
220 Dezember 1999 PC Magazin

P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R /
N I L S P I P E N B R I N C K

Mit den Erweiterungen in die-
sem zweiten Teil unserer
Raytracer-Serie zaubern Sie

weitaus realistischere Landschaften auf
Ihren Bildschirm. Doch bevor Sie die
vielen Neuerungen in Ihren Raytracer
einbauen und sehen, machen Sie sich an
die mathematische Herleitung der Zy-
linder- und Kegelprimitive. Mit mathe-
matischer Kleinarbeit verfolgen Sie die
Lichtstrahlen und ihre verschiedenarti-
gen Spiegelungen.

Als erstes untersuchen Sie einen Ke-
gel, wie ihn der Sourcecode zum Ray-
tracing-Artikel (Heft 10, ab S. 226, auch
auf der aktuellen Heft-CD) vorwegge-
nommen hat. Es handelt sich hierbei um
einen Spezialfall eines Kegels, bei dem
die Basis, also der Mittelpunkt der unte-

ren Kreisfläche, im Ursprung des Koor-
dinatensystems liegt, und die Spitze sich
auf der positiven z-Achse befindet. Sie
können die Schnittpunktberechnungen
aller Kegel auf Schnittpunkte mit solch
einem Kegel zurückführen. Und so be-
rechnen Sie diesen Kegel:

Wie bisher beschreiben Sie den ver-
folgten Lichtstrahl durch eine Halbgera-
de, hier gegeben durch ihren Startpunkt
g→ und ihren Richtungsvektor ∂g→, wo-
bei t > 0 gilt:

x→=g→ + t* ∂g→
Stellen Sie sich nun den Kegel als einen
Stapel von Kreisscheiben vor, deren Ra-
dius von der Höhe abhängt (Ihrer z-Ko-
ordinate), in der Sie liegen. So hätte
die unterste Kreisscheibe den Radius
des Basiskreises und die oberste den
Radius 0.

Da sich der Radius linear ändert, stel-
len Sie eine Formel auf, die den Radius
abhängig von z beschreibt. In dieser For-
mel lassen Sie für die Spitze auch ein Ra-
dius ungleich Null zu, was einen Kegel-
stumpf beschreiben würde:

Radius(z)=Radius(Basis)+
➥(Radius(Spitze)-Radius(Basis))
➥* z / z1

oder:
Radius(z)=Radius(0)+dr*z

mit
dr=(Radius(z1)-Radius(z0))/z1

Den Schnittpunkt mit einer Kreisschei-
be bestimmen Sie – fast analog zur Be-
rechnung der Schnittpunkte mit Kugeln
– über die Abstandsberechnung. Auf ei-
nem Kreis liegen alle Punkte x->, deren
Abstand vom Mittelpunkt gleich dem
Radius des Kreises ist, also:

| m→ - x→ | = d → = radius

Da Sie sich bei einem Kreis im Zweidi-
mensionalen befinden, sind nur die x-
und y-Komponenten von m→, x→ und d→
von Interesse:

d→ * d→ = radius 2

d→x*d→x+d→y*d→y=radius 2

Bei unserem Kegel ist der Radius jedoch
nicht fest, sondern abhängig von z. Dar-
aus ergibt sich:

d→x*d→x+d→y*d→y=
➥Radius(z) 2

d→x*d→x+d→y*d→y=
➥(Radius(0)+dr*x →z) 2

(m→x-x→x)*(m→x-x→x)+
➥(m→y-x→y)*(m→y-x→y)=
➥(Radius(0)+dr*x →z) 2

Nun ersetzen Sie wieder alle x→ durch die
Gleichung der Halbgeraden:

(m→x-(g→x+t*dg→x))*
➥(m→x-(g→x+t*dg→x))+
➥(m→y-(g→y+t*dg→y))*
➥(m→y-(g→y+t*dg→y))=
➥(Radius(0)+dr*(g →z+t*dg→z)) 2

Durch Ausmultiplizieren erhalten Sie
dann:

(m→x-g→x) 2-2*
➥(m→x-g→x)*t*dg →x+t 2*
➥(dg→x) 2+(m→y-g→y) 2

➥-2*(m→y-g→y)*t*dg →y+t 2

➥*(dg→y) 2=
➥(Radius(0)+dr*g →z) 2+t 2

➥*(dr*dg →z) 2+2*t*
➥(dr*dg→z)*(Radius(0)+dr*g →z)

Nun fassen Sie alle Terme so zusammen,
damit Sie wieder eine quadratische Glei-
chung erhalten – wie bei der Schnitt-
punktberechnung mit Kugeln:

a*t 2+b*t+c=0

mit
a=(dg→x) 2+(dg→y) 2

➥-(dr*dg →z) 2-(dr*dg →z) 2

b=-2*(m→x-g→x)*dg→x-2*
➥(m→y-g→y)*dg→y-2*(dr*dg →z)*
➥(Radius(0)+dr*g →z)
c=(m→x-g→x) 2+(m→y-g→y) 2

➥-(Radius(0)+dr*g →z) 2

a, b und c sind reelle Zahlen. Die mögli-
chen Lösungen sind:

t1=(-b+sqrt(b 2-4*a*c))/(2*a);
t2=(-b-sqrt(b 2-4*a*c))/(2*a);

Die Zahl der Lösungen läßt sich durch
die Diskriminante

D=b2-4*a*c

bestimmen: Für D < 0 gibt es keine Lö-
sung, D = 0 bringt eine Lösung, und
D > 0 führt zu zwei Lösungen.

Setzen Sie t1 und t2 in die Halbgera-
dengleichung ein. Denken Sie daran, nur
die Position t1 und t2 sind interessant.
Sie erhalten dann die Schnittpunkte.

Die Berechnung der Oberflächennor-
malen gestaltet sich komplizierter als bei
einer Kugel. Hier berechnen Sie zuerst
den Differenzvektor des Schnittpunkts

Demo-Programmierung unter Windows 95/98

Mit Kegel
und Zylinder
Virtuelle Welten sehen oft künstlich aus. Das muß

nicht sein: Dieser Beitrag erweitert Ihren
Raytracer, damit sich die künstliche Welt der

wirklichen nähert.

DIESER KEGEL hat seine Basis im Ursprung

des Koordinatensystems und seine Spitze

auf der positiven z-Achse.

Radius an der Basis

Basis (x0, y0, z0)

Spitze (x1, y1, z1)

Radius an der Spitze (hier =0)

z

y

x

PC Magazin Dezember 1999 221

P C U N D E R G R O U N D
P R A X I S

(rot eingezeichnet) mit dem Punkt auf
der Mittelachse des Kegels, der auf glei-
cher Höhe liegt, d.h. den gleichen z-
Wert besitzt:

d→ = s→ - (0, 0, s →z)

Normalisieren Sie diesen Vektor, und
skalieren Sie ihn mit folgendem Term:

Skalierungsfaktor=
(z1-z0)/(Radius(0)-Radius(z1))

Der Skalierungsfaktor beschreibt, wie
steil der Kegelmantel ist, also das Ver-
hältnis seiner Höhe zu seiner Breite.

Da eine Normale immer senkrecht zu
einer Oberfläche steht, muß die Norma-
le des Kegels flacher sein, wenn der Ke-
gel steiler wird. Das erreichen Sie, indem
Sie den Vektor skalieren und die z-
Komponente des resultierenden Vek-
tors, die an dieser Stelle der Berechnung
immer 0 ist, auf 1 setzen.

d→=d→*Skalierungsfaktor
d→z = 1

Der resultierende Vektor d→ ist die ge-
suchte Normale.

Am besten ist, Sie versuchen sich
die Berechnung der Normalen anhand
kleiner Skizzen verschiedener Kegel
vorzustellen. Dabei bleibt die Frage, wie
Sie alle möglichen Kegel auf den hier
hergeleiteten Spezialfall zurückführen.
Die Antwort liefert die Matrizenrech-
nung.

Dazu berechnen Sie eine Matrix,
die die Transformation einer anderen
Matrix rückgängig macht. Mathemati-
ker bezeichnen dies als eine inverse
Matrix.

