3£

PC UNDERGROUND

PRAXIS

&1

b 2
Demo-Programmierung unter Windows __%}5/!98 g—

mit MP3

Fur den weitverbreiteten MP3-Player Winamp schreiben Sie
und lernen nebenbei noch ein wenig OpenGL.

CARSTEN DACHSBACHER/
NILS PIPENBRINCK

usik aus dem Internet ist in:
MP3-Dateien genieflen grofie
Popularitit, ebenso Winamp,

der Player schlechthin fir dieses Datei-
format. Dank verschiedener Skins (Er-
scheinungsbilder) konnen Sie das Aus-
sehen dieses Programms individuell an-
passen. Skins sind jedoch nicht der ein-
zige Weg, Winamp ganz nach Ihrem Ge-
schmack auszustatten. Sie konnen auch
Plugins laden, die zum Beispiel grafische
Effekte passend zur Musik zeigen. Da-
bei liefert Winamp alle Daten, das heif3t
die aktuelle Ausgangsspannung des Ver-
starkers und die Amplitude der Fre-
quenzspektren. Das Plugin mufi sich nur
um die Darstellung kiimmern.

Wie Sie solche Plugins ohne grofien
Aufwand selbst schreiben, zeigen wir
Ihnen in dieser Ausgabe. Zuerst pro-
grammieren wir ein einfaches, aber ein-
drucksvolles Plugin unter DirectDraw.
Im zweiten Plugin kommt zusitzlich
OpenGL zum Einsatz.

Die Visualisierungs-Plugins fiir
Winamp sind keine gewohnlichen Pro-
gramme, sondern DLL-Dateien (Dyna-
mic Link Libraries). Deren Aufbau ist in
diesem Fall jedoch einfach. Jedes Plugin
kann aus mehreren Modulen bestehen,
wobei die Programmierer von Winamp
mit Modul einen Grafikeffekt meinen.
Um eine reibungslose Zusammenar-
beit mit dem MP3-Player zu gewihrlei-
sten, fullen Sie fir jedes dieser Module
eine Struktur aus. Darin steht der Name
des Moduls, welche Daten es braucht
und welche Routinen aufzurufen sind:

winampVisModule PCUModul =

PluginName, // Modul-Name
NULL, //* Fenster-Handle

/I von Winamp
NULL, //* DLL Instance Handle

212 September 1999 PC Magazin

0, //* Sampling-Rate
0, //* Anzahl der Channels
/I (1=Mono, 2=Stereo)
0, // Ausgabe-Latenz
0, // Verzégerung der
/I Grafik-Ausgabe
0, /I Keine Spektrum-Analy-
/I ser-Daten anfordern
2, Il Stereo-Waveform-Daten
/I anfordern
{0, }, II* Spektrumdaten
{0, }, II* Waveform-Daten
config, // Konfigurations-

/I Routine
init, // Initialisierungs-

/I Routine
render, // Berechnungs-

/I Routine
quit // Beendigungsroutine

h
Die mit einem Sternchen (*) im Kom-
mentar gekennzeichneten Felder fullt
Winamp aus. Um die tibrigen kiimmern
Sie sich selbst.

SECHS MOMENTAUFNAHMEN des ersten
Winamp-Plugins zeigen farbenfrohe Zu-
fallsmuster.

Wichtig sind vor allem die letzten vier
Felder mit den Programmroutinen.

Die config-Funktion wird aufgerufen,
wenn der Benutzer bei der Auswahl Th-
res Plugins den Button Configure
driickt. Dort konnen Sie sich einen Dia-
log anzeigen lassen, uber den der An-
wender die Effekte nach seinen Wiin-
schen anpassen kann.

Das Beispiel-Plugin kommt ohne ei-
nen solchen Dialog aus, es zeigt hier statt
dessen eine kleine Infobox:

void config(struct
winampVisModule *this_mod)

MessageBox(this_mod->
hwndParent,
,PCU Winamp Plugin®,
LAbout*, MB_OK);
}

Als Parameter wird immer ein Zeiger auf
Thre Modulstruktur iibergeben. Dies
wird wichtig, wenn Sie in Threm Plugin
mehrere Module implementieren wol-
len, die alle den gleichen Konfigurati-
onsdialog oder die gleiche Initialisie-
rungs- und Beendigungsroutine benut-
zen.

Der Initialisierungscode

int init(struct

winampVisModule *this_mod)
wird gleich nach dem Start des Plugins
aufgerufen. Unser Plugin 6ffnet in dieser
Routine ein einfaches Fenster und star-
tet dann DirectDraw im Fullscreen-Mo-
dus.

