
212 August 1999 PC Magazin

P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R

Nach der Spieleprogrammierung
der letzten Ausgaben liegt der
Schwerpunkt dieser Ausgabe

wieder bei den klassischen Demos. Sie
werden als Designer tätig und gestalten
professionelle Grafiklogos. Dazu lernen
Sie verschiedene Effekte kennen, mit de-
nen Sie diese Logos eindrucksvoll in
Szene setzen. In diesem Zusammenhang
steigen Sie in die Assembler-Program-
mierung mit MMX-Befehlen ein.

■ Licht-Logo
Vielleicht kennen Sie die Logos am An-
fang einiger Computerspiele, die den be-
leuchteten Schriftzug des Herstellers
zeigen. Mit einem solchen Effekt begin-
nen Sie Ihre Tätigkeit als Logo-Desi-
gner. Dabei soll sich eine Lichtquelle
hinter einem Schriftsatz, einem Bild oder
einem sonstwie gestalteten Logo hin-
und herbewegen.

Das allein wäre allerdings unspekta-
kulär. Deshalb soll diese Lichtquelle
sichtbare Lichtstrahlen aussenden, die je
nach Strahlungsrichtung durch die
durchsichtigen Stellen des Logos hin-
durchscheinen bzw. an den undurch-
sichtigen Stellen absorbiert werden (sie-
he Bild unten).

Den angesprochene Effekt können Sie
relativ leicht in 3D programmieren. Auf
der Skizze auf S. 220 erkennen Sie ein
zweidimensionales Logo, das auf der
x/y-Ebene steht. Die Lichtquelle befin-
det sich im Halbraum der positiven z-
Achse (also in dem Teil des Raums mit
positiven z-Koordinaten). Der Betrach-
ter steht gegenüber auf der negativen z-
Achse.

Anhand dieser Vorstellung können
Sie das Problem wie folgt beschreiben:
Vorgegeben sind die Position der Licht-
quelle und die Richtung eines Licht-
strahls. Eine Position und eine Richtung
definiert eine Halbgerade, deren
Schnittpunkt mit der x/y-Ebene Sie be-

rechnen können. Befindet sich an dieser
Stelle ein Pixel des Logos, endet der
Lichtstrahl an dieser undurchsichtigen
Stelle. Sonst setzt das Licht seinen Weg
fort, und der Strahl ist vor dem Logo zu
sehen. Mit Hilfe der Schnittpunkte stel-
len Sie nicht nur fest, ob der Strahl ab-
sorbiert wird oder nicht. Sie dienen auch
dazu, einen Lichtstrahl in den hinter
dem Logo befindlichen Teil und den
eventuell vorhandenen Teil davor aufzu-
teilen.

Damit die Lichtstrahlen nicht un-
natürlich wirken, weisen Sie ihnen zu
Beginn per Zufallsgenerator eine zufälli-
ge Länge zu. Diese Längenangaben
fließen dann in die Richtungsvektoren
der einzelnen Strahlen ein. Die Farbe der
Lichtstrahlen erhalten Sie aus ihrer
Richtung und einer zufälligen Abwei-
chung.

Im mathematischen Fachjargon for-
mulieren Sie die bisherigen Überlegun-
gen wie folgt:

Position der Lichtquelle:
(lx, ly, lz)

Richtung des Strahls:
(rx, ry, rz)

Schnittpunkt:
(sx, sy, sz)

Den Schnittpunkt des Strahls mit der
x/y-Ebene berechnen Sie nun ganz ein-
fach:

t = 0.0 - lz / rz;
sx = lx + t * rx;
sy = ly + t * ry;
// sz = 0.0, da Schnittpunkt
// mit xy-Ebene
sz = 0.0;

Interessant für die Schnittpunkte sind
nur die Geradengleichungen, bei denen
der Wert t größer als 0 ist: Bei einem ne-
gativen Wert t würden die Halbgeraden
vom Betrachter wegzeigen und könnten
deshalb keinen Schnittpunkt mit der
x/y-Ebene besitzen.