In PC Underground, Heft 10/99,
wurden alle Transformationen eines
Objekts und die durch die Kamera re-
sultierenden Transformationen in einer
Matrix eines jeden Objekts zusammen-

gefaßt (ab S. 212).
Diese Matrix benut-
zen Sie, um zum Bei-
spiel Koordinaten ei-
nes Objekts in den
Raum der Kamera zu
transformieren.

Umgekehrt kön-
nen Sie eine Matrix zu
einem Kegel konstru-
ieren, die einen Punkt
im Raum so abbildet,
daß Sie den Spezialfall
erhalten. Multiplizie-
ren Sie zum Beispiel
die Kegelspitze, die
Sie frei im Raum pla-
zieren können, mit
dieser Matrix, erhal-
ten Sie einen Punkt

auf der positiven z-Achse; transformie-
ren Sie die Basis des Kegels, erhalten Sie
den Ursprung. Man spricht hierbei von
einem Wechsel des Koordinatensy-
stems.

Der große Vorteil von Matrizen ist,
daß Sie solche Matrizen invertieren kön-
nen. Sie berechnen also eine Matrix, die
genau die umgekehrte Abbildung zur
Folge hat. Haben Sie also einen Schnitt-
punkt im Koordinatensystem des Ke-
gels – wie zuvor beschrieben – berech-
net, können Sie ihn mit der invertierten
Matrix in seine richtige Position im
Raum zurücktransformieren.

Ohne Sie mit den Details der Ma-
trixrechnung zu belasten, lernen Sie hier
die Lösungsidee für das Aufstellen der
Kegelmatrix kennen.

Die Matrix für die Abbildung in das
gewünschte Koordinatensystem des Ke-
gels erhalten Sie, indem Sie drei senk-
recht aufeinander stehende Vektoren
finden, bei denen im Kreuzungspunkt
der Basismittelpunkt des Kegels und
dessen Spitze auf der z-Achse liegt. Den
ersten Vektor erhalten Sie durch Sub-
traktion des Ortsvektors der Spitze vom
Ortsvektor des Basismittelpunkts.

Nun benötigen Sie einen Vektor, der
senkrecht zu diesen steht. Eine einfache
Methode besteht darin, zwei Kompo-
nenten des ersten Vektors zu vertau-
schen und eine der vertauschten zu ne-
gieren. Den dritten Vektor, der senk-
recht auf den ersten beiden steht, erhal-
ten Sie durch das Kreuzprodukt dieser
Vektoren.

Damit haben Sie eine Matrix, die den
Kegel so rotiert, daß er die richtige Ori-
entierung für den Spezialfall besitzt.
Jetzt fehlt noch eine Verschiebungsma-

trix zur Lösung. Diese verschiebt alle
Punkte um das Negative des Ortsvek-
tors des Basismittelpunkts. Die Matrix
für den Kegel erhalten Sie also aus der
Matrixmultiplikation (Hintereinander-
ausführung) der Verschiebungs- und
Rotationsmatrix.

Mit der Berechnung von Schnittpunk-
ten mit Kegeln haben Sie den allgemei-
neren Fall kennengelernt. Ein Spezialfall
des Kegels ist der Zylinder. Bei einem
Zylinder ist der Radius unabhängig von
der z-Komponente, das heißt die For-
meln für die Schnittpunktberechnung
vereinfachen sich deutlich. Sie finden das
Resultat im Sourcecode. Eine weitere
Herleitung ergibt keinerlei Neuerung
gegenüber dem Kegel.

Die Implementation des Kegel- und
Zylinderprimitivs finden Sie in im
Quellcode von RTCone.cpp und RTCy-
linder.cpp.

■ Licht aus endlichen
Quellen
In PC Magazin 10/99 haben Sie ab S. 212
den einfachsten Fall von Lichtquellen
beim Raytracing kennengelernt. Dabei
handelte es sich um Lichtquellen, die
von einem Punkt aus Licht in alle Rich-
tungen aussenden, ohne selbst eine licht-
emittierende Fläche zu besitzen.

Doch diese Vorstellung entspricht
nicht den real vorhandenen Lichtquel-
len. Der deutlichste Unterschied, den
punktförmige und sich ausdehnende
Lichtquellen besitzen, ist, daß punktför-
mige immer einen harten Schatten wer-
fen, während Sie in der Realität fast im-
mer weiche Schatten vorfinden.