Der Initialisierungscode dhnelt dem
aus der Grafikbibliothek, die Sie aus
friheren Ausgaben von PC Under-
ground kennen. Im Unterschied zur
Grafikbibliothek miissen Sie jetzt aber
nicht dafiir sorgen, daf} Thre Berech-
nungsroutine regelmaflig aufgerufen
wird. Das erledigt Winamp fiir Sie.

Die Beendigungsroutine

void quit(struct

winampVisModule *this_mod)
ist das notige Gegenstlick zur init-Funk-
tion. Wenn das Plugin verlassen wird,
beendet diese Funktion DirectDraw
und schliefft das erzeugte Fenster wie-
der.

Dazwischen erledigt die Render-Rou-
tine

int render(struct

winampVisModule *this_mod)
die eigentliche Arbeit. Wahrend die Mu-
sik lauft, wird sie regelmiflig von
Winamp aus aufgerufen.

Um Ihre Ideen zur Visualisierung in
Pixel umsetzen zu konnen, haben Sie
hier Zugriff auf einige interessante Da-
ten. Winamp fillt die Modulstruktur
mit den Informationen, die Sie angefor-
dert haben. So nutzen Sie entweder das
Frequenzspektrum der Musik oder die
Sample-Daten — oder auch beides gleich-
zeitig, wenn Sie mochten.

Im Array waveformData finden Sie
die jeweils aktuellen 576 Sample-Werte.
Diese konnen Sie zur Anzeige eines Os-
zilloskops verwenden. Das Array spec-
trumData hingegen enthilt das aktuelle
Frequenzspektrum und ist ebenfalls 576
Eintrige lang. Die Baflanteile befinden
sich dabei in den unteren Werten,
wihrend die hochste Frequenz bei Ele-
ment 576 zu finden ist.

Da Sie moglicherweise Stereodaten
vorliegen haben, sind die Arrays zweidi-
mensional. Die Samples fiir den linken
Kanal finden Sie in waveformData[0][i],
die fir den rechten in waveformDa-
ta[1][i]. Das gleiche gilt analog fir das
Array spectrumData.

576 Sampling-Werte sind nicht beson-
ders viel. Bei einer Wiedergabefrequenz
von 44 100 Hz, die Sie bei CD-Qualitit
erreichen, entsprechen die tibergebenen
Werte einem Zeitfenster von etwa 13
Millisekunden. Daher sollte auch Ihr Ef-
fekt nicht viel Rechenzeit kosten.

Ist Ihre Rendering-Funktion zu lang-
sam, verpassen Sie einen Teil der Daten,
und Thr Plugin verliert an Genauigkeit.
Dies ist zwar nicht sonderlich schlimm,
aber Thr Plugin kann dabei einen Teil sei-
nes optischen Reizes verlieren.

Jetzt informieren Sie Winamp dartber,
welche Module Sie in Threm Plugin pro-
grammiert haben. Dafiir brauchen Sie
zwei Funktionen.

¢ getModule ist eine sogenannte Call-
back-Funktion. Winamp wird sie mehr-
fach aufrufen und die DLL fragen, wel-
che Module verfiighar sind. Da Sie zur
Zeit nur ein Modul haben, fillt sie rela-
tiv einfach aus:

winampVisModule
*getModule(int which)

switch (which)

case 0: return &PCUModul;
default: return NULL;
}
}

Mochten Sie ein zusitzliches Modul
programmieren, erweitern Sie lediglich

das switch-Statement um den Fall 1. Das
dritte Modul erhilt die Nummer 2 usw.
¢ Die zweite Funktion ist sehr viel inte-
ressanter: Sie ist der Einsprungspunkt
der DLL. In etwa entspricht sie der
main()-Funktion eines normalen C-
Programms. Beim Laden von Winamp
werden auch alle installierten Plugins ge-
laden und diese Einsprungroutinen auf-
gerufen. Dabei geben diese den Namen
des Plugins, die Versionsnummer und
einen Pointer auf die getModule-Funk-
tion zurlick. Winamp fragt dann Infor-
mationen iiber die Module ab und laft
die Plugins bis zu ihrer Aktivierung erst
einmal ruhen.

extern ,C“ __declspec(dllexport)
winampVisHeader
*winampVisGetHeader()

static winampVisHeader
PluginHeader;

//Felder der Header-

//Struktur ausfillen

PluginHeader.description =
PluginName; // Name

PluginHeader.version =
VIS_HDRVER; // Version

PluginHeader.getModule =
getModule;

/I getModule-Funktion

return &PluginHeader;

}
Damit Winamp diese Funktion in Threr
DLL findet, muff sie mit einem be-
stimmten Namen exportiert werden.

