
226 Oktober 1999 PC Magazin

P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R /
N I L S P I P E N B R I N C K

Raytracing berechnet eindrucks-
volle Bilder einer mathemati-
schen Welt. Diese künstliche

Welt basiert auf der Idee, einen Licht-
strahl zurückzuverfolgen, der eine ima-
ginäre Kamera erreicht.

Die Lichtstrahlen können zum Bei-
spiel auf Objekte treffen, deren Material
Licht absorbiert, reflektiert bzw. teil-
weise oder ganz hindurchläßt. Andere
Materialien wiederum kombinieren be-
liebige dieser Eigenschaften.

■ Prinzip des
rekursiven Raytracing
Der Betrachter in der mathematischen
Welt blickt durch ein Beobachtungsfen-
ster, dessen reales Pendant Ihr Monitor
darstellt. Sie können sich Raytracing
dann so vorstellen, daß durch jeden Pi-

xel Ihres Monitors ein Lichtstrahl zu Ih-
nen dringt. Sie wollen nun berechnen,
welche Farbe dieses Licht hat. Diese
Strahlen sind die sogenannten Primär-
strahlen.

Stellen Sie sich vor, daß ein Strahl, den
Sie zurückverfolgen, sich eventuell an ei-
ner Oberfläche teilt. Da ein Teil seines
Lichts absorbiert, ein anderer Teil re-
flektiert wird, liegt es nahe, Raytracing
rekursiv zu berechnen, also eine Berech-
nung zu wählen, die sich selbst wieder
aufruft. Das Problem, festzustellen, an
welcher Oberfläche der Lichtstrahl auf-
trifft, hört sich unbedeutend an, ist aber
der rechenintensivste Teil der Raytra-
cing-Methode.

Wie sich Strahlen aufteilen können,
sehen Sie in einer Aufsicht auf drei Ku-
geln. Der graue Primärstrahl fällt auf die
Szene, blau reflektieren die Sekundär-
strahlen. Rot symbolisierte Strahlen ent-
stehen durch Lichtbrechung und Trans-
parenz.

Die grün eingezeichneten Vektoren
sind die Oberflächennormalen: Diese
kennzeichnen jeweils den Vektor, der
senkrecht auf einem Punkt der Ober-
fläche steht. Mit den Normalen berech-
nen Sie später die Beleuchtung. Die ge-
punkteten Linien heißen Schattenstrah-
len.

Da die Berechnung rekursiv erfolgt,
sich also selbst wieder aufruft, unter-
scheiden Sie verschiedene Rekursi-
onstiefen. Diese verwenden Sie
hauptsächlich, um die Berechnungen an
einer bestimmten Tiefe abzubrechen.
Stellen Sie sich vor, Sie verfolgen einen
Lichtstrahl, der zwischen zwei perfek-

ten Spiegeln hin- und herreflektiert
wird. Die Berechnungsroutine würde
sich immer wieder selbst aufrufen und
nie stoppen.

Darum legen Sie bei Raytracing eine
maximale Rekursionstiefe fest: Sie ver-
folgen einen Lichtstrahl nur bis zu einer
bestimmten, festgelegten Spiegelung.
Die Berechnungsroutine veranschau-
licht der Pseudocode raytrace.rechne
(Listing 1).

■ Mathematische
Grundlagen
Mathematische Grundlagen führen tie-
fer in das Thema hinein. Punkte im drei-
dimensionalen Raum geben Sie durch
Ihre x-, y- und z-Komponenten an. Den
Vektor x→ beschreiben Sie also mit

x→ = (x1, x2, x3)

Mit einem Vektor bestimmen Sie einen
Ort (Ortsvektor) oder legen eine Rich-
tung fest. Aus einem Startpunkt s→ und
einer Richtung r→ definieren Sie mit t als
reeller Zahl eine Gerade eindeutig im
Raum:

x→ = s→ + t * r →

Wenn zusätzlich
t > 0

gilt, handelt es sich um eine Halbgerade,
also um den Teil der Geraden, der vom
Antragspunkt aus dem Richtungsvektor
folgt. Diese Rechnungen operieren mit
Vektoraddition und Subtraktion:

x→ + y→ =(x1+y1,x2+y2,x3+y3)
x→ - y→ =(x1-y1,x2-y2,x3-y3)

