
212 September 1999 PC Magazin

P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R /
N I L S P I P E N B R I N C K

Musik aus dem Internet ist in:
MP3-Dateien genießen große
Popularität, ebenso Winamp,

der Player schlechthin für dieses Datei-
format. Dank verschiedener Skins (Er-
scheinungsbilder) können Sie das Aus-
sehen dieses Programms individuell an-
passen. Skins sind jedoch nicht der ein-
zige Weg, Winamp ganz nach Ihrem Ge-
schmack auszustatten. Sie können auch
Plugins laden, die zum Beispiel grafische
Effekte passend zur Musik zeigen. Da-
bei liefert Winamp alle Daten, das heißt
die aktuelle Ausgangsspannung des Ver-
stärkers und die Amplitude der Fre-
quenzspektren. Das Plugin muß sich nur
um die Darstellung kümmern.

Wie Sie solche Plugins ohne großen
Aufwand selbst schreiben, zeigen wir
Ihnen in dieser Ausgabe. Zuerst pro-
grammieren wir ein einfaches, aber ein-
drucksvolles Plugin unter DirectDraw.
Im zweiten Plugin kommt zusätzlich
OpenGL zum Einsatz.

■ Die Struktur eines Plugins
Die Visualisierungs-Plugins für
Winamp sind keine gewöhnlichen Pro-
gramme, sondern DLL-Dateien (Dyna-
mic Link Libraries). Deren Aufbau ist in
diesem Fall jedoch einfach. Jedes Plugin
kann aus mehreren Modulen bestehen,
wobei die Programmierer von Winamp
mit Modul einen Grafikeffekt meinen.

Um eine reibungslose Zusammenar-
beit mit dem MP3-Player zu gewährlei-
sten, füllen Sie für jedes dieser Module
eine Struktur aus. Darin steht der Name
des Moduls, welche Daten es braucht
und welche Routinen aufzurufen sind:

winampVisModule PCUModul =
{

PluginName, // Modul-Name
NULL, //* Fenster-Handle

// von Winamp
NULL, //* DLL Instance Handle

0, //* Sampling-Rate
0, //* Anzahl der Channels

// (1=Mono, 2=Stereo)
0, // Ausgabe-Latenz
0, // Verzögerung der

// Grafik-Ausgabe
0, // Keine Spektrum-Analy-

// ser-Daten anfordern
2, // Stereo-Waveform-Daten

// anfordern
{ 0, }, //* Spektrumdaten
{ 0, }, //* Waveform-Daten
config, // Konfigurations-

// Routine
init, // Initialisierungs-

// Routine
render, // Berechnungs-

// Routine
quit // Beendigungsroutine

};

Die mit einem Sternchen (*) im Kom-
mentar gekennzeichneten Felder füllt
Winamp aus. Um die übrigen kümmern
Sie sich selbst.

Wichtig sind vor allem die letzten vier
Felder mit den Programmroutinen.

Die config-Funktion wird aufgerufen,
wenn der Benutzer bei der Auswahl Ih-
res Plugins den Button Configure
drückt. Dort können Sie sich einen Dia-
log anzeigen lassen, über den der An-
wender die Effekte nach seinen Wün-
schen anpassen kann.

Das Beispiel-Plugin kommt ohne ei-
nen solchen Dialog aus, es zeigt hier statt
dessen eine kleine Infobox:

void config(struct
winampVisModule *this_mod)

{
MessageBox(this_mod->

hwndParent,
„PCU Winamp Plugin“,
„About“, MB_OK);

}

Als Parameter wird immer ein Zeiger auf
Ihre Modulstruktur übergeben. Dies
wird wichtig, wenn Sie in Ihrem Plugin
mehrere Module implementieren wol-
len, die alle den gleichen Konfigurati-
onsdialog oder die gleiche Initialisie-
rungs- und Beendigungsroutine benut-
zen.

Der Initialisierungscode
int init(struct

winampVisModule *this_mod)

wird gleich nach dem Start des Plugins
aufgerufen. Unser Plugin öffnet in dieser
Routine ein einfaches Fenster und star-
tet dann DirectDraw im Fullscreen-Mo-
dus.

Der Initialisierungscode ähnelt dem
aus der Grafikbibliothek, die Sie aus
früheren Ausgaben von PC Under-
ground kennen. Im Unterschied zur
Grafikbibliothek müssen Sie jetzt aber
nicht dafür sorgen, daß Ihre Berech-
nungsroutine regelmäßig aufgerufen
wird. Das erledigt Winamp für Sie.