Die Anweisung extern ,,C* sorgt dafiir,
dafl Thr C++-Compi-

PC UNDERGROUND
PRAXIS

nehmlichkeiten dieser Methode zu

schitzen wissen.

Als Einstieg in die Plugin-Programmie-
rung wihlen Sie zunichst einen einfa-
chen Effekt. Damit Sie dabei nicht auf
tolle optische Reize verzichten miissen,
wenden Sie die sogenannte Movelist-
Technik in einer verfeinerten Variante
an.

Bei Movelists legen Sie — wie der Na-
me schon sagt — eine Tabelle an, die fir
jedes Pixel eine neue Position angibt.
Das ist noch nichts Neues. Daher erwei-
tern Sie die Movelist so, dafl sie mit
hoherer Genauigkeit arbeitet. Auch be-
nutzen Sie keine Textur, sondern wen-
den die Movelist immer auf das vorheri-
ge Bild an. Diese sehr beeindruckenden
Effekte, bei denen ein Ergebnis wieder in
die Berechnung des nichsten einfliefit,
nennt man Feedbacks.

Fur jeden Punkt auf dem Bildschirm
brauchen Sie zwei Tabelleneintrige, die
angeben, von welcher Position der
Punkt kopiert werden soll. Wegen der
erhohten Genauigkeit speichern Sie die-
sen Wert in einem 32-Bit-Integer-Wert.
Die oberen 16 Bit geben direkt einen Teil
der Koordinate an, wihrend die unteren
16 Bit festlegen, an welcher Position
»zwischen“ den Pixeln kopiert werden

ler den Namen der

Funktion nicht in- 3D

dert. Bei C++ ist es H_,
namlich in der Regel z

s0, daf} die Parameter

und Ruckgabetypen

in den internen Na-

men codiert werden.

Da es leider keinen Fenster
allgemeinen Standard {ﬂ -
fiur diese Codierung

gibt, programmieren

Proje
m

Pers

ofl

-

Trans Tran

Sie bei DLLs expor-
tierte Funktionen im
,C“-Standard.

Der Zusatz __decl-
spec(dllexport) sorgt schliefflich dafiir,
dafl die Funktion in die sogenannte Ex-
porttabelle der DLL aufgenommen
wird. Lediglich exportierte Funktionen
sind von auflen zu sehen. Sie konnen da-
bei auch mehr als eine Routine exportie-
ren.

Die Kommunikation zwischen den
Plugins und Winamp erscheint am An-
fang vielleicht etwas verwirrend — aber
wenn Sie sich damit etwas ndher be-
schiftigen, werden Sie schnell die An-

MEHRERE HINTEREINANDERGESCHALTETE Transformationen
bilden einen Punkt von 3D nach 2D ab.

soll. Sie konnen natiirlich nicht zwi-
schen zwei Speicherstellen lesen, des-
halb simulieren Sie dies mit Hilfe der bi-
linearen Interpolation.

Im Movelist-Array werden x- und y-
Koordinate jeweils nacheinander abge-
legt. Das ist sinnvoll, da Sie beide Koor-
dinaten bendtigen und alle Punkte des
Bilds nacheinander berechnen. Der
leicht vereinfachte Code zum Zeichnen
des Feedbacks sieht so aus:

int lerp (int a, int b, int x) ()

PC Magazin September 1999 213

£l

)

PC UNDERGROUND
PRAXIS

/I Lineare 16-Bit Interpolation

return a + (((b-a)*x)>16);

Zunichst erfolgt die lineare Interpolati-
on zweier Werte a und b. Die Funktion
lerp liefert einen Wert zwischen a und b
zurlick. Wo genau das Ergebnis liegt,
hingt von dem Wert x ab. Ist x gleich 0,
bekommen Sie a. Ist x gleich 65 536, er-
halten Sie b zuriick. Alle anderen Bele-
gungen von X liefern Werte zwischen a
und b.

long * source = movelistl;
for (int i=0; i<width*height;
i++)
{
int x = *source++;
inty =*source++;
int offset = (x>16)+
width*(y>16);

int a = lerp(bufferl[offset],
bufferl[offset+1],x&O0xffff);

int b = lerp(bufferl[offset+
width],bufferl[offset+1+
width],x&O0xffff);

buffer2[i] = lerp (a,b,
y&Oxffff);

Dies ist die Hauptschleife des Movelist-
Feedbacks. Darin lesen Sie zunichst die
Quellkoordinaten x und y aus der
Movelist aus. Die Pixeladresse offset be-
rechnen Sie aus den oberen 16 Bit der
Koordinaten.