Für weitere Berechnungen benötigen Sie
den Betrag eines Vektors, also seine Län-
ge. Diese berechnen Sie mit der dreidi-
mensionalen Variante nach Pythagoras:

|x→| = sqrt(x1*x1+x2*x2+x3*x3)

Zusätzlich benötigen Sie das Skalarpro-
dukt, wofür Sie das Zeichen * definieren:

x→ * y→ =x1*y1+x2*y2+x3*y3

Sie erhalten also aus zwei Vektoren eine
reelle Zahl. Das Skalarprodukt bringt
noch weitere Eigenschaften mit:

x→*y→=|x->|*|y →|*cos(phi)

phi stellt dabei den Winkel zwischen den
beiden Vektoren dar. Mit dem Skalar-
produkt berechnen Sie auch die Be-
leuchtung.

Die letzte Vektoroperation ist das
Vektor- oder Kreuzprodukt. Wenn Sie
zwei Vektoren mit dem Vektorprodukt
verknüpfen, erhalten Sie einen dritten
Vektor, der senkrecht auf der von den
zwei Vektoren aufgespannten Ebene
steht. Es gilt:

x→ X y→ = (x2*y3-x3*y2,
➥ x3*y1-x1*y3, x1*y2-x2*y1)

Demo-Programmierung unter Windows 95/98

Welten aus
Lichtstrahlen
Praktisch alle Rendering-Pakete arbeiten mit

Raytracing, also mit Lichtstrahlenverfolgung.

Mit etwas Mathematik folgen Sie einem Licht-

strahl bis zur 20. Spiegelung.

DAS LICHT, das Sie durch einen Pixel

Ihres Monitors sehen, stellen Sie sich

als Primärstrahl vor.

PC Magazin Oktober 1999 227

P C U N D E R G R O U N D
P R A X I S

Eine weitere Grundlage für dieses
Raytracer-Projekt ist die Matrizenrech-
nung. Stark vereinfacht können Sie eine
Matrix als einen Kasten voller Zahlen
bezeichnen, der verknüpft mit einem
Vektor eine geometrische Transformati-
on darstellt. Solche Transformationen
können zum Beispiel Drehungen, Ver-
schiebungen oder Skalierungen sein.

Durch Multiplikation zweier Matri-
zen erhalten Sie eine neue Matrix, die die
beiden Transformationen der Aus-
gangsmatrizen enthält. Dabei ist die Rei-
henfolge natürlich entscheidend, denn es
macht einen Unterschied, ob Sie einen
Vektor zuerst drehen und dann ver-
schieben – oder umgekehrt.

An dieser Stelle konzentrieren Sie sich
lediglich auf die Anwendung von Matri-
zen. Im Sourcecode des Raytracers fin-
den Sie alle entsprechenden Routinen,
die Sie zur Matrizenrechnung benöti-
gen. Wenn Sie eine Matrix einfach als

Transformation ansehen, können Sie
diese Routinen verwenden, ohne sich
länger mit der Theorie beschäftigen zu
müssen.

■ Das Kameramodell
Die virtuelle Kamera ist eine erste An-
wendung der Matrizenrechnung. Für
die einfachere Berechnung der Primär-
strahlen soll die Kamera immer auf der
negativen z-Achse des Koordinatensy-
stems liegen. Da sie aber frei positionier-
bar sein soll, müssen sich die anderen
Objekte in der mathematischen Welt
entsprechend bewegen.

Sie bewegen und drehen die mathe-
matische Welt also so, daß die Kamera
auf der z-Achse steht. Die Berechnungs-
schritte dazu finden Sie in der Routine
rtcamera.cpp auf der Heft-CD in der
Funktion ab Zeile 314:

RTCamera :: BuildMatrix()

Wenn Sie eine Kamera durch eine Posi-
tion und einen Punkt, auf den Sie zeigt,
festgelegt haben, arbeiten Sie drei Schrit-
te ab:
• Sie berechnen die Verschiebungsma-
trix, damit der Zielpunkt in den Ur-
sprung „rutscht“.
• Sie berechnen die Drehungsmatrix,
um den Startpunkt auf die z-Achse zu
rotieren, wobei Sie um den Zielpunkt
drehen.
• Sie multiplizieren die Matrizen.