Wie Sie eine solche Lichtquelle in ei-
nen Raytracer implementieren, zeigt Ih-
nen dieser Teil. Dabei ändern Sie die re-
kursive Raytracing-Prozedur nur an
zwei Stellen.

Die erste Stelle ist die Schattenberech-
nung. Es genügt nun nicht mehr, einen
Schattenstrahl auszusenden, sondern Sie
benötigen mehrere – besser gesagt viele.

Bei einem Schattentest prüfen Sie die
Sichtbarkeit der Lichtquelle mit ver-
schiedenen, möglichst gleichmäßig auf
der Lichtquelle verteilten Punkten.
Der Schattentest eines einzelnen Punkts
funktioniert genauso wie bei punkt-
förmigen Lichtquellen. Die resultieren-
de Farbe ergibt sich durch Mittelung
der Schattenfarben aller Schatten-
strahlen.

Im Pseudocode sieht die Vorgehens-
weise wie folgt aus: q

UM DIE OBERFLÄCHENNORMALE im Kegel zu berechnen, brau-

chen Sie weitaus mehr Formeln als bei einer Kugel.

} Z-Wert 1

H
öh

e
de

s
Ke

ge
ls

 z
1 -

 z
0

Radius (0) - Radius (z1)

222 Dezember 1999 PC Magazin

P C U N D E R G R O U N D
P R A X I S

for (viele Schattenstrahlen)
{Wähle Punkt auf der Lichtquelle
Berechne Schattenfarbe für _
diesen Punkt per Schattentest
Kumuliere Schattenfarbe}
Resultierende Schattenfarbe =
Kumulierte Schattenfarbe /
➥Anzahl Schattenstrahlen

Die Auswahl der Zielpunkte auf der
Lichtquelle erledigen Sie mit einem Zu-
fallsgenerator, wobei die Punkte mög-
lichst gut verteilt liegen sollten. Das er-
reichen Sie, indem Sie jeden bereits be-
rechneten Punkt speichern.

Benötigen Sie dann einen neuen Zu-
fallspunkt, generieren Sie mit einem Zu-
fallszahlengenerator mehrere neue Kan-
didaten, nehmen aber nur denjenigen,
der von allen Zufallspunkten den größ-
ten Abstand besitzt. Je mehr Kandidaten
Sie zulassen, desto besser wird die zufäl-
lige Verteilung.

Da Sie aber nur im Halbschatten viele
Schattenstrahlen benötigen, um ein gu-
tes visuelles Ergebnis zu erhalten, defi-
nieren Sie ein Abbruchkriterium. Dieses
stellt sicher, daß weitere Schattenstrah-
len getestet werden, wenn die Helligkeit
der bisherigen zu stark variiert. Umge-
kehrt lassen Sie zu, daß der Schattentest
endet, wenn die Schattenstrahlen alle
ähnliche Helligkeit besitzen.

Aus diesen Überlegungen ergibt sich
als mögliche Formel:

max = Max. aller Helligkeiten
min = Min. aller Helligkeiten
if ((max-min)/(max+min)>
Toleranzschwelle) mehr Strahlen;

else Ende;

Die Funktionen dazu, die von den
Schattenfarben auch die Rot-, Grün-
und Blaukomponenten separat behan-
deln, finden Sie in der Datei RTFunc-
tions.h. Zusätzlich zu diesem Abbruch-
kriterium legen Sie noch eine mindeste
und eine maximale Anzahl von Schat-
tenstrahlen fest.

Bedenken Sie, daß eine gute Darstel-
lung von solchen Lichtquellen gewalti-
gen Rechenaufwand erfordern kann. Die
Werte für die minimale Zahl von Schat-
tenstrahlen liegen zwischen 4 und 8, die
der maximalen Zahl bei 100 oder mehr.

Der zweite Punkt, an dem Sie in der
Raytracing-Prozedur Hand anlegen, ist
die Berechnung der Glanzlichter. Bei
punktförmigen Lichtquellen haben Sie
das einfallende Licht an der Oberfläche
eines Körpers gespiegelt. Die Intensität
des Glanzlichts hing dann davon ab, wie
genau der Betrachter von diesem gespie-
gelten Strahl getroffen wurde.