Dann interpolieren Sie zwischen den
Pixeln des Bilds in bufferl. Da Sie eine
zweidimensionale bilineare Interpolati-
on brauchen, rufen Sie die lerp-Funkti-
on mehrfach auf. Das interpolierte Er-
gebnis schreiben Sie schlieflich in das
neue Bild bei buffer2.

Mit diesen wenigen Zeilen Code kon-
nen Sie jetzt Bilder um Bruchteile von
Pixeln verschieben, drehen, verzerren,
vergroflern und stauchen. Das Resultat
hangt nur davon ab, was Sie in Thre
Movelist schreiben.

Bei Feedbacks sollten Sie die Bewegung
nicht zu schnell laufen lassen. Nur so
kommt der Effekt voll zur Geltung. Als
kleine Anregung hier eine kombinierte
Rotation und Vergroflerung:

double sinval=sin(0.01)*1.01;

double cosval=cos(0.01)*1.01;
Hier berechnen Sie die Rotationswerte
vor. Der Winkel betrigt 0,01 rad, was in
etwa 0,6 Grad entspricht. Die Multipli-
kation mit 1,01 sorgt fiir einen Zoom-
Wert von einem Prozent.

long * dest = movelist1;
for (int py=0; py<height; py++)
for (int px=0; px<width; px++)

double x = (double)

214 September 1999 PC Magazin

(px-(width/2))/(width/2);
double y = (double)
(line-(height/2))/(height/2);

. ' - 7

0 5

4 2
2
5
3 o
T
EN. A 26

[2
GL_QUAD_STRIP

GL_POLYGON

1
o 2 4
2

4 5
1

o 3
B s ! 3
0 2 5 A

GL_TRIANGLE

GL_QUADS

GL_TRIANGLE_STRIP GL_TRIANGLE_FAN

DAS ZWEITE PLUGIN VERWENDET ver-
schiedene Polygon-Primitive, hier mit
ihren Bezeichnungen in OpenGL.

Diese Zeilen skalieren die Koordinaten
px und py in den Bereich von -1 bis 1.
Dadurch werden die Berechnungen un-
abhingig von der Breite und Hohe der
Movelist.
double xx = x * cosval -
y *sinval + 1.0;
double yy =y * cosval +
X * sinval + 1.0;
xx = Clamp(xx*width /2.0,
width-1, 1);
yy = Clamp(yy*height/2.0,
height-1, 1);

Der Punkt wird nun mit den vorberech-
neten Werten XX und yy rotiert und da-
nach wieder auf Bildgrofle skaliert. Die
Funktion Clamp sorgt dafiir, daff die ro-
tierten Werte nicht den Bildbereich ver-
lassen. Sonst wiirde Ihre Feedback-Rou-
tine beim Auslesen der Pixel unweiger-
lich abstiirzen.

*dest++=(long)(xx*65536.0);
*dest++=(long)(yy*65536.0);

}

Zuletzt schreiben Sie die Koordinaten in
die Movelist. Zuerst kommt die x-, dann
die y-Koordinate. Die Multiplikation
mit der Konstanten 65 536 sorgt fur die
Aufteilung in eine 16-Bit-Koordinate
und in eine 16-Bit-Subkoordinate. Das
Schreiben der Koordinaten mit dem Be-

Da es sich bei den Plugins um keine exe-
Dateien handelt, weicht der Kompilier-
vorgang etwas von der ublichen Vorge-
hensweise ab. Je nachdem, welchen Com-
piler Sie benutzen, sind einige Anderun-
gen notig.

Oftmals genuigt es, bei den Linker-Einstel-
lungen als Zieldatei den Typ DLL statt EXE
auszuwahlen. Benutzer von Watcom C++
mussen wir diesmal leider enttauschen:
Der Compiler lieR sich bei unseren Tests
nicht dazu bewegen, funktionierende
Plugins zu liefern. Da die Beispielcodes Di-

fehl *dest++= sieht etwas ungewohnlich
aus. Es funktioniert, weil dest ein Poin-
ter ist. Nachdem der Wert an die ent-
sprechende Adresse geschrieben wurde,
erhoht die Operation ++ den Pointer,
der dann auf das nichste Element zeigt.
Bei dieser Vorgehensweise sparen Sie
eine Variable, und der Compiler kann
moglicherweise effizienteren Code er-
zeugen.