Die Beendigungsroutine
void quit(struct

winampVisModule *this_mod)

ist das nötige Gegenstück zur init-Funk-
tion. Wenn das Plugin verlassen wird,
beendet diese Funktion DirectDraw
und schließt das erzeugte Fenster wie-
der.

Dazwischen erledigt die Render-Rou-
tine

int render(struct
winampVisModule *this_mod)

die eigentliche Arbeit. Während die Mu-
sik läuft, wird sie regelmäßig von
Winamp aus aufgerufen.

Demo-Programmierung unter Windows 95/98

Effektzauberei mit MP3
Für den weitverbreiteten MP3-Player Winamp schreiben Sie zwei Plugins
und lernen nebenbei noch ein wenig OpenGL.

SECHS MOMENTAUFNAHMEN des ersten

Winamp-Plugins zeigen farbenfrohe Zu-

fallsmuster.

PC Magazin September 1999 213

P C U N D E R G R O U N D
P R A X I S

Um Ihre Ideen zur Visualisierung in
Pixel umsetzen zu können, haben Sie
hier Zugriff auf einige interessante Da-
ten. Winamp füllt die Modulstruktur
mit den Informationen, die Sie angefor-
dert haben. So nutzen Sie entweder das
Frequenzspektrum der Musik oder die
Sample-Daten – oder auch beides gleich-
zeitig, wenn Sie möchten.

Im Array waveformData finden Sie
die jeweils aktuellen 576 Sample-Werte.
Diese können Sie zur Anzeige eines Os-
zilloskops verwenden. Das Array spec-
trumData hingegen enthält das aktuelle
Frequenzspektrum und ist ebenfalls 576
Einträge lang. Die Baßanteile befinden
sich dabei in den unteren Werten,
während die höchste Frequenz bei Ele-
ment 576 zu finden ist.

Da Sie möglicherweise Stereodaten
vorliegen haben, sind die Arrays zweidi-
mensional. Die Samples für den linken
Kanal finden Sie in waveformData[0][i],
die für den rechten in waveformDa-
ta[1][i]. Das gleiche gilt analog für das
Array spectrumData.

576 Sampling-Werte sind nicht beson-
ders viel. Bei einer Wiedergabefrequenz
von 44 100 Hz, die Sie bei CD-Qualität
erreichen, entsprechen die übergebenen
Werte einem Zeitfenster von etwa 13
Millisekunden. Daher sollte auch Ihr Ef-
fekt nicht viel Rechenzeit kosten.

Ist Ihre Rendering-Funktion zu lang-
sam, verpassen Sie einen Teil der Daten,
und Ihr Plugin verliert an Genauigkeit.
Dies ist zwar nicht sonderlich schlimm,
aber Ihr Plugin kann dabei einen Teil sei-
nes optischen Reizes verlieren.

■ Die Schnittstelle zu
Winamp
Jetzt informieren Sie Winamp darüber,
welche Module Sie in Ihrem Plugin pro-
grammiert haben. Dafür brauchen Sie
zwei Funktionen.
• getModule ist eine sogenannte Call-
back-Funktion. Winamp wird sie mehr-
fach aufrufen und die DLL fragen, wel-
che Module verfügbar sind. Da Sie zur
Zeit nur ein Modul haben, fällt sie rela-
tiv einfach aus:

winampVisModule
*getModule(int which)

{
switch (which)
{

case 0: return &PCUModul;
default: return NULL;

}
}

Möchten Sie ein zusätzliches Modul
programmieren, erweitern Sie lediglich

das switch-Statement um den Fall 1. Das
dritte Modul erhält die Nummer 2 usw.
• Die zweite Funktion ist sehr viel inte-
ressanter: Sie ist der Einsprungspunkt
der DLL. In etwa entspricht sie der
main()-Funktion eines normalen C-
Programms. Beim Laden von Winamp
werden auch alle installierten Plugins ge-
laden und diese Einsprungroutinen auf-
gerufen. Dabei geben diese den Namen
des Plugins, die Versionsnummer und
einen Pointer auf die getModule-Funk-
tion zurück. Winamp fragt dann Infor-
mationen über die Module ab und läßt
die Plugins bis zu ihrer Aktivierung erst
einmal ruhen.

extern „C“ __declspec(dllexport)
winampVisHeader
*winampVisGetHeader()