Das Resultat transformiert alle in der
mathematischen Welt vorhandenen
Ortsangaben, also die Ortsvektoren.

Alle Ortsangaben beziehen sich nun
auf die neue mathematische Kamerapo-
sition. Diese befindet sich auf einem be-
liebigen Punkt wie (0,0,-z) und blickt in
Richtung des Ursprungs (0,0,0).

Mit diesem Wissen und einem gegebe-
nen Öffnungswinkel der Sichtpyramide
berechnen Sie die Primärstrahlen:

float Breite =
tan(OeffnungswinkelHorizontal);
float Hoehe =

tan(OeffnungswinkelVertikal);
for (y = 0; y < Zeilen; y++)
for (x = 0; x < Spalten; x++)
{PixPos.x=(2*x/

Bildschirmbreite-1)*Breite*(-z)
PixPos.y=(2*y/

Bildschirmhoehe-1)*Hoehe*(-z)
PixPos.z = 0;

Ray = PixPos - (0, 0, -z)
Pixel(x, y) =Raytrace(Ray, 1) }

■ Schnittpunktberechnung
Die Schnittpunktberechnungen sind der
wichtigste und rechenzeitaufwendigste
Teil eines Raytracers. Es gilt also, diese
möglichst effizient zu berechnen und ih-
re Zahl klein zu halten.

Bei den folgenden Herleitungen ge-
hen Sie immer davon aus, daß Sie eine
Halbgerade durch ihren Startpunkt g→
und ihren Richtungsvektor dg→ bestim-
men. Sie können also die Geradenglei-
chung mit t als beliebiger Zahl aufstellen:

x→ = g→ + t * dg →

Für die Halbgeraden gilt wieder
t > 0

■ Die Ebene
Das einfachste geometrische Primitiv für
einen Raytracer ist die Ebene: Sie stellen
also fest, ob ein Strahl eine Ebene schnei-
det. Eine Ebene im Raum legen Sie ein-
deutig durch drei (Antrags-) Punkte fest.
Diese Darstellung haben wir zur Einga-
be in der Skriptsprache gewählt.

Für das Raytracing-Programm über-
führen Sie diese Darstellung in die soge-
nannte Hessesche Normalform (HNF).
Diese verwendet die Normale auf einer

Ebene und ihren Abstand zum Koordi-
natenursprung. Ist die Ebene durch die
Punkte x1→, x2→ und x3→ gegeben, so er-
halten Sie die Normale mit folgender
Formel:

a→ = x2→ - x1→
b→ = x3→ - x1→
n→ = a→ X b→

Nach dem Kreuzprodukt X müssen Sie
die Normale noch normalisieren, das
heißt sie auf die Länge 1 bringen. Dazu
teilen Sie jede Komponente von n→ durch
ihren Betrag.

Den Abstand der Ebene vom Ur-
sprung erhalten Sie, indem Sie einen be-
liebigen Antragspunkt auf die Normale
projizieren. Diesen Vorgang erledigen
Sie mit dem Skalarprodukt:

abstand = n → * x1→

Das Resultat dieser Vorberechnungen
verdeutlicht eine Formel, in der alle

Punkte x→, die sich auf dieser Ebene be-
finden, folgende Gleichung erfüllen:

n→ * x→ = abstand (HNF)

Der mathematische Trick ist nur, das x→

in der HNF durch die Geradenglei-
chung zu ersetzen. Sie erhalten dann

n→*(g→+t*dg→) = abstand

Alle Parameter außer t sind Ihnen in die-
ser Gleichung bekannt. Durch das t kön-
nen Sie den Schnittpunkt bestimmen.
Also lösen Sie die Gleichung nach t auf:

n→*g→+n→*t*dg→ = abstand
t*n→*dg→=abstand-n →*g→
t=(abstand-n →*g→)/(n →*dg→)

Die Gerade hat nur einen Schnittpunkt
mit der Ebene, wenn der Term (n→ * dg→)
ungleich Null ist. Andernfalls könnten
Sie die Gleichung auch nicht lösen, da ei-
ne Division durch Null vorläge.

