5-£]

PC UNDERGROUND

PRAXIS

&1

Demo-Programmierung unter Windows 9_5/?38 /

aus

Lichtstrahlen

Praktisch alle Rendering-Pakete arbeiten mit
Raytracing, also mit Lichtstrahlenverfolgung.
Mit etwas Mathematik folgen Sie einem Licht-

strahl bis zur 20. Spiegelung.

CARSTEN DACHSBACHER/
NILS PIPENBRINCK

aytracing berechnet eindrucks-
Rvolle Bilder einer mathemati-

schen Welt. Diese kiinstliche
Welt basiert auf der Idee, einen Licht-
strahl zurtickzuverfolgen, der eine ima-
ginire Kamera erreicht.

Die Lichtstrahlen konnen zum Bei-
spiel auf Objekte treffen, deren Material
Licht absorbiert, reflektiert bzw. teil-
weise oder ganz hindurchlilt. Andere
Materialien wiederum kombinieren be-
liebige dieser Eigenschaften.

Der Betrachter in der mathematischen
Welt blickt durch ein Beobachtungsfen-
ster, dessen reales Pendant Thr Monitor
darstellt. Sie konnen sich Raytracing
dann so vorstellen, dafl durch jeden Pi-

—— Primaérstrahl
—— Sichtpyramide

DAS LICHT, das Sie durch einen Pixel
lhres Monitors sehen, stellen Sie sich
als Primarstrahl vor.

226 Oktober 1999 PC Magazin

xel Thres Monitors ein Lichtstrahl zu Th-
nen dringt. Sie wollen nun berechnen,
welche Farbe dieses Licht hat. Diese
Strahlen sind die sogenannten Primir-
strahlen.

Stellen Sie sich vor, daf§ ein Strahl, den
Sie zurtickverfolgen, sich eventuell an ei-
ner Oberfliche teilt. Da ein Teil seines
Lichts absorbiert, ein anderer Teil re-
flektiert wird, liegt es nahe, Raytracing
rekursiv zu berechnen, also eine Berech-
nung zu wiahlen, die sich selbst wieder
aufruft. Das Problem, festzustellen, an
welcher Oberfliche der Lichtstrahl auf-
trifft, hort sich unbedeutend an, ist aber
der rechenintensivste Teil der Raytra-
cing-Methode.

Wie sich Strahlen aufteilen konnen,
sehen Sie in einer Aufsicht auf drei Ku-
geln. Der graue Primirstrahl fallt auf die
Szene, blau reflektieren die Sekundir-
strahlen. Rot symbolisierte Strahlen ent-
stehen durch Lichtbrechung und Trans-
parenz.

Die griin eingezeichneten Vektoren
sind die Oberflichennormalen: Diese
kennzeichnen jeweils den Vektor, der
senkrecht auf einem Punkt der Ober-
fliche steht. Mit den Normalen berech-
nen Sie spater die Beleuchtung. Die ge-
punkteten Linien heiflen Schattenstrah-
len.

Da die Berechnung rekursiv erfolgt,
sich also selbst wieder aufruft, unter-
scheiden Sie verschiedene Rekursi-
onstiefen. Diese verwenden Sie
hauptsichlich, um die Berechnungen an
einer bestimmten Tiefe abzubrechen.
Stellen Sie sich vor, Sie verfolgen einen
Lichtstrahl, der zwischen zwei perfek-

ten Spiegeln hin- und herreflektiert
wird. Die Berechnungsroutine wiirde
sich immer wieder selbst aufrufen und
nie stoppen.

Darum legen Sie bei Raytracing eine
maximale Rekursionstiefe fest: Sie ver-
folgen einen Lichtstrahl nur bis zu einer
bestimmten, festgelegten Spiegelung.
Die Berechnungsroutine veranschau-
licht der Pseudocode raytrace.rechne
(Listing 1).

