musik noch heute bekannt. Computer-
veteranen erinnern sich vielleicht noch
an den Spieleklassiker Turrican vom
C64 und Amiga.

Die Bibliotheken, mit denen Sie bisher
in PC Underground Moduldateien
(*.mod und *.xm) abgespielt haben, ver-
tragen sich leider nicht mit dem Spiele-
Soundsystem. Daher beschreiten Sie ei-
nen anderen Weg, und zwar mit den lei-
der etwas aus der Mode gekommenen
MIDI-Dateien.

Die Multimedia-API von Windows
bietet einen erstaunlichen Komfort beim
Abspielen solcher Musikstücke. Zu-
nächst öffnen Sie eine MIDI-Datei über
die Multimedia-API:

MCI_OPEN_PARMS mciOpenParms;
DWORD dwReturn;

mciOpenParms.lpstrDeviceType=
“sequencer“;

mciOpenParms.lpstrElementName=
“gravity.mid“

if (dwReturn=mciSendCommand(
NULL,MCI_OPEN,
MCI_OPEN_TYPE|
MCI_OPEN_ELEMENT,
(DWORD)(LPVOID)
&mciOpenParms)) return(0);

Sequencer ist der Name für den Win-
dows-eigenen MIDI-Mapper. Beim
Aufruf des obigen Codes liest Windows
die MIDI-Datei gravity.mid ein und
analysiert, welches der installierten MI-
DI-Geräte zum Abspielen am besten ge-
eignet ist. In der Regel ist das der Syn-
thesizer-Chip auf Ihrer Soundkarte.

Die MIDI-Datei ist nun geladen und
muß nur noch gestartet werden. Sie ver-
zichten darauf, sich Nachrichten über
den aktuellen Zustand des Playbacks
schicken zu lassen. Diese belasten das
System zwar nur gering, sind jedoch für
den Spielfluß uninteressant.

MCI_PLAY_PARMS mciPlayParms;
DWORD dwReturn;

mciPlayParms.dwCallback=NULL;
if (dwReturn=mciSendCommand(

mciOpenParms.wDeviceID,
MCI_PLAY,MCI_NOTIFY,
(DWORD)(LPVOID)
&mciPlayParms))

{
mciSendCommand(

mciOpenParms.wDeviceID,
MCI_CLOSE,0,NULL);

return(0);
}

Wenn alles geklappt hat, sollte jetzt Mu-
sik aus Ihrer Soundkarte tönen. Die Mu-
sikwiedergabe endet automatisch, so-
bald Sie das Programm verlassen.

Soviel zunächst zur Spieleprogram-
mierung. In der nächsten Ausgabe be-
richten wir unter anderem über ein elek-
tronisches Magazin aus der Demo-Sze-
ne und stellen Ihnen verschiedene Effek-
te in Logos vor. s P E I / B M

Die Quelltexte zu diesem Beitrag und das fertige
Spiel Gravity Wars finden Sie zusammen mit der
zugrundeliegenden Grafikbibliothek auf unserer
Heft-CD im Verzeichnis praxis\pc-under und im In-
ternet-Angebot des PC Magazin unter

www.pc-magazin.de/magazin/
➥extras.htm

Klicken Sie unter Online Extras im Menü Praxis auf
das entsprechende Download-Feld.