Im Beispielcode haben wir noch etwas
mehr Aufwand getrieben, um den Effekt
wilder zu gestalten. Wie Sie bemerken
werden, haben wir einfach mehrere Ro-
tationen ubereinandergelegt.

Wenn Sie Thr Plugin so starten, sehen
Sie noch nichts. Denn es fehlt noch der
Code, der die Sample- oder Spektrum-
daten benutzt, um dem Feedback
brauchbare Bilder zu liefern. Zeichnen
Sie einfach die Samples als Wellenform
im Kreis tiber das aktuelle Bild. Dies
konnen Sie dhnlich wie die Funktion
Movelist_Draw() machen.

Wir haben es uns nicht nehmen lassen,
noch einige Extras in das Plugin einzu-
bauen. So konnen Sie das Aussehen mit
den Cursor-Tasten veriandern. Das Bild
auf S. 212 zeigt einige psychedelisch wir-
kende Schnappschusse des Plugins.

OpenGL (Open Graphics Library) ist
ein Standard der Computerindustrie fiir
3D-Grafik. Er stammt urspriinglich von
der internen Grafikbibliothek von Sili-
con Graphics (SGI) und wird jetzt von
SGI, Microsoft, IBM, Intel und DEC
weiterentwickelt. Die Vorteile von
OpenGL sind die genaue Spezifikation
des Standards — er arbeitet gleicher-
maflen unter Betriebssystemen wie
Windows, Unix sowie Linux — und die
Unterstiitzung durch 3D-Hardware.

Es ist ganz einfach, mit OpenGL be-
eindruckende 3D-Grafiken zu pro- @

rectDraw benutzen, mussen Sie auch die
Bibliotheken ddraw.lib und dxguid.lib mit
einbinden.

Die erzeugten DLLs mussen alle mit dem
Namen vis_ beginnen. Winamp sucht nur
nach Plugin-Dateien, die dieser Konventi-
on entsprechen.

Um das Plugin zu installieren, kopieren Sie
es lediglich in das Plugin-Verzeichnis in-
nerhalb der Winamp-Installation. Uber
die Tastenkombination [Umschalt fest-
Strg-K] wahlen Sie ein Plugin und starten
es.

PC UNDERGROUND
PRAXIS

grammieren. Dabei lernen Sie die Funk-
tionen kennen, die Sie fir ein Winamp-
Plugin brauchen.

OpenGL stellt Thnen Funktionen
zum Zeichnen von Primitiven, also von
Punkten, Linien und Polygonen, zur
Verfiigung. Es gibt auch Support-Routi-
nen, mit denen Sie Kurven, Bézier-
Oberfliachen oder Text darstellen kon-
nen. Die Polygonprimitive konnen Sie
dabei mit Texture Mapping und Schat-
tierung ausstatten.

Sobald Sie eine 3D-Szene aus Primiti-
ven aufgebaut haben, definieren Sie Be-
leuchtungseffekte, das Blickfeld und
Spezialeffekte wie Nebel oder Transpa-
renz. OpenGL erledigt dann den Rest fiir
Sie: die Schattierung, das perspektivische
Rendering, das ,,Wegwerfen“ der nicht
sichtbaren Polygone (Hidden Surface
Removal) und das Clipping. Wenn Sie
das Blickfeld oder die Beleuchtung in-
dern oder die definierten Objekte bewe-
gen, berechnet OpenGL alles fiir Sie neu.

OpenGL ist als eine sogenannte State
Machine implementiert: Das heifit, daf§
ein festgelegter Zustand (zum Beispiel
eine Farbe) so lange aktuell ist, bis Sie ithn
wieder dndern. Solange also beispiels-
weise die aktuelle Zeichenfarbe Rot ist,
erhalten alle definierten Primitive diese
gesetzte Farbe. Zudem ist OpenGL da-
fur konzipiert, in einem Client-Server-
Modell zu arbeiten. Client und Server
konnen nattirlich auch in einem Rechner
vereint sein, so wie es bei uns der Fall ist.