Außerdem müssen Sie darauf achten,
daß der Lichtstrahl nur eine gewisse
Länge besitzt. Wenn Sie den Schnitt-
punkt der Ebene mit der Halbgeraden
eines Lichtstrahls berechnen, darf der

Demo-Programmierung unter Windows 95/98/NT

Lifting für Logos
Ein einfacher Schriftzug oder das verstaubte Firmenlogo erstrahlen mit

wenigen trickreichen Logoeffekten in neuem Glanz.

DER SCHRIFTZUG, hier aus der Sicht der Lichtquelle, absorbiert einen Teil der ausgesende-

ten Lichtstrahlen.

Betrachter

x

y

z
Licht-

quelle absorbierte Lichtstrahlen

hindurchstrahlende Lichtstrahlen

PC Magazin August 1999 213

P C U N D E R G R O U N D
P R A X I S

Schnittpunkt nicht weiter entfernt sein,
als der Lichtstrahl lang ist. Schneidet ein
Lichtstrahl die x/y-Ebene gar nicht,
liegt der Strahl vollständig hinter dem
Logo.

An dieser Stelle haben Sie entweder
festgestellt, daß ein Lichtstrahl keinen
Schnittpunkt mit der x/y-Ebene hat,
oder Sie haben diesen berechnet. Das
wiederum bedeutet, daß Sie nun einen
(Teil-) Strahl kennen, der eindeutig hin-
ter dem Logo liegt: Der Strahl von
(lx, ly, lz) nach (sx, sy, sz). Alle Strahlen,
die Sie so bestimmt haben, speichern Sie
in einer Liste. Mit ihrer Hilfe zeichnen
Sie später die Strahlen auf den Bild-
schirm.

Mit sx und sy können Sie die Koordi-
naten des Pixels im Logo berechnen, der
am Schnittpunkt liegt. Dazu addieren
Sie die halbe Bildschirmbreite und -hö-
he, wenn Sie die Mitte des Logos im Ur-
sprung des Koordinatensystems anneh-
men:

int x = SCREEN_X/2+sx;
int y = SCREEN_Y/2+sy;

Nun überprüfen Sie noch, ob an dieser
Stelle ein Pixel gesetzt ist oder die Koor-
dinaten auf eine Position innerhalb der
Logo-Bitmap zeigen. Bei folgenden Be-
rechnungen verwenden Sie eine Logo-
Bitmap, die die gleichen Ausmaße wie
die Bildschirmauflösung aufweist (also
eine Breite von SCREEN_X und eine
Höhe von SCREEN_Y Pixel):

if (((ix>=0) &&
(ix<=SCREEN_X) &&
(iy>=0) &&
(iy<=SCREEN_Y)) &&
(logo[ix+iy*SCREEN_X]==0))

{
// Vorderen Teil des Strahls
// berechnen
...

}

Von dem Teil des Lichtstrahls, der sich
vor dem Logo befindet, kennen Sie den
Start- und Endpunkt: Er beginnt am
Schnittpunkt des Strahls mit der Ebene
und endet in dem Punkt, den Sie durch
Addition des Richtungsvektors des
Strahls mit dem Ortsvektor der Licht-
quelle erhalten. Auch diese Information
speichern Sie zunächst in einer Liste.