{
static winampVisHeader

PluginHeader;
//Felder der Header-
//Struktur ausfüllen
PluginHeader.description =

PluginName; // Name
PluginHeader.version =

VIS_HDRVER; // Version
PluginHeader.getModule =

getModule;
// getModule-Funktion
return &PluginHeader;

}

Damit Winamp diese Funktion in Ihrer
DLL findet, muß sie mit einem be-
stimmten Namen exportiert werden.
Die Anweisung extern „C“ sorgt dafür,
daß Ihr C++-Compi-
ler den Namen der
Funktion nicht än-
dert. Bei C++ ist es
nämlich in der Regel
so, daß die Parameter
und Rückgabetypen
in den internen Na-
men codiert werden.
Da es leider keinen
allgemeinen Standard
für diese Codierung
gibt, programmieren
Sie bei DLLs expor-
tierte Funktionen im
„C“-Standard.

Der Zusatz __decl-
spec(dllexport) sorgt schließlich dafür,
daß die Funktion in die sogenannte Ex-
porttabelle der DLL aufgenommen
wird. Lediglich exportierte Funktionen
sind von außen zu sehen. Sie können da-
bei auch mehr als eine Routine exportie-
ren.

Die Kommunikation zwischen den
Plugins und Winamp erscheint am An-
fang vielleicht etwas verwirrend – aber
wenn Sie sich damit etwas näher be-
schäftigen, werden Sie schnell die An-

nehmlichkeiten dieser Methode zu
schätzen wissen.

■ Ein erstes Plugin
Als Einstieg in die Plugin-Programmie-
rung wählen Sie zunächst einen einfa-
chen Effekt. Damit Sie dabei nicht auf
tolle optische Reize verzichten müssen,
wenden Sie die sogenannte Movelist-
Technik in einer verfeinerten Variante
an.

Bei Movelists legen Sie – wie der Na-
me schon sagt – eine Tabelle an, die für
jedes Pixel eine neue Position angibt.
Das ist noch nichts Neues. Daher erwei-
tern Sie die Movelist so, daß sie mit
höherer Genauigkeit arbeitet. Auch be-
nutzen Sie keine Textur, sondern wen-
den die Movelist immer auf das vorheri-
ge Bild an. Diese sehr beeindruckenden
Effekte, bei denen ein Ergebnis wieder in
die Berechnung des nächsten einfließt,
nennt man Feedbacks.

Für jeden Punkt auf dem Bildschirm
brauchen Sie zwei Tabelleneinträge, die
angeben, von welcher Position der
Punkt kopiert werden soll. Wegen der
erhöhten Genauigkeit speichern Sie die-
sen Wert in einem 32-Bit-Integer-Wert.
Die oberen 16 Bit geben direkt einen Teil
der Koordinate an, während die unteren
16 Bit festlegen, an welcher Position
„zwischen“ den Pixeln kopiert werden

soll. Sie können natürlich nicht zwi-
schen zwei Speicherstellen lesen, des-
halb simulieren Sie dies mit Hilfe der bi-
linearen Interpolation.

Im Movelist-Array werden x- und y-
Koordinate jeweils nacheinander abge-
legt. Das ist sinnvoll, da Sie beide Koor-
dinaten benötigen und alle Punkte des
Bilds nacheinander berechnen. Der
leicht vereinfachte Code zum Zeichnen
des Feedbacks sieht so aus:

int lerp (int a, int b, int x) q

MEHRERE HINTEREINANDERGESCHALTETE Transformationen

bilden einen Punkt von 3D nach 2D ab.

214 September 1999 PC Magazin

P C U N D E R G R O U N D
P R A X I S

// Lineare 16-Bit Interpolation
{

return a + (((b-a)*x)>16);
}

Zunächst erfolgt die lineare Interpolati-
on zweier Werte a und b. Die Funktion
lerp liefert einen Wert zwischen a und b
zurück. Wo genau das Ergebnis liegt,
hängt von dem Wert x ab. Ist x gleich 0,
bekommen Sie a. Ist x gleich 65 536, er-
halten Sie b zurück. Alle anderen Bele-
gungen von x liefern Werte zwischen a
und b.

long * source = movelist1;
for (int i=0; i<width*height;

i++)
{

int x = *source++;
int y = *source++;
int offset = (x>16)+

width*(y>16);

int a = lerp(buffer1[offset],
buffer1[offset+1],x&0xffff);

int b = lerp(buffer1[offset+
width],buffer1[offset+1+
width],x&0xffff);

buffer2[i] = lerp (a,b,
y&0xffff);

}

Dies ist die Hauptschleife des Movelist-
Feedbacks. Darin lesen Sie zunächst die
Quellkoordinaten x und y aus der
Movelist aus. Die Pixeladresse offset be-
rechnen Sie aus den oberen 16 Bit der
Koordinaten.