Zuerst einmal bringen Sie OpenGL da-
zu, in ein Windows-Fenster zu rendern.
Da OpenGL plattformunabhingig ist,
stellt Microsoft die Befehle dazu zur
Verfiigung. Dabei registrieren Sie wie
bei einem normalen Windows-Pro-
gramm eine Fensterklasse, 6ffnen ein
Fenster und erzeugen mit folgenden Be-
fehlen einen sogenannten OpenGL-
Kontext:
/I Pixelformat des Windows-
/I Bildschirms lesen
int Formatindex =
ChoosePixelFormat(
WindowDC,&FormatDescriptor);
SetPixelFormat(WindowDC,
Formatindex,&FormatDescriptor);
/I OpenGL Kontext erzeugen
WindowRC =
wglCreateContext(WindowDC);

wglMakeCurrent(WindowDC,
WindowRC);

Das ist schon alles. Diese Zeilen dienen
nur als Beispiel, die vollstindige Routi-

218 September 1999 PC Magazin

ne finden Sie im Quelltext des OpenGL-
Plugins.

Nun koénnen Sie schon mit der Be-
schreibung der 3D-Szene beginnen. Im
Bild auf S. 213 sehen Sie, welche Trans-
formationen ein Punkt im Raum - gege-
ben durch (x,y,z) — durchlauf, bis er die
Bildschirmkoordinaten (x,y) erhilt. Be-
achten Sie dabei, dafl x und y im Raum
und im Fenster verschieden sind.

Alle Transformationen in OpenGL
beschreiben Sie mit Matrizen. Sie kon-
nen Thr Mathematikbuch aber ruhig in
der Ecke lassen, denn Matrizen werden
hier abstrakt behandelt.

Stellen Sie sich eine

Befehlen, die sehr komfortable
OpenGL-Funktionen enthalten.
gluPerspective(45.0f,1.33f,

1.0f,1000.0f);

glViewport(0,0,
SCREEN_X,SCREEN_Y);

Die erste Zeile definiert eine Kamera mit
einem Offnungswinkel von 45 Grad.
Der zweite Parameter der Funktion glu-
Perspective beschreibt den Aspect-Ra-
tio-Wert, also das Verhiltnis von der
Breite zur Hohe des Bildschirms. Zu-
letzt iibergeben Sie noch die gewtinsch-
ten Entfernungs-Clipping-Ebenen mit
Abstandswerten von 1 und 1000.

Matrix einfach als ein
mathematisches Ge-
bilde vor, das eine
Verschiebung, Dre-
hung oder Skalierung
darstellt. Verschiede-
ne Matrizen konnen
Sie aufeinander an-
wenden und so eine
einzige Matrix er-
rechnen, die alle dabei
durchgefthrten
Transformationen
enthilt.

Fir das OpenGL-
Plugin beschreiben
Sie zunichst eine Pro-
jektionsmatrix, die
sowohl die Perspek-
tiv- als auch die Viewport-Transforma-
tion beschreibt. Bei der Perspektivpro-
jektion kann es sich zum Beispiel um ei-
ne Zentral- oder Orthogonalprojektion
handeln. Mit der Bezeichnung Viewport
ist das Fenster gemeint — die entspre-
chende Transformation bildet also die
einzelnen Punkte auf die Bildebene ab.

Die in dieser Matrix gespeicherten
Transformationen stellen quasi das Ka-
meramodell dar. Nun teilen Sie
OpenGL mit, dafl Sie die Projektions-
matrix bearbeiten mochten:

glMatrixMode(GL_PROJECTION);

Danach laden Sie die Einheitsmatrix, das
neutrale Element beim Arbeiten mit Ma-
trizen:

glLoadldentity();

Egal, ob Sie diese Matrix auf eine andere
Matrix oder einen Vektor anwenden, Sie
erhalten als Ergebnis immer wieder den
unveranderten Operanden zurtick.

Die Kamera- bzw. die Perspektiv-
und die Viewport-Transformation legen
Sie am einfachsten mit einem Befehl aus
der Glut Library fest. Dabei handelt es
sich um eine Sammlung von Highlevel-

EINE STIMMUNGSVOLLE UND DIFFUSE BELEUCHTUNG sorgt
beim zweiten Plugin fur glitzernde Lichteffekte.

Dank des folgenden Befehls glView-
port weifl OpenGL, wie grof§ das Fen-
ster ist. Jetzt verschaffen Sie der Kamera
noch etwas Abstand von der Projekti-
onsebene, auf die die Primitive projiziert
werden:

glTranslatef(0.0f,0.0f,-30.0f);

Das war die Definition der Kamera.