Setzen Sie das soeben berechnete t
wieder in die Gleichung ein, erhalten Sie
den Schnittpunkt:

s→ = g→ + t * dg →

Dieser ist nur interessant, wenn
t > 0

ist, da er sich sonst auf der „falschen“ q

RAYTRACING RECHNET mit Primär- und

Sekundärstrahlen, Lichtbrechung, Trans-

parenz und Oberflächennormalen.

IN DER REKURSIONSTIEFE 3 verfolgen

Sie einen Lichtstrahl bis zur dritten Spie-

gelung.

228 Oktober 1999 PC Magazin

P C U N D E R G R O U N D
P R A X I S

Seite der Halbgeraden befindet, also
zum Beispiel hinter dem Betrachter.

■ Die Kugel
Das zweite Primitiv, das wir Ihnen in
diesem ersten Teil des Raytracers vor-
stellen, ist die Kugel. Eine Kugel legen
Sie durch Mittelpunkt und Radius fest.
Der Radius ist der Abstand vom Mittel-
punkt. Also müssen alle Punkte auf der
Kugeloberfläche, welche für uns von In-
teresse sind, diesen Abstand vom Kugel-
mittelpunkt haben.

Den Abstand zweier Punkte im Raum
berechnen Sie mit

a→ = (ax, ay, az)
b→ = (bx, by, bz)
abstand=sqrt(ax*bx+ay*by+az*bz)

=sqrt(a →*b→)

Wenn Sie also die Kugel durch ihren
Mittelpunkt m→ und ihren Radius r defi-
niert haben, erfüllen alle Punkte x→ auf ih-
rer Oberfläche die Gleichung

sqrt(d → * d→) = radius

Der Vektor d→ geht vom Mittelpunkt
zum variablen Punkt x→:

d→ = (m→ - x→)

Daraus ergibt sich:
sqrt((m →-x→)*(m→-x→))

=radius

Bei dieser Gleichung können Sie nicht
einfach die Wurzel mit dem vermeintlich
quadratischen Term darunter auflösen.
Denn (m→ - x→) stellt einen Vektor dar,
während (m→ - x→) * (m→ - x→) eine reelle
Zahl ist.

Auch in dieser Gleichung müssen Sie
x→ ersetzen, um den Schnittpunkt zu er-
halten, aber vorher quadrieren Sie sie:

(m→ - x→) * (m → - x→) =
(m→ - x→) 2=radius 2

(m→ - (g → + t * dg →)) 2

= radius 2

((m→ - g→) - t * dg →) 2

= radius 2

(m→ - g→) 2 - 2 * (m → - g→)
* (t * dg →) + (t * dg →) 2

= radius 2

Diesen Term formen Sie nun in eine qua-
dratische Gleichung um, zu der es eine
Lösungsformel gibt:

t 2 * dg→2 -
t * (m → - g→) * dg → +
(m→ - g→) 2 - radius 2 = 0

oder
a*t 2 + b*t + c = 0

mit
a = dg→2

b = -(m → - g→) * dg →
c = (m→ - g→) 2 - radius 2

a, b und c sind reelle Zahlen. Die mögli-
chen Lösungen sind dann

t1 =

(-b+sqrt(b 2-4*a*c))/(2*a);
t2=
(-b-sqrt(b 2-4*a*c))/(2*a);

Die Zahl der Lösungen läßt sich durch
die Diskriminante

D = b 2 - 4 * a * c

bestimmen.
D < 0

bedeutet keine Lösung,
D = 0

eine Lösung und
D > 0

zwei Lösungen.
Diese t1 und t2, eingesetzt in die Glei-

chung der Halbgeraden, ergeben dann
wieder einen oder mehrere Schnittpunk-
te.

Wie Sie im folgenden sehen, benötigen
Sie beim Raytracing auch immer die
Oberflächennormale an einem Schnitt-
punkt. Bei der Ebene steht diese immer
fest. Bei der Kugel erhalten Sie sie, indem
Sie die Differenz des Ortsvektors eines
Schnittpunkts und des Kugelmittel-
punkts normalisieren, also: der normali-
sierte Vektor zu (s→ - m→).

Natürlich benötigen Sie im Raytra-
cing-Programm nur die endgültigen
Formeln, die aber ohne ihre Herleitung
kaum nachvollziehbar sind. Wie Sie se-
hen, sind einige geschickte Umformun-
gen notwendig, die zudem Rechenzeit
sparen. Deshalb speichert jedes Raytra-
cing-Programm zum Beispiel zu einem
Kugelobjekt nicht nur den Radius, son-
dern auch gleich dessen Quadrat. Denn
nur damit rechnet das Programm.