Dann interpolieren Sie zwischen den
Pixeln des Bilds in buffer1. Da Sie eine
zweidimensionale bilineare Interpolati-
on brauchen, rufen Sie die lerp-Funkti-
on mehrfach auf. Das interpolierte Er-
gebnis schreiben Sie schließlich in das
neue Bild bei buffer2.

Mit diesen wenigen Zeilen Code kön-
nen Sie jetzt Bilder um Bruchteile von
Pixeln verschieben, drehen, verzerren,
vergrößern und stauchen. Das Resultat
hängt nur davon ab, was Sie in Ihre
Movelist schreiben.

■ Die Effekt-Movelist
Bei Feedbacks sollten Sie die Bewegung
nicht zu schnell laufen lassen. Nur so
kommt der Effekt voll zur Geltung. Als
kleine Anregung hier eine kombinierte
Rotation und Vergrößerung:

double sinval=sin(0.01)*1.01;
double cosval=cos(0.01)*1.01;

Hier berechnen Sie die Rotationswerte
vor. Der Winkel beträgt 0,01 rad, was in
etwa 0,6 Grad entspricht. Die Multipli-
kation mit 1,01 sorgt für einen Zoom-
Wert von einem Prozent.

long * dest = movelist1;
for (int py=0; py<height; py++)
for (int px=0; px<width; px++)
{

double x = (double)

(px-(width/2))/(width/2);
double y = (double)
(line-(height/2))/(height/2);

Diese Zeilen skalieren die Koordinaten
px und py in den Bereich von -1 bis 1.
Dadurch werden die Berechnungen un-
abhängig von der Breite und Höhe der
Movelist.

double xx = x * cosval -
y * sinval + 1.0;

double yy = y * cosval +
x * sinval + 1.0;

xx = Clamp(xx*width /2.0,
width-1, 1);

yy = Clamp(yy*height/2.0,
height-1, 1);

Der Punkt wird nun mit den vorberech-
neten Werten xx und yy rotiert und da-
nach wieder auf Bildgröße skaliert. Die
Funktion Clamp sorgt dafür, daß die ro-
tierten Werte nicht den Bildbereich ver-
lassen. Sonst würde Ihre Feedback-Rou-
tine beim Auslesen der Pixel unweiger-
lich abstürzen.

*dest++=(long)(xx*65536.0);
*dest++=(long)(yy*65536.0);

}

Zuletzt schreiben Sie die Koordinaten in
die Movelist. Zuerst kommt die x-, dann
die y-Koordinate. Die Multiplikation
mit der Konstanten 65 536 sorgt für die
Aufteilung in eine 16-Bit-Koordinate
und in eine 16-Bit-Subkoordinate. Das
Schreiben der Koordinaten mit dem Be-

fehl *dest++= sieht etwas ungewöhnlich
aus. Es funktioniert, weil dest ein Poin-
ter ist. Nachdem der Wert an die ent-
sprechende Adresse geschrieben wurde,
erhöht die Operation ++ den Pointer,
der dann auf das nächste Element zeigt.
Bei dieser Vorgehensweise sparen Sie
eine Variable, und der Compiler kann
möglicherweise effizienteren Code er-
zeugen.

Im Beispielcode haben wir noch etwas
mehr Aufwand getrieben, um den Effekt
wilder zu gestalten. Wie Sie bemerken
werden, haben wir einfach mehrere Ro-
tationen übereinandergelegt.

Wenn Sie Ihr Plugin so starten, sehen
Sie noch nichts. Denn es fehlt noch der
Code, der die Sample- oder Spektrum-
daten benutzt, um dem Feedback
brauchbare Bilder zu liefern. Zeichnen
Sie einfach die Samples als Wellenform
im Kreis über das aktuelle Bild. Dies
können Sie ähnlich wie die Funktion
Movelist_Draw() machen.