Es gibt noch ein paar zusitzliche Ini-
tialisierungsaufrufe, die Sie einmalig
beim Start des Programms einsetzen:

/I Hintergrundfarbe

glClearColor(0.0f,0.0f,
0.0f,0.0f);

/I Flatshading, d.h. ein Hellig-
I/ keitswert pro Polygon
glShadeModel(GL_FLAT);

/I Z-Buffer-Vergleichsfunktion

glDepthFunc(GL_LEQUAL);
Nun legen Sie die Objekte der Szenerie
fest. Dazu wihlen Sie die Modelview-
Matrix, die die Bewegung und Drehung
eines Objektes bestimmt. Danach laden
Sie wieder die Identitit, also die Ein-
heitsmatrix:

glMatrixMode(GL_MODELVIEW);
glLoadldentity();

Fir eine Verschiebung, Skalierung oder
Drehung stehen dann folgende drei Be-
fehle zur Verfiigung:
glTranslatef(float x,float y,
float z)
glScalef(float x,float y,
float z)
glRotatef(float drehwinkel,

float achse_x,float achse_y,
float achse_z)

Dabei spielt die Rethenfolge der Trans-
formationen durchaus eine Rolle: Je
nachdem, ob Sie ein Objekt zum Bei-
spiel vor oder nach einer Drehung ver-
schieben, erhalten Sie ein anderes Ergeb-
nis.

Nachdem Sie die Transformation fest-
gelegt haben, iibermitteln Sie die Poly-
gon-Primitive, aus denen Sie Thre Ob-
jekte zusammensetzen, an OpenGL. Ei-
ne Ubersicht der in diesem Artikel ver-
wendeten Primitive zeigt das Bild auf S.
214. Die Zahlen an den Eckpunkten
deuten die Reihenfolge an, in der Sie die
Punkte Gbergeben, um die Primitive zu
zeichnen.

Ein Primitiv wie ein Dreieck beginnen
Sie mit dem Befehl:

glBegin(GL_TRIANGLE);

Bevor Sie die Eckpunkte tbergeben,
wihlen Sie noch die Farben, Ober-
flichennormalen und Texture-Map-
ping-Koordinaten aus. Denken Sie dar-
an, daf} Sie es mit einer State Machine zu
tun haben — alle Zustinde wie Farben,
Normalen und Koordinaten gelten fiir
alle Eckpunkete, solange Sie sie nicht an-
dern:

gINormal3f(0,-1,0);
glTexCoord2d(0.0,0.0);
glVertex3f(1.0,2.0,1.0);
glTexCoord2d(1.0,0.0);
glVertex3f(3.0,2.0,1.0);
glTexCoord2d(1.0,1.0);
glVertex3f(1.0,1.0,0.0);
glEnd();

Bei den Primitiven, die eine unbestimm-
te Anzahl von Eckpunkten (Vertices)
enthalten konnen, tibergeben Sie so vie-
le Punkte, wie Sie wollen.

Um Thre Objekte mit Texturen zu ver-
sehen, gentigen in OpenGL wenige Pro-
grammzeilen. Aktivieren Sie mit dem
Befehl glEnable das Texture Mapping.
Dann legen Sie fest, dafl Texture-Map-
ping-Koordinaten grofler als 1,0 eine
Wiederholung (Kachelung) der Textur
bedeuten:

glEnable(GL_TEXTURE_2D);
glTexParameterf(GL_TEXTURE_2D,

GL_TEXTURE_WRAP_S,GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D,
GL_TEXTURE_WRAP_T,GL_REPEAT);

Wihlen Sie tiber eine Nummer die Tex-
tur aus, deren Zustand Sie verindern
mochten:
glBindTexture(GL_TEXTURE_2D,
int Nummer);
Bei einer Grofleninderung kann
OpenGL die Textur entweder per bili-
nearer Interpolation oder per Mipmap-
ping anpassen. Wie sich das Texture
Mapping hier verhalten soll, wihlen Sie
— jeweils separat fiir die Vergroflerung
und die Verkleinerung — iiber das Kom-
mando glTexParameteri.
Danach tbergeben Sie der Funktion
glTexImage2D die Texturdaten:
glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MIN_FILTER,
minFilter);
glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MAG_FILTER,
maxFilter);
void glTexImage2D(GL_TEXTURE_2D,
0,4,256,256,0, GL_BGRA_EXT
GL_UNSIGNED_BYTE,
void *texturedaten);
In diesem Beispiel tbergeben Sie eine
256 x 256 Pixel grofie Textur mit 4 Byte
Farbtiefe, wobei die Konstante
GL_BGRA_EXT jeweils 8 Bit fiir den
Blau-, Rot-, Griin- und den Alphakanal
reserviert. Der Zeiger texturedaten ver-
weistauf die geladene Textur im Speicher.
Das war schon alles, um OpenGL
Texturen zu entlocken. Doch im Mo-
ment sehen diese Texturen noch sehr

blafl aus...