■ Beleuchtung berechnen
Nachdem Sie nun Schnittpunkte be-
rechnen können, bleibt noch der zweite
wichtige Punkt des Raytracing: die Be-
rechnung der Beleuchtung. Diese Re-
chenverfahren klären, wie sich das ein-
fallende Licht und die Oberflächenei-
genschaften auf den visuellen Eindruck
auswirken.

Der erste Einflußparameter ist das so-
genannte ambiente Licht, ein überall in
der mathematischen Welt gleichstarkes
Licht. Dieses läßt die Oberfläche der
Körper überall in ihrer Eigenfarbe er-
scheinen.

Bei den folgenden Berechnungen für
die Beleuchtung müssen Sie vorher für
jeden Schnittpunkt feststellen, ob und
wie stark er von den Lichtquellen be-
strahlt wird. Der einfachste Fall einer
Lichtquelle – und der vorerst hier ver-
wendete – ist eine punktförmige Licht-
quelle ohne räumliche Ausdehnung.

Um festzustellen, ob eine Lichtquelle
einen Punkt beleuchtet, berechnen Sie
einen sogenannten Schattenstrahl. Die-
ser stellt eine Halbgerade vom Schnitt-
punkt in Richtung der Lichtquelle dar.

Nun berechnen Sie die Schnittpunkte
der Objekte mit dem Schattenstrahl.
Wenn es Schnittpunkte mit undurch-
sichtigen Objekten gibt, liegt der
Schnittpunkt im Schatten, bei teilweise
durchsichtigen Objekten vermindern
deren Transparenz und Farbe das Licht
der Quelle.

Wenn nun eine Lichtquelle einen
Punkt beleuchtet, kommen noch zwei
weitere Eigenschaften hinzu, die von der
Stärke des einfallenden Lichts und von
der Oberfläche des bleuchtetenden Kör-
pers abhängen.

Die wichtigste der Beleuchtungsbe-
rechnungen ist die Streureflexion. Diese
entsteht durch eine gleichmäßige Refle-
xion von Licht an kleinsten Partikeln
und Inhomogenitäten der Objektober-
flächen. Das mathematischen Modell
berechnet diesen Sachverhalt mit dem
Lambertschen Kosinussatz:

Die Intensität des reflektierten Lichts
an einer Stelle ist durch die Oberflächen-
normale dieses Punkts und der Einfalls-
richtung des einfallenden Lichts be-
stimmt.

DAS AMBIENTE LICHT läßt die Oberfläche

der Körper in der Eigenfarbe erscheinen.

DIE STREUREFLEXION läßt die Objekte

viel lebendiger im dreidimensionialen

Raum erscheinen.

PC Magazin Oktober 1999 229

P C U N D E R G R O U N D
P R A X I S

Die Einfallsrichtung des Lichts erhal-
ten Sie durch die vektorielle Substrakti-
on der Lichtquellenposition und des
Schnittpunkts. Wenn Sie diesen Vektor
normalisieren, berechnen Sie die Inten-
sität der Streureflexion mit

Ls = n→ * r→

n→ stellt die Normale und r→ die Einfalls-
richtung dar.

Weiterhin berücksichtigen Sie die so-

genannte spiegelnde Reflexion. Sie ent-
steht dadurch, daß sich die Lichtquellen
selbst, die in der Realität eine endliche
Ausdehnung besitzen, auf der Kugel-
oberfläche spiegeln. Sie können die spie-
gelnde Reflexion, auch Glanzlichter ge-
nannt, zum Beispiel als helle Punkte auf
Billardkugeln beobachten. Jeder Arbeit-
schritt schafft realistischere Welten im
dreidimensionalen Raum.