■ Lichtstrahlen zeichnen
Da sich der Betrachter immer auf der ne-
gativen z-Achse befindet, können Sie die
dreidimensionalen Koordinaten mit ei-
ner einfachen Perspektivtransformation
in zweidimensionale Bildschirmkoordi-
naten umrechnen. Dies geschieht mit der
folgenden Formel, wobei v3d der drei-
dimensionale und v2d analog dazu der

zweidimensionale Vektor ist. Als Koor-
dinatensystem liegt hierbei jeweils die
Bildschirmebene zugrunde:

// 1000.0f ist empirisch
// ermittelter Projektionsfaktor
inverse_z=

1000.0f/(v3d.z+1000.0f);
v2d.x=

v3d.x*inverse_z+SCREEN_X/2;
v2d.y=

v3d.y*inverse_z+SCREEN_Y/2;

Mit dieser Formel projizieren Sie alle be-
rechneten Lichtstrahlen auf die Betrach-
terebene, also auf den Bildschirm. Mit
den so gewonnenen Koordinaten kön-
nen Sie die Lichtstrahlen einfach als Ge-
raden auf den Bildschirm bringen. Zu-
erst zeichnen Sie alle Linienabschnitte,
die hinter dem Logo liegen. Danach stel-
len Sie das Logo selbst dar und zu guter
Letzt die vor dem Logo liegenden Strah-
len.

Um eine Linie zu zeichnen, gibt es vie-
le Ansätze, doch genügt ein relativ einfa-
cher Algorithmus. Damit die Linien
über den Bildschirmrand hinausgehen
können, müssen Sie sie vorher abschnei-
den (sogenanntes Clipping).

■ Clipping
Das Clipping von Linien scheint ein
Lieblingsthema der Forscher auf dem
Gebiet der 3D-Grafik zu sein. Entspre-
chend viele Algorithmen gibt es auch.
Optimal geeignet ist der Algorithmus im
Programm LightLogo.cpp, das Sie kom-
plett auf der Heft-CD finden.

So gehen Sie vor: Sie teilen die Be-
trachterebene in neun verschiedene Ge-
biete ein. In der Mitte befindet sich der
rechteckige Bildschirmbereich, umge-
ben von den unsichtbaren Bereichen.
Diese befinden sich in Relation zum
sichtbaren Bild links oben, oben, rechts
oben, links, rechts, links unten, unten
sowie rechts unten. Der Algorithmus
prüft, in welchem dieser Bereiche eine
Linie endet, sofern sie über den Rand
hinausgeht. Für jeden einzelnen Fall

stellt der Algorithmus einen speziell an-
gepaßten Code zur Verfügung. Dies er-
höht die Codegröße deutlich, birgt aber
einen großen Geschwindigkeitsvorteil.

Um an dieser Stelle nicht zu weit in –
für den eigentlichen Effekt eher ne-
bensächliche – Details zu gehen, verwei-
sen wir für weitere Einzelheiten auf den
Sourcecode in der Datei line.cpp.

■ Linien zeichnen
Damit der Betrachter Lichtstrahlen auch
als solche erkennt, genügt es nicht, sie
einfach als einfarbige Linien zu zeich-
nen. Vielmehr sollten die Linien ein brei-
tes Farbspektrum aufweisen und breiter
sein als ein Pixel. Bei der Überlappung
von Linien mischen Sie die Farbe addi-
tiv, das heißt: Sie addieren die einzelnen
Farbwerte. Als Ergebnis erhalten Sie im-
mer einen helleren Ton als die beiden
Ausgangsfarben. So führt eine additive
Farbmischung vieler verschiedener Far-
ben zu einem reinen Weiß.

Wie bereits erwähnt, folgt der Lini-
enalgorithmus einem sehr einfachen An-
satz. Vor allem in Verbindung mit dem
additiven Shading erfüllt er seinen
Zweck. Eine zu zeichnende Linie sei
durch ihre zwei Endpunkte (x0, y0) und
(x1, y1) gegeben. Dann berechnen Sie
zunächst die maximale Länge der Linie
entlang der x- und der y-Achse:

int Laenge=
max(abs(x1-x0), abs(y1-y0));

Wenn Sie nun für jeden Schritt entlang
des längeren Achsenabschnitts die Ko-
ordinaten von (x0, y0) nach (x1, y1) in-
terpolieren wollen, benötigen Sie noch
die Inkremente:

float dx=(x1-x0)/Laenge;
float dy=(y1-y0)/Laenge;