Die richtige Beleuchtung nimmt ent-
scheidenden Einflufl auf die Wirkung
einer Szene. In OpenGL legen Sie
zunichst fest, wie die Oberflichen auf
die Lichtquelle reagieren sollen. Zum
Beispiel konnen Sie fiir die Vordersei-
ten der Polygone eine stimmungsvolle
und diffuse Beleuchtung einschalten.
Die Vorder- und Ruckseite bestimmen
Sie durch die Reihenfolge der Eck-
punkte — sind diese im Uhrzeigersinn
angeordnet, sehen Sie das Polygon von
vorne.

Mit glEnable aktivieren Sie die Be-
leuchtungsberechnung:

glEnable(GL_LIGHTING);

GLfloat Intensitat[4]=
{1.0,1.0,1.0,1.0};

glMaterialfv(GL_FRONT,
GL_AMBIENT_AND_DIFFUSE,
Intensitat);

Wihlen Sie nun eine Lichtquelle.
OpenGL stellt Thnen dabei - je nach Im-
plementierung — mindestens acht ver-

PC UNDERGROUND
PRAXIS

schiedene zur Verfiigung. Danach legen
Sie die Lichtfarbe sowie die Position und
Richtung des Lichts fest:

glEnable(GL_LIGHTO);

GLfloat light_diffuse[]=
{1.0,1.0,1.0,1.0};

GLfloat light_ambient[]=
{0.1,0.1,0.1,1.0};

glLightfv(GL_LIGHTO,
GL_AMBIENT light_ambient);

glLightfv(GL_LIGHTO,
GL_DIFFUSE light_diffuse);

glLightfv(GL_LIGHTO,
GL_POSITION,
light_position);
glLightfv(GL_LIGHTO,
GL_SPOT_DIRECTION,
light_direction);
Das ist alles, was Sie fur ein respektables
OpenGL-Programm bendtigen. Das
Bild auf S. 218 zeigt das fertige Plugin im
Einsatz.

Am besten experimentieren Sie ein
bifichen mit dem Quellcode und verin-
dern ein paar Parameter. So bekommen
Sie mehr Gefiihl fur die Wahl der pas-
senden Transformationsmatrix und fir
eine optimale Beleuchtung.

Mochten Sie sich in OpenGL vertie-
fen, lohnt sich ein Besuch der Homepage
von Silicon Graphics unter

www.sgi.com
Hier stoflen Sie auf jede Menge Source-
codes, Tips und Tutorials. So zum Bei-
spiel auch auf der Seite des Silicon-Gra-
phics-Mitarbeiters Mark Kilgard:

http://reality.sgi.com/mjk/tips
Wenn Sie die Plugins ausprobieren wol-
len, kopieren Sie die jeweilige DLL-Da-
tei und fir das OpenGL-Programm
noch die raw- und tga-Dateien in das
Unterverzeichnis Plugin von Winamp.
Die aktuelle Version des MP3-Players
Winamp erhalten Sie unter

www.winamp.com
Dort finden Sie auch verschiedene Be-
nutzeroberflichen in unterschiedlichem
Design und viele Plugins. PEI

Die Quelltexte sowie die fertig tibersetzten
Winamp-Plugins finden Sie zusammen mit der zu-
grundeliegenden Grafikbibliothek auf unserer
Heft-CD im Verzeichnis praxis\pc-under und im In-

ternet-Angebot des PC Magazin unter
www.pc-magazin.de/magazin/
0 extras.htm

Klicken Sie unter Online Extras im Menu Praxis auf
das entsprechende Download-Feld.

Literatur: Jackie Neider, Tom Davis und Mason
Woo: OpenGL Programming Guide - The Official
Guide to Learning, Addison-Wesley-Verlag, 47 US-
Dollar, ISBN 0-2014-6138-2. Eine Online-Ausgabe

dieser OpenGL-Einfiihrung finden Sie unter:
http://ask.ii.uib.no/ebt-bin/
O nph-dweb/SGI_Developer/OpenGL
0O _PG/@Generic_BookView

PC Magazin September 1999 219

£l