Da Sie keine Lichtquellen endlicher
Ausdehnung vorliegen haben, erschaf-
fen Sie dieses Phänomen anderweitig.
Hierzu spiegeln Sie den Lichtstrahl des
einfallenden Lichts an der Oberfläche
der Körper: Sie berechnen den Kosinus
des Winkels zwischen dem gespiegelten
Vektor und dem, den Sie gerade verfolgt
haben und mit dem Sie auch den gerade
zu behandelnden Schnittpunkt berech-
net haben. Sind dieser Kosinus – und so-
mit auch der Winkel – in einer gewissen
Toleranz wie zum Beispiel +-10 Grad,
dann haben Sie an dieser Stelle ein
Glanzlicht.

Die Intensität errechnen Sie, indem Sie
den Kosinus mit einer relativ großen
ganzen Zahl potenzieren. Meistens lie-
gen diese Zahlen im Bereich von 10 bis
100. Die Farbe des Glanzlichts ist, da es
sich um das Spiegelbild der Lichtquelle
handelt, unabhängig von der Farbe des
Körpers. Die Berechnung der Glanz-
lichter weicht von der physikalischen
Realität ab, liefert aber trotzdem realisti-
sche Ergebnisse.

■ Reflexion und
Lichtbrechung
Wenn ein Lichtstrahl den Körper an-
schneidet und Licht dabei reflektiert,
spiegeln Sie den Lichtstrahl an seiner
Oberfläche und berechnen für die resul-
tierende Halbgerade die Farbe rekursiv.

Die Spiegelung eines Richtungsvek-
tors an einer Oberfläche erhalten Sie mit
relativ einfachen Mitteln: Wenn e→ der
einfallende Strahl ist, n→ die Oberflächen-
normale, so gilt für den reflektierten
Strahl

r→=e→/(e→*n→)+2*n→

Bei der Transmission, der Lichtbre-
chung, ist außer dem Anteil des Lichts,
das durch das Material dringen kann,
noch das Verhältnis der sogenannten
Brechzahlen von Interesse. Die Brech-
zahl ist ein Maß, wie stark Licht abge-
lenkt werden kann. Wasser hat zum Bei-
spiel eine höhere Brechzahl als Luft.

Dringt ein Strahl von einem Medium
A in das Medium B ein

berechnet sich die Richtung des gebro-
chenen Strahls wie folgt:

b = Brechzahl Medium A
/ Brechzahl Medium B
s = - e → * n→

Ist der Term
(1-b 2*(1-s 2))

kleiner Null, tritt der Fall der sogenann-
ten Totalreflexion auf. In diesem Fall
existiert kein gebrochener Strahl, son-
dern das Licht wird an der Oberfläche
reflektiert und der Strahl auch dement-
sprechend behandelt. Dieses Phänomen

ist zum Beispiel an den Rändern von
Luftblasen unter Wasser zu beobachten.

Ist dieser Term aber größer oder
gleich Null, dann berechnen Sie den re-
sultierenden Vektor mit

g→=b*e→+(b*s-sqrt(1-b 2

*(1-s 2)))*n →

■ Die Beleuchtungs-
gleichung

Diese Erkenntnisse lassen sich in einer
großen, auf den ersten Blick schwer
überschaubaren Gleichung zusammen-
fassen. Beim zweiten Hinsehen wird
aber schnell klar, woher die Terme stam-
men: Für die Intensität I eines Farbka-
nals, die es hier in Rot, Grün und Blau
gibt, gilt jeweils:

I = Ia * Ka * Of +

Für jede beleuchtende Lichtquelle gilt:
[-Kd*Of*(n →*l→)+Ks*
((h→*l→)^p]+Kr*Ir+Kt*It

Ia, Ir und It kennzeichnen die Intensitä-
ten des ambienten Lichts und der reflek-
tierten bzw. transmittierten Strahlen.
Die Koeffizienten Kd, Ks, Kr und Kt
(sprich der Prozentsatz) bestimmen
Streureflexion, Glanzlichter, Reflexion
und Transmission.

l→ bezeichnet den Strahl vom Schnitt-
punkt zur Lichtquelle und h→ den gespie-
gelten Vektor des zu verfolgenden
Strahls. Of gibt als Teil der Materialei-
genschaften eines Körpers an, wieviel
Licht des entsprechenden Kanals absor-
biert wird. Prinzipiell müßten Sie für je-
den Farbkanal im RGB-Farbsystem, mit
dem Sie arbeiten wollen, diese Glei-
chung lösen. Das ist aber kein Problem,
da die Koeffizienten alle gleich sind.