Damit könnten Sie eine einfache Linie
bereits mit folgender Schleife zeichnen:

x=x0;
y=y0;
while (Laenge-– > 0)
{

DrawPixel(x, y); q

DURCH DAS MASKIEREN UND VERSCHIEBEN einiger Bits rechnen Sie 32-Bit-Farben in

16-Bit-Farben um.

shl eax, 2
;und auf edi addieren
add edi, eax
;64 Bit (zwei Farb-
;werte) in das
;mm0-Register lesen
movq mm0, [edi]
;additiv shaden
paddusb mm0,
➥ [zwei_additive_
➥ farbwerte]
;zurückschreiben
movq [edi], mm0

Wie Sie sehen, stellt MMX gerade für
solche Operationen sehr mächtige Be-
fehle zur Verfügung. Additives Shading
mit herkömmlichen Befehlen läßt sich in
32 Bit nur sehr umständlich realisieren,
oder Sie müssen dafür einen hohen Re-
chenaufwand in Kauf nehmen. Bei 16-
Bit-Werten könnten Sie mit einer Look-
Up-Tabelle arbeiten.

Da Sie beim additiven Shading mit
MMX-Befehlen 32-Bit-Farbwerte ver-
wenden, müssen Sie diese in 16-Bit-
Werte konvertieren. Im Bild auf S. 217
sehen Sie, welche Bitverschiebungen da-
zu nötig sind. Intel bietet auf seinen In-
ternet-Seiten unter

www.intel.com

verschiedene MMX-Anwendungsbei-
spiele für Entwickler, darunter auch ei-
nes mit der gesuchten Funktionalität.
Dieses Programm maskiert jeweils die
obersten 5 bzw. 6 Bit eines Farbkanals
im 32-Bit-Farbwert aus und schiebt sie
an die entsprechende Stelle des resultie-
renden 16-Bit-Werts.
Die entsprechende Routine finden Sie
angepaßt im Quellcode des Demoef-
fekts. Mehr über ein paar ausgewählte
MMX-Befehle lesen Sie in der Textbox
unten.

ditiven Shading zwei-
er Farbwerte addie-
ren Sie jeweils die
Rot-, Grün- und
Blauanteile. Falls ein
solches Zwischener-
gebnis den maximal
mit 8 Bit darstellbaren
Wert 255 überschrei-
tet, setzen Sie es auf
eben diesen Wert.

Ihr Vorgehen sieht
in Pseudocode also
folgendermaßen aus:
Farbe1: (r1, g1,
b1)

Farbe2: (r2, g2, b2)

Resultat:
r=min(255, r1+r2)
g=min(255, g1+g2)
b=min(255, b1+b2)

Sehr entgegenkommend ist an dieser
Stelle MMX, da es einen Befehl zur Ver-
fügung stellt, der genau diese Aufgabe
erledigt: paddusb (vgl. dazu die Tabelle
auf der rechten Seite unten).

Da sich der Befehl über 64 Bit „er-
streckt“, bearbeiten Sie damit sogar zwei
Pixel gleichzeitig. Ein Teil des Shade-
bob-Codes könnte also so aussehen
(dieser Code zeichnet zwei Pixel addi-
tiv):

;edi-Register mit Adresse
;des 32 Bit Grafikbildes laden
mov edi, [screen32]
;Berechnung von:
;eax=Y*SCREEN_X+X
mov eax, [y_koordinate]
mov ecx, SCREEN_X
mul ecx
add eax, [x_koordinate]
;mal 4, da 32-Bit-Werte

214 August 1999 PC Magazin

P C U N D E R G R O U N D
P R A X I S

AUSGEWÄHLTE MMX-BEFEHLE
MMX-Befehle arbeiten nach dem SIMD-

Prinzip (Single Instruction Multiple Data).