Mathematische Grundlagen fiihren tie-
fer in das Thema hinein. Punkte im drei-
dimensionalen Raum geben Sie durch
Thre X-, y- und z-Komponenten an. Den
Vektor X beschreiben Sie also mit

X = (x1, x2, x3)

Mit einem Vektor bestimmen Sie einen
Ort (Ortsvektor) oder legen eine Rich-
tung fest. Aus einem Startpunkt §° und
einer Richtung r definieren Sie mit t als
reeller Zahl eine Gerade eindeutig im
Raum:

X =s” +t*r -~
Wenn zusatzlich

t>0
gilt, handelt es sich um eine Halbgerade,
also um den Teil der Geraden, der vom
Antragspunkt aus dem Richtungsvektor
folgt. Diese Rechnungen operieren mit
Vektoraddition und Subtraktion:

X +y” =(x1+yl,x2+y2,x3+y3)

X -y~ =(x1-y1,x2-y2,x3-y3)
Fur weitere Berechnungen benétigen Sie
den Betrag eines Vektors, also seine Lin-
ge. Diese berechnen Sie mit der dreidi-
mensionalen Variante nach Pythagoras:

X7 | = sqrt(x1*x1+x2*x2+x3*x3)

Zusitzlich benotigen Sie das Skalarpro-
dukt, wofiir Sie das Zeichen * definieren:

X *y~ =x1*yl+x2*y2+x3*y3
Sie erhalten also aus zwei Vektoren eine
reelle Zahl. Das Skalarprodukt bringt
noch weitere Eigenschaften mit:

X*y=|x->[fly -~ [*cos(phi)
phi stellt dabei den Winkel zwischen den
beiden Vektoren dar. Mit dem Skalar-
produkt berechnen Sie auch die Be-
leuchtung.

Die letzte Vektoroperation ist das
Vektor- oder Kreuzprodukt. Wenn Sie
zwei Vektoren mit dem Vektorprodukt
verkntipfen, erhalten Sie einen dritten
Vektor, der senkrecht auf der von den
zwei Vektoren aufgespannten Ebene
steht. Es gilt:

X Xy =(x2*y3-x3*y2,
0 x3*yl-x1*y3, x1*y2-x2*y1)

Eine weitere Grundlage fir dieses
Raytracer-Projekt ist die Matrizenrech-
nung. Stark vereinfacht konnen Sie eine
Matrix als einen Kasten voller Zahlen
bezeichnen, der verkniipft mit einem
Vektor eine geometrische Transformati-
on darstellt. Solche Transformationen
konnen zum Beispiel Drehungen, Ver-
schiebungen oder Skalierungen sein.

Durch Multiplikation zweier Matri-
zen erhalten Sie eine neue Matrix, die die
beiden Transformationen der Aus-
gangsmatrizen enthalt. Dabei ist die Rei-
henfolge natiirlich entscheidend, denn es
macht einen Unterschied, ob Sie einen
Vektor zuerst drehen und dann ver-
schieben — oder umgekehrt.

An dieser Stelle konzentrieren Sie sich
lediglich auf die Anwendung von Matri-
zen. Im Sourcecode des Raytracers fin-
den Sie alle entsprechenden Routinen,
die Sie zur Matrizenrechnung benéti-
gen. Wenn Sie eine Matrix einfach als

RAYTRACING RECHNET mit Primar- und
Sekundarstrahlen, Lichtbrechung, Trans-
parenz und Oberflachennormalen.

Transformation ansehen, konnen Sie
diese Routinen verwenden, ohne sich
linger mit der Theorie beschiftigen zu
miussen.

Die virtuelle Kamera ist eine erste An-
wendung der Matrizenrechnung. Fur
die einfachere Berechnung der Primir-
strahlen soll die Kamera immer auf der
negativen z-Achse des Koordinatensy-
stems liegen. Da sie aber frei positionier-
bar sein soll, miissen sich die anderen
Objekte in der mathematischen Welt
entsprechend bewegen.

Sie bewegen und drehen die mathe-
matische Welt also so, daff die Kamera
auf der z-Achse steht. Die Berechnungs-
schritte dazu finden Sie in der Routine
rtcamera.cpp auf der Heft-CD in der
Funktion ab Zeile 314:

RTCamera :: BuildMatrix()

Wenn Sie eine Kamera durch eine Posi-
tion und einen Punkt, auf den Sie zeigt,
festgelegt haben, arbeiten Sie drei Schrit-
te ab:
e Sie berechnen die Verschiebungsma-
trix, damit der Zielpunkt in den Ur-
sprung ,rutscht®.
e Sie berechnen die Drehungsmatrix,
um den Startpunkt auf die z-Achse zu
rotieren, wobei Sie um den Zielpunkt
drehen.
e Sie multiplizieren die Matrizen.