Im Sourcecode des Raytracers erken-
nen Sie genau die einzelnen Terme der
Beleuchtungsgleichung. Den Teil Für je-
de beleuchtende Lichtquelle finden Sie
als for-Schleife und Schattentest zusam-
men mit den weiteren Implementatio-
nen in

void RTCamera ::
RecursiveRaytracing(...).

■ Die Implementation
Bei der Implementation eines Raytra-
cers, den Sie in den nächsten zwei Aus-
gaben noch erweitern werden, planen
Sie genau, wie die Code-Teile zusam-
menhängen und wirken sollen. Es bietet
sich auf jeden Fall eine objektorientierte
Variante an, da Sie Vererbungshierarchi-
en bei Primitiven nutzen, denen Sie spä-
ter noch neue hinzufügen. Damit bleibt
die Gliederung übersichtlicher. q

DIE SPIEGELNDE REFLEXION sehen Sie

wie Glanzlichter als helle Punkte auf

Billardkugeln.

230 Oktober 1999 PC Magazin

P C U N D E R G R O U N D
P R A X I S

Als Grundbaustein nutzen Sie die
Objektbasisklasse RTObject: mit Me-
thoden, um Materialinformation zu set-
zen, Transformationen anzuwenden
und Schnittpunkte zu erfragen. RTPla-
ne ist die Ebenenklasse, die die Metho-
den für das Primitiv implementiert.
RTSphere implementiert die Klasse des
Kugelprimitivs.

Eine zweite Objekthierarchie stellen
die Lichtquellen dar, von denen es zwar
bisher nur eine Klasse gibt, aber weitere
geplant sind: RTLightSource mit Me-
thoden für die Transformationsanwen-
dung und den Schattentest. RTPoint-
Light implementiert die punktförmigen
Lichtquellen.

Zusätzlich nutzen Sie die Kameraklas-
se RTCamera mit kameraspezifischen
Operationen und der rekursiven
Raytracing-Prozedur.

Die letzte Klasse RTScene umfaßt die
mathematische Welt mit ihren Informa-
tionen wie Kamera, Objekte und Licht-
quellen.

■ Mathematische Welten
Im letzten Teil legen Sie eigene 3D-Wel-
ten an. Denkbar ist zum Beispiel, Ob-
jekte fest im Programmcode zu veran-
kern, was aber schwierig ist. Darum ver-
wenden Sie am besten eine Skriptsprache
wie eine eigene Programmiersyntax, die
auf die Beschreibung von Raytracing-
Szenen zugeschnitten ist.

Dazu benötigen Sie einen Programm-
teil, der diese Skriptsprache interpretiert
und die Objekte erzeugt. Diesen Teil
finden Sie im Sourcecode in der Datei
parser.cpp.

Szenenbeschreibungen in diese
Skriptsprache bilden Blöcke mit einem
Blockbezeichner und Daten. Manche
dieser Blöcke sind Bestandteil anderer
Blöcke. Kommentare in Blöcken be-
grenzen Sie wie in C durch /* und */
oder bringen sie in //-Zeilen unter. Vek-

toren geben Sie in eckigen Klammern an
wie <x1, x2, x3>, Zahlen ohne Klam-
mern. Der erste Block definiert die Ka-
meraoptionen:

camera
{position <5.0,-20.0,18.0>

look_at < 0.0,0.0,0.0> //K.ziel
up < 0,0,-1> //Kamera oben?
fov 25.0 //Öffnungswinkel
aspectratio 1.333333

//Breite/Höhe des Bildschirms }

Lichtquellen definiert diese mathemati-
sche Welt im Block

light
{
position <-5.0,0.0,10.0> //Ort
color < 0.5,0.5,0.5> //L.Farbe
}

Ein weiterer Block ist das Material. Die
Skriptsprache kennt zuerst das default-
material. Dieses definieren Sie an einer
beliebigen Stelle im Skript und weisen es
jedem neuen Primitiv zu, wenn Sie dafür
keine expliziten Materialinformationen
angeben.