Das bedeutet, daß Sie mit einem Befehl

mehrere in einem Register gespeicherte

Werte nach der gleichen Methode behan-

deln. Dabei stehen Ihnen acht Register

(mm0 bis mm7) zur Verfügung, wobei Sie

allerdings keine Floating-Point-Operatio-

nen innerhalb von MMX-Code durch-

führen dürfen. Befehlsreferenzen und Bei-

spiel-Sourcecodes finden Sie unter

www.intel.com

Befehl Bedeutung
movd/movq Double/Quad-Word (32 oder 64 Bit) lesen/schreiben

pand Bitweises Und

por Bitweises Oder

psrld Packed Shift Right Logical Double: Die 32-Bit-Werte im Register

werden logisch nach rechts verschoben.

packssdw packt die 32-Bit-Werte aus zwei Registern in 16-Bit-Werte eines

Registers.

paddusb/w/d Addition mit Saturation (Sättigung)

emms muß am Ende von MMX-Codeteilen aufgerufen werden, um die

Register wieder für nachfolgende Float-Operationen „freizugeben“.

DIE SCHÄRFEEBENE wandert in dieser Bildsequenz von vorne

bis ganz nach hinten.

x+=dx;
y+=dy;

}

Im Vergleich zu schnelleren Linienalgo-
rithmen setzen Sie bei diesem Verfahren
eventuell zu viele Pixel. Da die Licht-
strahlen aber eine gewisse Farbe und
Helligkeit mitbringen und sich diese bei
überlagerten Lichtstrahlen additiv mi-
schen, ist dies der Darstellungsqualität
nur zuträglich.

Um dickere Linien zu erhalten, setzen
Sie nicht einfache Pixel, sondern zeich-
nen additiv einen kleinen (4 x 4 Pixel
großen) Bereich. Diese kleinen Objekte
nennt man auch Shadebobs.

■ Shadebobs zeichnen
Dieser Demoeffekt arbeitet – abgesehen
vom Zeichnen des Logos – fast aus-
schließlich mit additivem Shading. Des-
halb sollten Sie an dieser Stelle einen
Blick auf die Vorteile von MMX-Befeh-
len beim Einsatz einer Farbtiefe von 32
Bit werfen. Da die verwendete Demo-
bibliothek demosys.cpp mit 16 Bit Farb-
tiefe arbeitet (was aufgrund der Ab-
wärtskompatibilität nicht geändert wer-
den soll), müssen Sie das Resultat danach
wieder von 32 auf 16 Bit Farbtiefe redu-
zieren.

Das Prinzip von MMX (Multimedia
Extensions) ist es, auf mehrere verschie-
dene Werte dieselbe Instruktion anzu-
wenden. Diese Werte liegen alle zusam-
men in einem 64 Bit breiten MMX-Re-
gister. Zum Beispiel können Sie in solch
einem Register vier 16-Bit-Wörter able-
gen und diese dann – jedes für sich – mit
einem einzigen Befehl nach links oder
rechts shiften. Dieses zugrundeliegende
Prinzip heißt SIMD (Single Instruction
Multiple Data).

Bei einem 32-Bit-Farbwert, wie Sie
ihn verwenden, sind die einzelnen Bits
wie im Bild auf S. 217 verteilt. Beim ad-

PC Magazin August 1999 215

P C U N D E R G R O U N D
P R A X I S

■ Weitere Features

Die Lichtquelle wäre relativ langweilig,
wenn die Lichtstrahlen immer in diesel-
be Richtung zeigen würden. Für Ab-
wechslung sorgt eine einfache Drehung
aller Richtungsvektoren mit Drehwin-
keln, die Sie am besten abhängig von der
Zeit berechnen. Damit verpassen Sie der
Lichtquelle eine viel interessantere Be-
wegung und eine Farbänderung, da sich
die verschieden eingefärbten Lichtstrah-
len jetzt auch in anderen Konstellatio-
nen überlappen.