Wir haben es uns nicht nehmen lassen,
noch einige Extras in das Plugin einzu-
bauen. So können Sie das Aussehen mit
den Cursor-Tasten verändern. Das Bild
auf S. 212 zeigt einige psychedelisch wir-
kende Schnappschüsse des Plugins.

■ Einführung in OpenGL
OpenGL (Open Graphics Library) ist
ein Standard der Computerindustrie für
3D-Grafik. Er stammt ursprünglich von
der internen Grafikbibliothek von Sili-
con Graphics (SGI) und wird jetzt von
SGI, Microsoft, IBM, Intel und DEC
weiterentwickelt. Die Vorteile von
OpenGL sind die genaue Spezifikation
des Standards – er arbeitet gleicher-
maßen unter Betriebssystemen wie
Windows, Unix sowie Linux – und die
Unterstützung durch 3D-Hardware.

Es ist ganz einfach, mit OpenGL be-
eindruckende 3D-Grafiken zu pro- q

Da es sich bei den Plugins um keine exe-

Dateien handelt, weicht der Kompilier-

vorgang etwas von der üblichen Vorge-

hensweise ab. Je nachdem, welchen Com-

piler Sie benutzen, sind einige Änderun-

gen nötig.

Oftmals genügt es, bei den Linker-Einstel-

lungen als Zieldatei den Typ DLL statt EXE
auszuwählen. Benutzer von Watcom C++

müssen wir diesmal leider enttäuschen:

Der Compiler ließ sich bei unseren Tests

nicht dazu bewegen, funktionierende

Plugins zu liefern. Da die Beispielcodes Di-

rectDraw benutzen, müssen Sie auch die

Bibliotheken ddraw.lib und dxguid.lib mit

einbinden.

Die erzeugten DLLs müssen alle mit dem

Namen vis_ beginnen. Winamp sucht nur

nach Plugin-Dateien, die dieser Konventi-

on entsprechen.

Um das Plugin zu installieren, kopieren Sie

es lediglich in das Plugin-Verzeichnis in-

nerhalb der Winamp-Installation. Über

die Tastenkombination [Umschalt fest-
Strg-K] wählen Sie ein Plugin und starten

es.

KOMPILIEREN UND INSTALLIEREN

DAS ZWEITE PLUGIN VERWENDET ver-

schiedene Polygon-Primitive, hier mit

ihren Bezeichnungen in OpenGL.

218 September 1999 PC Magazin

P C U N D E R G R O U N D
P R A X I S

grammieren. Dabei lernen Sie die Funk-
tionen kennen, die Sie für ein Winamp-
Plugin brauchen.

OpenGL stellt Ihnen Funktionen
zum Zeichnen von Primitiven, also von
Punkten, Linien und Polygonen, zur
Verfügung. Es gibt auch Support-Routi-
nen, mit denen Sie Kurven, Bézier-
Oberflächen oder Text darstellen kön-
nen. Die Polygonprimitive können Sie
dabei mit Texture Mapping und Schat-
tierung ausstatten.

Sobald Sie eine 3D-Szene aus Primiti-
ven aufgebaut haben, definieren Sie Be-
leuchtungseffekte, das Blickfeld und
Spezialeffekte wie Nebel oder Transpa-
renz. OpenGL erledigt dann den Rest für
Sie: die Schattierung, das perspektivische
Rendering, das „Wegwerfen“ der nicht
sichtbaren Polygone (Hidden Surface
Removal) und das Clipping. Wenn Sie
das Blickfeld oder die Beleuchtung än-
dern oder die definierten Objekte bewe-
gen, berechnet OpenGL alles für Sie neu.

OpenGL ist als eine sogenannte State
Machine implementiert: Das heißt, daß
ein festgelegter Zustand (zum Beispiel
eine Farbe) so lange aktuell ist, bis Sie ihn
wieder ändern. Solange also beispiels-
weise die aktuelle Zeichenfarbe Rot ist,
erhalten alle definierten Primitive diese
gesetzte Farbe. Zudem ist OpenGL da-
für konzipiert, in einem Client-Server-
Modell zu arbeiten. Client und Server
können natürlich auch in einem Rechner
vereint sein, so wie es bei uns der Fall ist.