Das Resultat transformiert alle in der
mathematischen Welt vorhandenen
Ortsangaben, also die Ortsvektoren.

Alle Ortsangaben beziehen sich nun
auf die neue mathematische Kamerapo-
sition. Diese befindet sich auf einem be-
liebigen Punkt wie (0,0,-z) und blickt in
Richtung des Ursprungs (0,0,0).

Mit diesem Wissen und einem gegebe-
nen Offnungswinkel der Sichtpyramide
berechnen Sie die Primarstrahlen:

float Breite =

tan(OeffnungswinkelHorizontal);
float Hoehe =

tan(OeffnungswinkelVertikal);
for (y = 0; y < Zeilen; y++)
for (x = 0; x < Spalten; x++)
{PixPos.x=(2*x/

Bildschirmbreite-1)*Breite*(-z)
PixPos.y=(2*y/

Bildschirmhoehe-1)*Hoehe*(-z)

PixPos.z = 0;

Ray = PixPos - (0, 0, -2)

Pixel(x, y) =Raytrace(Ray, 1) }

Die Schnittpunktberechnungen sind der
wichtigste und rechenzeitaufwendigste
Teil eines Raytracers. Es gilt also, diese
moglichst effizient zu berechnen und ih-
re Zahl klein zu halten.

Bei den folgenden Herleitungen ge-
hen Sie immer davon aus, daf} Sie eine
Halbgerade durch ihren Startpunkt g
und ihren Richtungsvektor dg bestim-
men. Sie konnen also die Geradenglei-
chung mit tals beliebiger Zahl aufstellen:

x =g +t*dg
Fur die Halbgeraden gilt wieder

t>0

Das einfachste geometrische Primitiv fiir
einen Raytracer ist die Ebene: Sie stellen
also fest, ob ein Strahl eine Ebene schnei-
det. Eine Ebene im Raum legen Sie ein-
deutig durch drei (Antrags-) Punkte fest.
Diese Darstellung haben wir zur Einga-
be in der Skriptsprache gewihlt.

Fur das Raytracing-Programm tber-
fuhren Sie diese Darstellung in die soge-
nannte Hessesche Normalform (HNF).
Diese verwendet die Normale auf einer

PC UNDERGROUND
PRAXIS

Ebene und ithren Abstand zum Koordi-
natenursprung. Ist die Ebene durch die
Punkte XTI, xZ und x3 gegeben, so er-
halten Sie die Normale mit folgender
Formel:

a =x27 -x1~7
b =x3> -x1~
m =a Xb

Nach dem Kreuzprodukt X mussen Sie
die Normale noch normalisieren, das
heifit sie auf die Linge 1 bringen. Dazu
teilen Sie jede Komponente von it durch
ihren Betrag.

Den Abstand der Ebene vom Ur-
sprung erhalten Sie, indem Sie einen be-
liebigen Antragspunkt auf die Normale
projizieren. Diesen Vorgang erledigen
Sie mit dem Skalarprodukt:

abstand=n — *x1~
Das Resultat dieser Vorberechnungen
verdeutlicht eine Formel, in der alle

IN DER REKURSIONSTIEFE 3 verfolgen
Sie einen Lichtstrahl bis zur dritten Spie-
gelung.

Punkte X, die sich auf dieser Ebene be-
finden, folgende Gleichung erfullen:
m *x~ =abstand (HNF)
Der mathematische Trick ist nur, das X
in der HNF durch die Geradenglei-
chung zu ersetzen. Sie erhalten dann
n*(g~ +t*dg—) = abstand
Alle Parameter aufler t sind Thnen in die-
ser Gleichung bekannt. Durch das tkon-
nen Sie den Schnittpunkt bestimmen.
Also 16sen Sie die Gleichung nach t auf:

m*g” +m*t*dg —~ = abstand

t*n=*dg” =abstand-n ~*g*

t=(abstand-n ~*g”)/(n ~*dg”)

Die Gerade hat nur einen Schnittpunkt
mit der Ebene, wenn der Term (i * dg)
ungleich Null ist. Andernfalls konnten
Sie die Gleichung auch nicht 16sen, da ei-
ne Division durch Null vorlage.