Während Sie das Bild konvertieren,
können Sie noch einen weiteren Effekt
zu den Lichtstrahlen hinzufügen: Wenn
die Lichtquelle direkt in das Auge des
Betrachters scheint, er also eigentlich ge-
blendet wird, erhöhen Sie die Helligkeit
des ganzen Bildes. Das erreichen Sie
ganz einfach, indem Sie zu jedem gelese-
nen 32-Bit-Wert einen Grauwert addie-
ren. Die Helligkeit dieses Werts bestim-
men Sie je nach Sichtbarkeit der Licht-
quelle. Je mehr Lichtstrahlen den Be-
trachter direkt ins Auge treffen, um so
heller der Grauwert.

Die Intensität der Blendung berech-
nen Sie zum Beispiel, indem Sie die zwei-
dimensionalen Koordinaten der Licht-
quelle betrachten und überprüfen, wie
viele Pixel in der Umgebung dieser Po-
sition vom Logo verdeckt werden oder
sichtbar sind. Je mehr ungesetzte Pixel
sich dort befinden, desto stärker hellen
Sie das Bild auf.

Die zweidimensionalen Koordinaten
erhalten Sie durch die oben vorgestellte
Projektionsformel. Der Code in den fol-
genden Zeilen verwendet eine 4 x 4 Pixel
große Umgebung der Lichtquelle als
Maß der Helligkeit:

//Adresse des Pixels, hinter
//dem die Lichtquelle liegt
int adr=

light2dx+light2dy*SCREEN_X;
adr-=SCREEN_X*4-4;

int helligkeit=0;
for (int j=0; j<8; j++)
{

for (int i=0; i<8; i++)
{

if (logo[adr]==0)
helligkeit++;

adr++;
}
adr+=SCREEN_X-i;

}

Den Farbwert, mit dem Sie das Bild auf-
hellen, erhalten Sie wie folgt:

int64 flashlight;

int temp=helligkeit*4;
//ersten Farbwert verdoppeln,
flashlight=(temp<<16) |

(temp<<8) | temp;

// damit zwei 32 Bit Werte in
//einem 64-Bit-Wert stehen
flashlight|=flashlight<<32;

■ Blenden- und
Fokussierungseffekte
Wenn Sie sich mit Fotografie beschäfti-
gen, vielleicht sogar eine Spiegelreflex-
kamera besitzen, wissen Sie um die Pro-
bleme der Linsenabbildungen und ken-
nen den folgenden Demoeffekt vielleicht
schon aus der Realität. Um ein Foto mit
einer sehr hohen Tiefenschärfe zu erzie-
len (das heißt, es sollen sowohl nahe als
auch weit entfernte Gegenstände scharf
zu erkennen sein), muß die Blende eines
Fotoapparats so weit wie möglich ge-
schlossen sein. Dieser Vorgang heißt
Abblenden.

Noch einmal für Nicht-Fotografen:
Die Öffnung, durch die das Licht auf das
Filmmaterial fällt, soll klein sein. Viel-
leicht haben Sie ja schon einmal eine
Lochkamera gebastelt und festgestellt,
daß das Bild schärfer wird, je kleiner Sie
das Loch stanzen. Aus dem gleichen
Grund kneifen Sie auch Ihre Augen zu,
wenn Sie etwas noch schärfer sehen
möchten. Den dadurch erkauften gerin-
geren Lichteinfall gleichen Sie beim Fo-
tografieren mit einer längeren Belich-

tungszeit und beim
Blinzeln mit erweiter-
ten Pupillen aus.

Wenn Sie es genau
umgekehrt machen,
also die Blende Ihrer
Kamera weit öffnen,
sehen Sie auf dem Fo-
to nur das genau fo-
kussierte Objekt
scharf. Mit dieser
Technik heben Sie
zum Beispiel ein por-
trätiertes Gesicht
vom unscharfen Hin-
tergrund ab.