Die einzelnen Parameter eines Materi-
alblocks sind:

defaultmaterial
{

rgb < 0.5, 0.5, 0.5> //RGB-Farbe
reflection 0.5 // Reflexkoef.
refraction 0.0 // Transparenz
diffuse 0.5 // Reflex.Koeffiz.
ambient 0.0 // Reflex.Koeffiz.
specular 1.0 // Koeffiz.für
// spiegelnde Reflexion

pow 50.0 // Potenz dafür
ior 1.0 // Brechzahl-Material

}

Ein Kugelprimitiv erzeugen Sie mit fol-
genden Zeilen:

sphere
{ < x1,x2,x3>, Radius (Zahl) }

Wollen Sie für ein Primitiv nicht das de-
faultmaterial verwenden, fügen Sie ei-
nen eigenen Materialblock ein:

sphere
{ < x1,x2,x3>, Radius (Zahl)

material
{ ... // Daten wie oben }

}

Eine Ebene erzeugen Sie mit folgendem

Block, wobei die drei Vektoren die An-
tragspunkte sind:

plane
{< 0.0, 0.0, 0.0 >,

< 1.0, 0.0, 0.0 >,
< 0.0, 1.0, 0.0 > }

Weitere Blöcke, die Sie einem Primitiv
noch zuordnen können, enthalten An-
gaben über zusätzliche Transformatio-
nen. So können Sie ein Primitiv
nachträglich skalieren, drehen oder ver-
schieben. Die Befehle, die Sie wie das
material in den Primitivblock einbauen,
lauten:

rotate < Vektor> // Drehung
translate < Vektor> //Schiebung
scale float // Skalierung

Mit dieser Skriptsprache können Sie ex-
perimentieren. Alle Bilder für diesen Ar-
tikel berechnen Sie mit dem Raytracing-
programm. Skriptdateien dazu finden
Sie in den Sourcecodes.

Wenn Sie den Raytracer starten, kann
es Stunden dauern, bis das Programm
komplexe mathematische Welten be-
rechnet und am Bildschirm dargestellt
hat. Diese Arbeit wollen Sie nicht da-
durch verwerfen, daß das Programm zu
Ihrem Desktop schaltet.

Deshalb haben wir das Basissystem,
aufbauend auf vorhergehenden Ausga-
ben von PC Underground, um eine
bmp-Speicher-Routine erweitert. Las-
sen Sie sich überraschen, welche weite-
ren Features die beiden folgenden Aus-
gaben vorstellen werden. s E T

Die kompletten Quelltexte finden Sie auf der Heft-
CD im Verzeichnis praxis\pc-under und auf unserer
Web-Site

www.pc-magazin.de/magazin/
➥extras.htm

Klicken Sie in der Tabelle Online Extras unter Pra-
xis auf das entsprechende Download-Feld.

LLiitteerraattuurr:: J. D. Foley, Andries van Dam, S. K. Feiner,
J. F. Hughes, R. L. Philips: Grundlagen der Compu-
tergrafik, Addison-Wesley-Verlag 1994, 600 Seiten,
99 Mark, ISBN 3-893-19-647-1

raytrace.rechne

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:

for (jeder Pixel des Bildes)
{Ermittle "ray" durch Pixel
pixelfarbe=Raytrace(ray,1);}
Farbe Raytrace(Vektor ray,
int Rekursionstiefe)
{if (Objekt getroffen)
{Rechne Schnittpunkt+Normale,
hole Materialinformation
Aktuelle Farbe = ambientes Licht
for (jede Lichtquelle)
{PrÅfe, ob+wie die Lichtquelle die

OberflÑche im Schnittpkt. beleuchtet
Akt. Farbe += diffuse+spiegel Reflex
}

if (Rekurs. tiefe <max. Rekurs. tiefe)
{if (Objekt reflektiert)
{rRay = reflektierten Strahl
// rekurs. Aufruf:

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:

SpiegelFarbe = Raytrace
(rRay, Rekurs. stiefe + 1)
Aktuelle Farbe += SpiegelFarbe
mit Spiegelungskoeffizient skaliert

}
if (Objekt ist transparent)

{tRay = gebrochener Strahl
// rekurs. Aufruf:

TransparenzFarbe =
Raytrace(tRay, Rekurs. stiefe + 1)
Aktuelle Farbe += TransparenzFarbe
mit Spiegelungskoeffizient skaliert

}
}
} else return Hintergrundfarbe;

}

Die Berechnungsroutine veranschaulicht der Pseudocode
raytrace.rechne.