Setzen Sie das soeben berechnete t
wieder in die Gleichung ein, erhalten Sie
den Schnittpunkt:

s =g° +t*dg -
Dieser ist nur interessant, wenn

t>0
ist, da er sich sonst auf der ,,falschen® @

PC Magazin Oktober 1999 227

5)-6

PC UNDERGROUND

PRAXIS

Seite der Halbgeraden befindet, also
zum Beispiel hinter dem Betrachter.

Das zweite Primitiv, das wir Thnen in
diesem ersten Teil des Raytracers vor-
stellen, ist die Kugel. Eine Kugel legen
Sie durch Mittelpunkt und Radius fest.
Der Radius ist der Abstand vom Mittel-
punkt. Also missen alle Punkte auf der
Kugeloberfliche, welche fiir uns von In-
teresse sind, diesen Abstand vom Kugel-
mittelpunkt haben.

Den Abstand zweier Punkte im Raum
berechnen Sie mit

a = (ax ay, az)

b = (bx, by, bz)
abstand=sqrt(ax*bx+ay*by+az*bz)
=sqgrt(a ~*b”)

Wenn Sie also die Kugel durch ihren
Mittelpunkt m und ihren Radius r defi-
niert haben, erfiillen alle Punkte X auf ih-
rer Oberfliche die Gleichung
sqrt(d — *d—) =radius

Der Vektor d geht vom Mittelpunkt
zum variablen Punkt X:

¢ =(mr -x-)
Daraus ergibt sich:

sgrt((m ~-x)*(m~-x))

=radius

Bei dieser Gleichung konnen Sie nicht
einfach die Wurzel mit dem vermeintlich
quadratischen Term darunter auflosen.
Denn (M - X) stellt einen Vektor dar,
wiahrend (M - X) * (M - X) eine reelle
Zahl ist.

Auch in dieser Gleichung miissen Sie
X ersetzen, um den Schnittpunkt zu er-
halten, aber vorher quadrieren Sie sie:

(m -) m - -x2)=
(m' - X™) 4=radius

(M (g~ rtrdg) 2
-radlus

((m -g=)-trdg ~)2
—radlus

(m -g=)2 -2*(m = -g°)
*(t*dg)+ (t*dg)

= radius

Diesen Term formen Sie nun in eine qua-
dratische Gleichung um, zu der es eine
Losungsformel gibt:
t 2 dg~ 2 .
t (m -)*dg ~
g2 -

- radius
oder
a*t 2 +h*t+c=0
mit

:O

a=dg~
b=-(m= -g~)*dg ~
c=(m~ —g—')E -radius 2
a, b und ¢ sind reelle Zahlen. Die mogli-
chen Losungen sind dann
tl=

228 Oktober1999 PC Magazin

(b+sqrt(b 2_graxc))l(2*a);

(b- sqri(b 2-4*a*c))/(2*a);

Die Zahl der Losungen 1af3t sich durch
die Diskriminante

D=b 2 -4*a*c
bestimmen.

D<O0
bedeutet keine Losung,

D=0
eine Losung und

D>0
zwel Losungen.

Diese t1 und t2, eingesetzt in die Glei-
chung der Halbgeraden, ergeben dann
wieder einen oder mehrere Schnittpunk-
te.

DAS AMBIENTE LICHT laRt die Oberflache
der Korper in der Eigenfarbe erscheinen.

Wie Sie im folgenden sehen, benotigen
Sie beim Raytracing auch immer die
Oberflachennormale an einem Schnitt-
punkt. Bei der Ebene steht diese immer
fest. Bei der Kugel erhalten Sie sie, indem
Sie die Differenz des Ortsvektors eines
Schnittpunkts und des Kugelmittel-
punkts normalisieren, also: der normali-
sierte Vektor zu (8 - mi).

Natiirlich bendtigen Sie im Raytra-
cing-Programm nur die endglltigen
Formeln, die aber ohne ihre Herleitung
kaum nachvollziehbar sind. Wie Sie se-
hen, sind einige geschickte Umformun-
gen notwendig, die zudem Rechenzeit
sparen. Deshalb speichert jedes Raytra-
cing-Programm zum Beispiel zu einem
Kugelobjekt nicht nur den Radius, son-
dern auch gleich dessen Quadrat. Denn
nur damit rechnet das Programm.