■ OpenGL-
Programmierung
Zuerst einmal bringen Sie OpenGL da-
zu, in ein Windows-Fenster zu rendern.
Da OpenGL plattformunabhängig ist,
stellt Microsoft die Befehle dazu zur
Verfügung. Dabei registrieren Sie wie
bei einem normalen Windows-Pro-
gramm eine Fensterklasse, öffnen ein
Fenster und erzeugen mit folgenden Be-
fehlen einen sogenannten OpenGL-
Kontext:

// Pixelformat des Windows-
// Bildschirms lesen
int FormatIndex =

ChoosePixelFormat(
WindowDC,&FormatDescriptor);

SetPixelFormat(WindowDC,
FormatIndex,&FormatDescriptor);

// OpenGL Kontext erzeugen
WindowRC =

wglCreateContext(WindowDC);
wglMakeCurrent(WindowDC,

WindowRC);

Das ist schon alles. Diese Zeilen dienen
nur als Beispiel, die vollständige Routi-

ne finden Sie im Quelltext des OpenGL-
Plugins.

Nun können Sie schon mit der Be-
schreibung der 3D-Szene beginnen. Im
Bild auf S. 213 sehen Sie, welche Trans-
formationen ein Punkt im Raum – gege-
ben durch (x,y,z) – durchläuft, bis er die
Bildschirmkoordinaten (x,y) erhält. Be-
achten Sie dabei, daß x und y im Raum
und im Fenster verschieden sind.

Alle Transformationen in OpenGL
beschreiben Sie mit Matrizen. Sie kön-
nen Ihr Mathematikbuch aber ruhig in
der Ecke lassen, denn Matrizen werden
hier abstrakt behandelt.

Stellen Sie sich eine
Matrix einfach als ein
mathematisches Ge-
bilde vor, das eine
Verschiebung, Dre-
hung oder Skalierung
darstellt. Verschiede-
ne Matrizen können
Sie aufeinander an-
wenden und so eine
einzige Matrix er-
rechnen, die alle dabei
durchgeführten
Transformationen
enthält.

Für das OpenGL-
Plugin beschreiben
Sie zunächst eine Pro-
jektionsmatrix, die
sowohl die Perspek-
tiv- als auch die Viewport-Transforma-
tion beschreibt. Bei der Perspektivpro-
jektion kann es sich zum Beispiel um ei-
ne Zentral- oder Orthogonalprojektion
handeln. Mit der Bezeichnung Viewport
ist das Fenster gemeint – die entspre-
chende Transformation bildet also die
einzelnen Punkte auf die Bildebene ab.

Die in dieser Matrix gespeicherten
Transformationen stellen quasi das Ka-
meramodell dar. Nun teilen Sie
OpenGL mit, daß Sie die Projektions-
matrix bearbeiten möchten:

glMatrixMode(GL_PROJECTION);

Danach laden Sie die Einheitsmatrix, das
neutrale Element beim Arbeiten mit Ma-
trizen:

glLoadIdentity();

Egal, ob Sie diese Matrix auf eine andere
Matrix oder einen Vektor anwenden, Sie
erhalten als Ergebnis immer wieder den
unveränderten Operanden zurück.

Die Kamera- bzw. die Perspektiv-
und die Viewport-Transformation legen
Sie am einfachsten mit einem Befehl aus
der Glut Library fest. Dabei handelt es
sich um eine Sammlung von Highlevel-

Befehlen, die sehr komfortable
OpenGL-Funktionen enthalten.

gluPerspective(45.0f,1.33f,
1.0f,1000.0f);

glViewport(0,0,
SCREEN_X,SCREEN_Y);

Die erste Zeile definiert eine Kamera mit
einem Öffnungswinkel von 45 Grad.
Der zweite Parameter der Funktion glu-
Perspective beschreibt den Aspect-Ra-
tio-Wert, also das Verhältnis von der
Breite zur Höhe des Bildschirms. Zu-
letzt übergeben Sie noch die gewünsch-
ten Entfernungs-Clipping-Ebenen mit
Abstandswerten von 1 und 1000.

Dank des folgenden Befehls glView-
port weiß OpenGL, wie groß das Fen-
ster ist. Jetzt verschaffen Sie der Kamera
noch etwas Abstand von der Projekti-
onsebene, auf die die Primitive projiziert
werden:

glTranslatef(0.0f,0.0f,-30.0f);

Das war die Definition der Kamera.
Es gibt noch ein paar zusätzliche Ini-

tialisierungsaufrufe, die Sie einmalig
beim Start des Programms einsetzen:

// Hintergrundfarbe
glClearColor(0.0f,0.0f,

0.0f,0.0f);

// Flatshading, d.h. ein Hellig-
// keitswert pro Polygon
glShadeModel(GL_FLAT);

// Z-Buffer-Vergleichsfunktion
glDepthFunc(GL_LEQUAL);

Nun legen Sie die Objekte der Szenerie
fest. Dazu wählen Sie die Modelview-
Matrix, die die Bewegung und Drehung
eines Objektes bestimmt. Danach laden
Sie wieder die Identität, also die Ein-
heitsmatrix:

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

EINE STIMMUNGSVOLLE UND DIFFUSE BELEUCHTUNG sorgt

beim zweiten Plugin für glitzernde Lichteffekte.