Nun gehen Sie den umgekehrten
Weg. Sie spiegeln den einfallenden

Lichtstrahl und testen, ob dieser Licht-
strahl einen Schnittpunkt mit der Licht-
quelle besitzt. Wenn ja, ist die Intensität
des Glanzlichts maximal und seine Far-
be die der Lichtquelle. Gibt es keinen
Schnittpunkt, existiert für den betrach-
teten Oberflächenpunkt kein Glanz-
licht.

An dieser Stelle ist interessant, wel-
che Form die neue Lichtquelle besitzt.
Als Beispiel für diesen Raytracer haben
wir eine rechteckige Lichtquelle ver-
wendet. Die Schnittpunktberechnung,
die Sie für die Glanzlichter verwenden,
heißt BOOL IntersectTriangle(...) und
befindet sich in RTFunctions.h. Eine
entsprechende Herleitung nimmt die
nächste Ausgabe in Angriff, die auch
polygonale Primitive und aus Polygo-
nen zusammengesetzte Objekte behan-
delt.

■ Texturen & Bumpmapping
Nachdem Sie sich mit einer Reihe von
geometrischen Primitiven beschäftigt
und auch einiges an Aufwand mit den
Lichtquellen getrieben haben, widmen
Sie sich nun den Oberflächen der Ob-
jekte. Bisher haben Sie Oberflächen
durch ihre physikalischen Parameter,
wie den Reflektionskoeffizienten oder
die Transparenz, und
durch ihre Eigenfarbe
definiert.

Damit konnten Sie
nur die Eigenschaften
für die ganze Ober-
fläche bestimmen.
Viel interessanter ge-
staltet sich eine Szene,
wenn Sie die Objekte
mit Texturen belegen
oder ihren Ober-
flächen eine aufge-
rauhte Struktur oder
Beulen verpassen.

Prinzipiell können Sie Objekte mit
zwei Arten von Texturen belegen:
• Das eine Verfahren projeziert eine
zweidimensionale Bitmap auf einen
Körper. So arbeiten 3D-Beschleuniger
sowie die auf Polygonen basierenden
3D-Engines.
• Bei Raytracern verwenden Sie hinge-
gen fast immer sogenannte prozedurale
Texturen. Hierbei setzen Sie keine Bit-
maps ein, sondern berechnen die Farbe
von Punkten im Raum.

Im Zusammenhang mit prozeduralen
Texturen und Raytracern fällt immer der
Begriff Perlin Noise. Dieses Verfahren,
das Ken Perlin entwickelt hat, setzen Ex-
perten häufig ein, um Texturen zu syn-
thetisieren. Besuchen Sie Ken Perlin auf
seiner Homepage:

http://mrl.nyu.edu/perlin

■ Perlin Noise
Wenn Sie sich Dinge in der Natur anse-
hen, stellen Sie fest, daß es verschiedene
Detailstufen gibt, ähnlich wie bei Frak-
talen. Ein anschauliches Beispiel ist ein
Gebirge. Es enthält große Höhenunter-
schiede wie Berge, mittlere wie Hügel,
kleine wie Felsbrocken und winzige De-
tails wie Steine.

Noise bedeutet so viel wie Lärm oder
Rauschen. Eine Noise-Funktion ist eine
Funktion, die zu einem Parameter – in
diesem Fall eine ganze Zahl – eine zufäl-
lige Zahl zurückliefert. Wenn Sie zwei-
mal denselben Parameter übergeben,
muß sie auch zweimal dasselbe Resultat
erzeugen, sonst funktioniert das Perlin-
Noise-Verfahren nicht.

Perlin Noise ahmt die in der Natur
vorkommenden Detailstufen nach, in-
dem es unterschiedlich skalierte Noise-
Funktionen nach einem System addiert.

Beachten Sie bei der im Bild unten
dargestellten Noise-Funktion, daß nur
die roten Punkte generierte Zufallszah-
len sind. Alle Zwischenwerte sind durch

DIESE SZENE beleuchtet eine rechteckige

Lichtquelle mit schön ausgedehntem

Halbschatten.