Nachdem Sie nun Schnittpunkte be-
rechnen konnen, bleibt noch der zweite
wichtige Punkt des Raytracing: die Be-
rechnung der Beleuchtung. Diese Re-
chenverfahren kliren, wie sich das ein-
fallende Licht und die Oberflichenei-
genschaften auf den visuellen Eindruck
auswirken.

Der erste Einfluffparameter ist das so-
genannte ambiente Licht, ein iiberall in
der mathematischen Welt gleichstarkes
Licht. Dieses lifit die Oberfliche der
Korper tiberall in ihrer Eigenfarbe er-
scheinen.

Bei den folgenden Berechnungen fiir
die Beleuchtung miissen Sie vorher fiir
jeden Schnittpunkt feststellen, ob und
wie stark er von den Lichtquellen be-
strahlt wird. Der einfachste Fall einer
Lichtquelle — und der vorerst hier ver-
wendete — ist eine punktférmige Licht-
quelle ohne riumliche Ausdehnung.

Um festzustellen, ob eine Lichtquelle
einen Punkt beleuchtet, berechnen Sie
einen sogenannten Schattenstrahl. Die-
ser stellt eine Halbgerade vom Schnitt-
punkt in Richtung der Lichtquelle dar.

Nun berechnen Sie die Schnittpunkte
der Objekte mit dem Schattenstrahl.
Wenn es Schnittpunkte mit undurch-
sichtigen Objekten gibt, liegt der
Schnittpunkt im Schatten, bei teilweise
durchsichtigen Objekten vermindern
deren Transparenz und Farbe das Licht
der Quelle.

Wenn nun eine Lichtquelle einen
Punkt beleuchtet, kommen noch zwei
weitere Eigenschaften hinzu, die von der
Stirke des einfallenden Lichts und von
der Oberfliche des bleuchtetenden Kor-
pers abhangen.

DIE STREUREFLEXION laRt die Objekte
viel lebendiger im dreidimensionialen
Raum erscheinen.

Die wichtigste der Beleuchtungsbe-
rechnungen ist die Streureflexion. Diese
entsteht durch eine gleichmiflige Refle-
xion von Licht an kleinsten Partikeln
und Inhomogenititen der Objektober-
flichen. Das mathematischen Modell
berechnet diesen Sachverhalt mit dem
Lambertschen Kosinussatz:

Die Intensitat des reflektierten Lichts
an einer Stelle ist durch die Oberflachen-
normale dieses Punkts und der Einfalls-
richtung des einfallenden Lichts be-
stimmt.

Die Einfallsrichtung des Lichts erhal-
ten Sie durch die vektorielle Substrakti-
on der Lichtquellenposition und des
Schnittpunkts. Wenn Sie diesen Vektor
normalisieren, berechnen Sie die Inten-
sitit der Streureflexion mit

Ls=n— *r—
fi stellt die Normale und T die Einfalls-
richtung dar.

Weiterhin berticksichtigen Sie die so-

DIE SPIEGELNDE REFLEXION sehen Sie
wie Glanzlichter als helle Punkte auf
Billardkugeln.

genannte spiegelnde Reflexion. Sie ent-
steht dadurch, daf§ sich die Lichtquellen
selbst, die in der Realitit eine endliche
Ausdehnung besitzen, auf der Kugel-
oberfliche spiegeln. Sie konnen die spie-
gelnde Reflexion, auch Glanzlichter ge-
nannt, zum Beispiel als helle Punkte auf
Billardkugeln beobachten. Jeder Arbeit-
schritt schafft realistischere Welten im
dreidimensionalen Raum.

Da Sie keine Lichtquellen endlicher
Ausdehnung vorliegen haben, erschaf-
fen Sie dieses Phinomen anderweitig.
Hierzu spiegeln Sie den Lichtstrahl des
einfallenden Lichts an der Oberfliche
der Korper: Sie berechnen den Kosinus
des Winkels zwischen dem gespiegelten
Vektor und dem, den Sie gerade verfolgt
haben und mit dem Sie auch den gerade
zu behandelnden Schnittpunkt berech-
net haben. Sind dieser Kosinus —und so-
mit auch der Winkel - in einer gewissen
Toleranz wie zum Beispiel +-10 Grad,
dann haben Sie an dieser Stelle ein
Glanzlicht.