PC Magazin September 1999 219

P C U N D E R G R O U N D
P R A X I S

Für eine Verschiebung, Skalierung oder
Drehung stehen dann folgende drei Be-
fehle zur Verfügung:

glTranslatef(float x,float y,
float z)

glScalef(float x,float y,
float z)

glRotatef(float drehwinkel,
float achse_x,float achse_y,
float achse_z)

Dabei spielt die Reihenfolge der Trans-
formationen durchaus eine Rolle: Je
nachdem, ob Sie ein Objekt zum Bei-
spiel vor oder nach einer Drehung ver-
schieben, erhalten Sie ein anderes Ergeb-
nis.

Nachdem Sie die Transformation fest-
gelegt haben, übermitteln Sie die Poly-
gon-Primitive, aus denen Sie Ihre Ob-
jekte zusammensetzen, an OpenGL. Ei-
ne Übersicht der in diesem Artikel ver-
wendeten Primitive zeigt das Bild auf S.
214. Die Zahlen an den Eckpunkten
deuten die Reihenfolge an, in der Sie die
Punkte übergeben, um die Primitive zu
zeichnen.

Ein Primitiv wie ein Dreieck beginnen
Sie mit dem Befehl:

glBegin(GL_TRIANGLE);

Bevor Sie die Eckpunkte übergeben,
wählen Sie noch die Farben, Ober-
flächennormalen und Texture-Map-
ping-Koordinaten aus. Denken Sie dar-
an, daß Sie es mit einer State Machine zu
tun haben – alle Zustände wie Farben,
Normalen und Koordinaten gelten für
alle Eckpunkte, solange Sie sie nicht än-
dern:

glNormal3f(0,-1,0);
glTexCoord2d(0.0,0.0);
glVertex3f(1.0,2.0,1.0);
glTexCoord2d(1.0,0.0);
glVertex3f(3.0,2.0,1.0);
glTexCoord2d(1.0,1.0);
glVertex3f(1.0,1.0,0.0);
glEnd();

Bei den Primitiven, die eine unbestimm-
te Anzahl von Eckpunkten (Vertices)
enthalten können, übergeben Sie so vie-
le Punkte, wie Sie wollen.

■ Texture Mapping
in OpenGL
Um Ihre Objekte mit Texturen zu ver-
sehen, genügen in OpenGL wenige Pro-
grammzeilen. Aktivieren Sie mit dem
Befehl glEnable das Texture Mapping.
Dann legen Sie fest, daß Texture-Map-
ping-Koordinaten größer als 1,0 eine
Wiederholung (Kachelung) der Textur
bedeuten:

glEnable(GL_TEXTURE_2D);
glTexParameterf(GL_TEXTURE_2D,

GL_TEXTURE_WRAP_S,GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D,

GL_TEXTURE_WRAP_T,GL_REPEAT);

Wählen Sie über eine Nummer die Tex-
tur aus, deren Zustand Sie verändern
möchten:

glBindTexture(GL_TEXTURE_2D,
int Nummer);

Bei einer Größenänderung kann
OpenGL die Textur entweder per bili-
nearer Interpolation oder per Mipmap-
ping anpassen. Wie sich das Texture
Mapping hier verhalten soll, wählen Sie
– jeweils separat für die Vergrößerung
und die Verkleinerung – über das Kom-
mando glTexParameteri.

Danach übergeben Sie der Funktion
glTexImage2D die Texturdaten:

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MIN_FILTER,
minFilter);

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MAG_FILTER,
maxFilter);

void glTexImage2D(GL_TEXTURE_2D,
0,4,256,256,0, GL_BGRA_EXT ,
GL_UNSIGNED_BYTE,
void *texturedaten);

In diesem Beispiel übergeben Sie eine
256 x 256 Pixel große Textur mit 4 Byte
Farbtiefe, wobei die Konstante
GL_BGRA_EXT jeweils 8 Bit für den
Blau-, Rot-, Grün- und den Alphakanal
reserviert. Der Zeiger texturedaten ver-
weist auf die geladene Textur im Speicher.