Das Programm,
mit dem Sie die
Schärfentiefe vari-
ieren, ist lediglich ein

kleiner Mehrzeiler. Die Bilderfolge
links oben zeigt Ihnen verschiedene Fo-
kussierungsebenen, auf die „scharf ge-
stellt“ wurde: Der Schärfebereich be-
wegt sich dabei von den vorderen Säu-
len über den Schriftsatz bis zu den hin-
teren Säulen. Die gleiche Szene sehen
Sie im Bild oben, diesmal mit perfekter
Tiefenschärfe. Die fehlenden Bilder für
einen fließenden Übergang von einer
Schärfeebene zur nächsten berechnen
Sie mit einer einfachen linearen Inter-
polation.

Auch das hört sich schwieriger an, als
es eigentlich ist. Wenn Sie die gezeigten
Bilder der Reihenfolge nach durchnu-
merieren, können Sie die fehlenden Bil-
der dazwischen durch Kommazahlen
angeben. Um zum Beispiel das Bild mit
dem Indexwert 2,3 zu erhalten, berech-
nen Sie für jedes Pixel aus dem zweiten
und dritten Bild die dazugehörige
Mischfarbe.

Diese Mischfarbe erhalten Sie, indem
Sie die Rot-, Grün- und Blaukompo-
nenten der jeweiligen Pixel mit der ent-
sprechenden Gewichtung multiplizie-
ren und addieren:

Nummer des Vorgänger-Bildes:
2.3 abgerundet, also 2

Nummer des Nachfolger-Bildes:
2.3 aufgerundet, also 3 q

DER MMX-BEFEHL PADDUSB

Kürzel Bedeutung Erklärung
p packed viele Werte in einem Register

add addition Werte werden addiert

u unsigned Werte ohne Vorzeichen

s saturation Werte werden bei Überlauf auf maximale Werte gesetzt

b byte Befehl soll einzelne Bytes behandeln

IN DIESEM BILD IST DER GESAMTE RAUM scharf, nicht nur eine

ganz bestimmte Ebene.

216 August 1999 PC Magazin

P C U N D E R G R O U N D
P R A X I S

Faktor für das Vorgänger-Bild:
1.0-(2.3-2) = 0.7 = 70 %

Faktor für das Nachfolger-Bild:
2.3-2 = 0.3 = 30 %

Es ist auch für diesen Effekt wieder sinn-
voll, wenn Sie die Bilder mit den ver-
schiedenen Fokussierungsstufen in
TrueColor (also 32 Bit pro Pixel) im
Speicher behalten. Das Beispielpro-
gramm konvertiert die Bilder dann an-
schließend beim Programmstart in die-
ses Format.

Nun durchlaufen Sie in einer Schleife
alle Pixel der Bilder und berechnen die
Mischfarbe. In unserem Beispiel besitzt
mix den Wert 0.3, source1 zeigt auf das
zweite Bild und source2 auf das dritte
Bild:

Vision berechnet. Er verfügt über einen
großen Funktionsumfang und kann Bil-
der mit Tiefenschärfe berechnen. Die
Definition einer 3D-Szene legen Sie da-
bei je nach verwendetem Tool mit Hilfe
einer Skriptsprache fest, oder Sie gene-
rieren sie mit einem Editor. Die Skript-
datei zu unserer Testszene finden Sie
ebenfalls bei den Quelltexten auf der
Heft-CD.

Das Raytracing-Programm ein-
schließlich Beispielszenen, Anleitungen,
Editoren und allem, was dazugehört, be-
kommen Sie völlig umsonst im Internet
unter

www.povray.org

Einblicke in die Arbeitsweise eines sol-
chen Raytracers erhalten Sie in einer der
kommenden Ausgaben, wenn wir in der
Rubrik PC Underground einen mehr-
teiligen Workshop zum Thema Strah-
lenrückverfolgung starten. Dabei wer-
den Sie selbst ein komplettes Ray-
tracing-Programm schreiben.