Die Intensitit errechnen Sie, indem Sie
den Kosinus mit einer relativ groflen
ganzen Zahl potenzieren. Meistens lie-
gen diese Zahlen im Bereich von 10 bis
100. Die Farbe des Glanzlichts ist, da es
sich um das Spiegelbild der Lichtquelle
handelt, unabhingig von der Farbe des
Korpers. Die Berechnung der Glanz-
lichter weicht von der physikalischen
Realitit ab, liefert aber trotzdem realisti-
sche Ergebnisse.

Wenn ein Lichtstrahl den Korper an-
schneidet und Licht dabei reflektiert,
spiegeln Sie den Lichtstrahl an seiner
Oberfliche und berechnen fiir die resul-
tierende Halbgerade die Farbe rekursiv.

Die Spiegelung eines Richtungsvek-
tors an einer Oberfliche erhalten Sie mit
relativ einfachen Mitteln: Wenn € der
einfallende Strahlist, ii die Oberflichen-
normale, so gilt fir den reflektierten
Strahl

r=e/(e=*m)+2*n~

S

=

e

7

Bei der Transmission, der Lichtbre-
chung, ist aufler dem Anteil des Lichts,
das durch das Material dringen kann,
noch das Verhiltnis der sogenannten
Brechzahlen von Interesse. Die Brech-
zahl ist ein Maf}, wie stark Licht abge-
lenkt werden kann. Wasser hat zum Bei-
spiel eine hohere Brechzahl als Luft.
Dringt ein Strahl von einem Medium

A in das Medium B ein
=
- ¥
&
A
B
-71, W

berechnet sich die Richtung des gebro-
chenen Strahls wie folgt:

b = Brechzahl Medium A

/ Brechzahl Medium B

s=-e ~ *n~
Ist der Term

(1-b 2x(1-s 2))
kleiner Null, tritt der Fall der sogenann-
ten Totalreflexion auf. In diesem Fall
existiert kein gebrochener Strahl, son-
dern das Licht wird an der Oberfliche
reflektiert und der Strahl auch dement-
sprechend behandelt. Dieses Phinomen

PC UNDERGROUND
PRAXIS

ist zum Beispiel an den Rindern von
Luftblasen unter Wasser zu beobachten.

Ist dieser Term aber grofler oder
gleich Null, dann berechnen Sie den re-
sultierenden Vektor mit

g =b*e> +(b*s-sqrt(l-b 2
(s Z)n -

Diese Erkenntnisse lassen sich in einer
groflen, auf den ersten Blick schwer
tiberschaubaren Gleichung zusammen-
fassen. Beim zweiten Hinsehen wird
aber schnell klar, woher die Terme stam-
men: Fur die Intensitit | eines Farbka-
nals, die es hier in Rot, Griin und Blau
gibt, gilt jeweils:

1= la*Ka*Of +
Fur jede beleuchtende Lichtquelle gilt:

[KA*Of(n = *I~)+Ks*

((h=*1= Y p]+Kr*Ir+Kt*It
la, Ir und It kennzeichnen die Intensiti-
ten des ambienten Lichts und der reflek-
tierten bzw. transmittierten Strahlen.
Die Koeffizienten Kd, Ks, Kr und Kt
(sprich der Prozentsatz) bestimmen
Streureflexion, Glanzlichter, Reflexion
und Transmission.

T bezeichnet den Strahl vom Schnitt-
punkt zur Lichtquelle und i den gespie-
gelten Vektor des zu verfolgenden
Strahls. Of gibt als Teil der Materialei-
genschaften eines Korpers an, wieviel
Licht des entsprechenden Kanals absor-
biert wird. Prinzipiell miifiten Sie fiir je-
den Farbkanal im RGB-Farbsystem, mit
dem Sie arbeiten wollen, diese Glei-
chung 16sen. Das ist aber kein Problem,
da die Koeffizienten alle gleich sind.