Das war schon alles, um OpenGL
Texturen zu entlocken. Doch im Mo-
ment sehen diese Texturen noch sehr
blaß aus...

■ Lichtquellen in OpenGL
Die richtige Beleuchtung nimmt ent-
scheidenden Einfluß auf die Wirkung
einer Szene. In OpenGL legen Sie
zunächst fest, wie die Oberflächen auf
die Lichtquelle reagieren sollen. Zum
Beispiel können Sie für die Vordersei-
ten der Polygone eine stimmungsvolle
und diffuse Beleuchtung einschalten.
Die Vorder- und Rückseite bestimmen
Sie durch die Reihenfolge der Eck-
punkte – sind diese im Uhrzeigersinn
angeordnet, sehen Sie das Polygon von
vorne.

Mit glEnable aktivieren Sie die Be-
leuchtungsberechnung:

glEnable(GL_LIGHTING);
GLfloat Intensität[4]=

{1.0,1.0,1.0,1.0};
glMaterialfv(GL_FRONT,

GL_AMBIENT_AND_DIFFUSE,
Intensität);

Wählen Sie nun eine Lichtquelle.
OpenGL stellt Ihnen dabei – je nach Im-
plementierung – mindestens acht ver-

schiedene zur Verfügung. Danach legen
Sie die Lichtfarbe sowie die Position und
Richtung des Lichts fest:

glEnable(GL_LIGHT0);
GLfloat light_diffuse[]=

{1.0,1.0,1.0,1.0};
GLfloat light_ambient[]=

{0.1,0.1,0.1,1.0};

glLightfv(GL_LIGHT0,
GL_AMBIENT,light_ambient);

glLightfv(GL_LIGHT0,
GL_DIFFUSE,light_diffuse);

glLightfv(GL_LIGHT0,
GL_POSITION,
light_position);

glLightfv(GL_LIGHT0,
GL_SPOT_DIRECTION,
light_direction);

Das ist alles, was Sie für ein respektables
OpenGL-Programm benötigen. Das
Bild auf S. 218 zeigt das fertige Plugin im
Einsatz.

Am besten experimentieren Sie ein
bißchen mit dem Quellcode und verän-
dern ein paar Parameter. So bekommen
Sie mehr Gefühl für die Wahl der pas-
senden Transformationsmatrix und für
eine optimale Beleuchtung.

Möchten Sie sich in OpenGL vertie-
fen, lohnt sich ein Besuch der Homepage
von Silicon Graphics unter

www.sgi.com

Hier stoßen Sie auf jede Menge Source-
codes, Tips und Tutorials. So zum Bei-
spiel auch auf der Seite des Silicon-Gra-
phics-Mitarbeiters Mark Kilgard:

http://reality.sgi.com/mjk/tips

Wenn Sie die Plugins ausprobieren wol-
len, kopieren Sie die jeweilige DLL-Da-
tei und für das OpenGL-Programm
noch die raw- und tga-Dateien in das
Unterverzeichnis Plugin von Winamp.
Die aktuelle Version des MP3-Players
Winamp erhalten Sie unter

www.winamp.com

Dort finden Sie auch verschiedene Be-
nutzeroberflächen in unterschiedlichem
Design und viele Plugins. s P E I

Die Quelltexte sowie die fertig übersetzten
Winamp-Plugins finden Sie zusammen mit der zu-
grundeliegenden Grafikbibliothek auf unserer
Heft-CD im Verzeichnis praxis\pc-under und im In-
ternet-Angebot des PC Magazin unter

www.pc-magazin.de/magazin/
➥extras.htm

Klicken Sie unter Online Extras im Menü Praxis auf
das entsprechende Download-Feld.

Literatur: Jackie Neider, Tom Davis und Mason
Woo: OpenGL Programming Guide - The Official
Guide to Learning, Addison-Wesley-Verlag, 47 US-
Dollar, ISBN 0-2014-6138-2. Eine Online-Ausgabe
dieser OpenGL-Einführung finden Sie unter:

http://ask.ii.uib.no/ebt-bin/
➥nph-dweb/SGI_Developer/OpenGL
➥_PG/@Generic_BookView