Nächsten Monat widmen wir uns den
populären MP3-Musikdateien und zei-
gen Ihnen, wie Sie ein Plugin für den be-
liebten MP3-Player WinAmp program-
mieren. s P E I

Die Quelltexte zu den Licht- und Schärfeeffekten
an Logos finden Sie zusammen mit der zugrunde-
liegenden Grafikbibliothek auf unserer Heft-CD im
Verzeichnis praxis\pc-under und in unserem Inter-
net-Angebot unter

www.pc-magazin.de/magazin/
➥extras.htm

Klicken Sie unter Online Extras im Menü Praxis auf
das entsprechende Download-Feld.

ARTIKEL AUS DEM UNTERGRUND
Wenn Sie sich über aktuelle Demopartys

informieren oder Profi-Programmiertricks

aus erster Hand erfahren möchten, haben

wir einen heißen Tip für Sie: sogenannte

Diskmags. Das sind modern gestaltete

Zeitschriften, die es statt auf Papier als aus-

führbare Datei gibt. Diskmags blicken auf

eine lange Tradition zurück und erfreuten

sich vor allem in der Demoszene schon im-

mer großer Beliebtheit.

Ein inzwischen sehr bekanntes und regel-

mäßig erscheinendes Diskmag ist Hugi.

Darin finden Sie interessante Interviews,

Artikel über alles, was mit der Demoszene

zusammenhängt, und Programmierbeiträ-

ge sowie Tips für das Musizieren mit

Tracker-Programmen. Diskussionen über

die Szene, Betriebssysteme oder neue

Technologien lockern das Magazin auf,

welches in einen deutschen und einen in-

ternationalen Teil unterteilt ist.

Beim Lesespaß in der grafischen Umge-

bung berieselt Sie das Hugi-Diskmag mit

angenehmer Hintergrundmusik aus mod-

oder xm-Dateien. Hugi finden Sie im Inter-

net unter

http://home.pages.de/~hugi

Mitarbeiten kann und soll bei solchen

Diskmags jeder, der will. Wenn Sie mehr

über die deutsche Demoszene erfahren

wollen, besuchen Sie im Internet Relay

Chat den Channel #coders.ger, der unter

www.codersger.de

ebenfalls seine eigene Homepage besitzt.

//Faktoren in den
Bereich
//von 0 bis 255
skalieren
//zwecks Integera-
rithmetik

int factor1=
(int)((1.0f-

mix)*255.0f);
int factor2=

(int)(mix*255.0f);

for (int i=0; i<An-
zahlPixel;

i++)
{

unsigned long c1,
c2;

int r, g, b;

c1=source1[i];
c2=source2[i];

//Rot-, Grün- und
Blauwerte

//mischen
//Der Shift-Befehl „>>8“ am
//Zeilenende macht die
//Skalierung rückgängig
r=((c1>>16)*factor1+

(c2>>16)*factor2)>>8;

g=(((c1>>8)&255)*factor1+
((c2>>8)&255)*factor2)>>8;

b=((c1&255)*factor1+
(c2&255)*factor2)>>8;

//Und 16 Bit Wert auf den
//Bildschirm bringen
screen[i]=Rtab[r] |

Gtab[g] | Btab[b];
}

Eine Frage ist noch offen: Woher neh-
men Sie die vorberechneten Bilder? Die
in unserem Beispiel verwendeten Gra-
fikdateien haben wir mit dem frei erhält-
lichen POV-Raytracer Persistance of

ÜBERLAPPENDE LICHTSTRAHLEN erhalten durch additive

Mischung einen noch helleren Farbton.

DAS TITELBILD DES DISKMAGS HUGI kann

sich mit renommierten Modemagazinen

messen.

DIE GRAFISCHE OBERFLÄCHE VON HUGI
verzweigt in einen deutschen und einen

internationalen Teil.