Im Sourcecode des Raytracers erken-
nen Sie genau die einzelnen Terme der
Beleuchtungsgleichung. Den Teil FuUr je-
de beleuchtende Lichtquelle finden Sie
als for-Schleife und Schattentest zusam-
men mit den weiteren Implementatio-
nen in

void RTCamera ::
RecursiveRaytracing(...).

Bei der Implementation eines Raytra-
cers, den Sie in den nichsten zwei Aus-
gaben noch erweitern werden, planen
Sie genau, wie die Code-Teile zusam-
menhangen und wirken sollen. Es bietet
sich auf jeden Fall eine objektorientierte
Variante an, da Sie Vererbungshierarchi-
en bei Primitiven nutzen, denen Sie spa-
ter noch neue hinzufiigen. Damit bleibt
die Gliederung tibersichtlicher. (>

PC Magazin Oktober 1999 229

£l

5-E]

PC UNDERGROUND
PRAXIS

Als Grundbaustein nutzen Sie die
Objektbasisklasse RTObject: mit Me-
thoden, um Materialinformation zu set-
zen, Transformationen anzuwenden
und Schnittpunkte zu erfragen. RTPla-
ne ist die Ebenenklasse, die die Metho-
den fir das Primitiv implementiert.
RTSphere implementiert die Klasse des
Kugelprimitivs.

Eine zweite Objekthierarchie stellen
die Lichtquellen dar, von denen es zwar
bisher nur eine Klasse gibt, aber weitere
geplant sind: RTLightSource mit Me-
thoden fiir die Transformationsanwen-
dung und den Schattentest. RTPoint-
Light implementiert die punktformigen
Lichtquellen.

Zusitzlich nutzen Sie die Kameraklas-
se RTCamera mit kameraspezifischen
Operationen und der rekursiven
Raytracing-Prozedur.

Die letzte Klasse RTScene umfafit die
mathematische Welt mit ihren Informa-
tionen wie Kamera, Objekte und Licht-
quellen.

Im letzten Teil legen Sie eigene 3D-Wel-
ten an. Denkbar ist zum Beispiel, Ob-
jekte fest im Programmcode zu veran-
kern, was aber schwierig ist. Darum ver-
wenden Sie am besten eine Skriptsprache
wie eine eigene Programmiersyntax, die
auf die Beschreibung von Raytracing-
Szenen zugeschnitten ist.

Dazu benotigen Sie einen Programm-
teil, der diese Skriptsprache interpretiert
und die Objekte erzeugt. Diesen Teil
finden Sie im Sourcecode in der Datei
parser.cpp.

Szenenbeschreibungen in diese
Skriptsprache bilden Blocke mit einem
Blockbezeichner und Daten. Manche
dieser Blocke sind Bestandteil anderer
Blocke. Kommentare in Blocken be-
grenzen Sie wie in C durch /* und */
oder bringen sie in //-Zeilen unter. Vek-

1: for (jeder Pixel des Bildes)

2: {Ermittle "ray" durch Pixel

3z pixel farbe=Raytrace(ray, 1);}

4: Farbe Raytrace(Vektor ray,

5: int Rekursionstiefe)

6: {if (Cbjekt getroffen)

7: {Rechne Schnitt punkt +Nor nal e,

8: hol e Materialinformtion

9: Aktuelle Farbe = anbi entes Licht
10z for (jede Lichtquelle)
11: {Prufe, ob+wie die Lichtquelle die
12: Cherfl ache im Schnittpkt. bel eucht et
13: Akt.Farbe += diffuse+spi egel Reflex
14:
15: if (Rekurs.tiefe <max.Rekurs.tiefe)

16: {if (Cbjekt reflektiert)
17: {rRay = reflektierten Strahl
18: Il rekurs. Aufruf:

230 Oktober1999 PC Magazin

toren geben Sie in eckigen Klammern an
wie <x1, x2, x3>, Zahlen ohne Klam-
mern. Der erste Block definiert die Ka-
meraoptionen:

camera
{position <5.0,-20.0,18.0>

look_at < 0.0,0.0,0.0> //K.ziel

up < 0,0,-1> //Kamera oben?

fov 25.0 //Offnungswinkel

aspectratio 1.333333
/IBreite/Hohe des Bildschirms }

Lichtquellen definiert diese mathemati-
sche Welt im Block
light

{
position <-5.0,0.0,10.0> //Ort
color < 0.5,0.5,0.5> //L.Farbe
}

Ein weiterer Block ist das Material. Die
Skriptsprache kennt zuerst das default-
material. Dieses definieren Sie an einer
beliebigen Stelle im Skript und weisen es
jedem neuen Primitiv zu, wenn Sie dafiir
keine expliziten Materialinformationen
angeben.

Die einzelnen Parameter eines Materi-

alblocks sind:

defaultmaterial

{
rgb < 0.5, 0.5, 0.5> //RGB-Farbe
reflection 0.5 // Reflexkoef.
refraction 0.0 // Transparenz
diffuse 0.5 // Reflex.Koeffiz.
ambient 0.0 // Reflex.Koeffiz.
specular 1.0 // Koeffiz.fur
/I spiegelnde Reflexion

pow 50.0 // Potenz dafur
ior 1.0 // Brechzahl-Material

}

Ein Kugelprimitiv erzeugen Sie mit fol-
genden Zeilen:

sphere
{ < x1,x2,x3>, Radius (Zahl) }

Wollen Sie fiir ein Primitiv nicht das de-
faultmaterial verwenden, fiigen Sie ei-
nen eigenen Materialblock ein:

sphere
{ < x1,x2,x3>, Radius (Zahl)
material
{ .../ Daten wie oben }

Eine Ebene erzeugen Sie mit folgendem

)5
20:
21:
223
23:
24
253
26:
27:
28:
29:
30:
31z
32;
33:
34:}
35:

(rRay,

Block, wobei die drei Vektoren die An-
tragspunkte sind:

plane

{<0.0, 0.0, 0.0 >,

<1.0,0.0,0.0 >,
<0.0,1.0,0.0>}

Weitere Blocke, die Sie einem Primitiv
noch zuordnen kénnen, enthalten An-
gaben uber zusitzliche Transformatio-
nen. So konnen Sie ein Primitiv
nachtriglich skalieren, drehen oder ver-
schieben. Die Befehle, die Sie wie das
material in den Primitivblock einbauen,
lauten:

rotate < Vektor> // Drehung
translate < Vektor> //Schiebung
scale float // Skalierung

Mit dieser Skriptsprache konnen Sie ex-
perimentieren. Alle Bilder fiir diesen Ar-
tikel berechnen Sie mit dem Raytracing-
programm. Skriptdateien dazu finden
Sie in den Sourcecodes.

Wenn Sie den Raytracer starten, kann
es Stunden dauern, bis das Programm
komplexe mathematische Welten be-
rechnet und am Bildschirm dargestellt
hat. Diese Arbeit wollen Sie nicht da-
durch verwerfen, daf§ das Programm zu
Threm Desktop schaltet.

Deshalb haben wir das Basissystem,
aufbauend auf vorhergehenden Ausga-
ben von PC Underground, um eine
bmp-Speicher-Routine erweitert. Las-
sen Sie sich tiberraschen, welche weite-
ren Features die beiden folgenden Aus-
gaben vorstellen werden. ET

Die kompletten Quelltexte finden Sie auf der Heft-
CD im Verzeichnis praxis\pc-under und auf unserer
Web-Site

www.pc-magazin.de/magazin/

O extras.htm
Klicken Sie in der Tabelle Online Extras unter Pra-
xis auf das entsprechende Download-Feld.

Literatur:). D. Foley, Andries van Dam, S. K. Feiner,
J. F. Hughes, R. L. Philips: Grundlagen der Compu-
tergrafik, Addison-Wesley-Verlag 1994, 600 Seiten,
99 Mark, ISBN 3-893-19-647-1

Spi egel Farbe = Raytrace
Rekurs. stiefe + 1)
Aktuel | e Farbe += Spi egel Farbe
mt Spi egel ungskoef fi zi ent skaliert

if (Cbjekt ist transparent)
{tRay = gebrochener Strahl
Il rekurs. Aufruf:
Tr anspar enzFarbe =
Raytrace(t Ray,
Aktuel | e Farbe += Transpar enzFar be
mt Spi egel ungskoef fi zi ent skaliert

Rekurs.stiefe + 1)

} el se return H ntergrundf arbe;

Die Berechnungsroutine veranschaulicht der Pseudocode

raytrace.rechne.