BEI DER NOISE-FUNKTION sind die roten Punkte durch Zufalls-

zahlen, die Zwischenwerte durch Interpolation entstanden.

Wellenlänge

Amplitude

PC Magazin Dezember 1999 223

P C U N D E R G R O U N D
P R A X I S

Interpolation entstanden. Die Wellen-
länge bezeichnet den Abstand zweier
Zufallszahlen. Die Frequenz berechnet
sich – analog zu Wellen in der Physik –
als Kehrwert der Wellenlänge.

Addieren Sie mehrere Noise-Funk-

tionen, wie im Bild unten zu sehen, er-
halten Sie die Perlin-Noise-Funktion.
Dasgleiche können Sie auch im zweidi-
mensionalen Raum tun. Dazu benötigen
Sie nur eine Noise-Funktion, die zu ei-
nem Zahlenpaar einen Zufallswert lie-
fert. Das Ergebnis sehen Sie im Bild, das
schattierte Grünflächen zeigt.

Die Amplitude und die Frequenz, die
Sie für die einzelnen
Noise-Funktionen
verwenden, legen Sie
durch die sogenannte
Persistence fest. Sie
bestimmen noch eine
Amplitude und eine
Frequenz für die erste
Funktion. Für die je-
weils nächste Funkti-
on verdoppeln Sie die
Frequenz und multi-
plizieren die Ampli-
tude mit der Persistence.

Der Wert der Persistence sollte zwi-
schen 0 und 1 liegen. Größere Werte be-
deuten stärkere hohe Frequenzen, also
mehr Rauschen. Bei der Anzahl der
Funktionen, die überlagert werden,
spricht man auch von Oktaven. Der Be-
griff wurde aus der Musik entliehen, da
bei Klängen eine Verdopplung der Fre-
quenz einem Sprung von einer Oktave
entspricht.

Wieviel Oktaven Sie wählen, ist Ihre
Entscheidung. Berücksichtigen Sie nur,
daß die Amplitude irgendwann so klein
wird, daß die Funktion nicht mehr ins
Gewicht fällt. In unserem Fall empfeh-
len sich etwa zwei bis acht Oktaven.

Wie erzeugen Sie Noise-Funktionen?
Die herkömmlichen Zufallszahlengene-

ratoren, die Ihnen in C zur Verfügung
stehen, liefern bei jedem Aufruf eine
neue Zahl. Da das Ergebnis jedoch re-
produzierbar sein muß, weil Sie eine
Noise-Funktion eventuell mehrmals an
derselben Stelle berechnen müssen, kön-

nen Sie diese nicht
verwenden.

Eine Möglichkeit
besteht darin, eine
Funktion zu finden,
die relativ zufällig
Werte liefert. Solche
Funktionen enthalten
meist sehr große
Primzahlen. Ein Bei-
spiel mit Zufallszahl
zwischen -1 und 1 zu
x sieht so aus:
x = (x<13) ^ x;
return (1.0-

((x*(x*x*15731+
789221)+1376312589) &7fffffff)
/1073741824.0);

Ein anderer Lösungsweg: Legen Sie
beim Start des Programms eine Tabelle
mit Zufallszahlen mit Hilfe Ihres her-
kömmlichen Generators an. Es genügen
4096 verschiedene Zahlen. Als Funktion
dient dann

return Zufallstabelle
[x % Größe der Tabelle];

Wenn Sie nun einen Zufallswert zu nicht
ganzzahligen x-Werten benötigen, erle-
digen Sie dies durch Interpolation.

Dazu werten Sie die Noise-Funktion
an der von x aus gesehen nächstkleineren
und nächstgrößeren ganzen Zahl aus.
Mit dem Nachkommaanteil von x be-
rechnen Sie den interpolierten Wert.

Die einfachste Methode ist es, linear
zu interpolieren:

return Wert1*(1-NachkommaX)
+ Wert1*NachkommaX

Bei der linearen Interpolation erhalten
Sie jedoch keine sehr schönen Ergebnis-
se. Mit ein wenig mehr Rechenaufwand
erzielen Sie mit der Kosinusinterpolati-
on abgerundetere Ergebnisse:

ft = NachkommaX * PI
f = (1 - cos(ft)) * 0.5
return a*(1-f) + b*f

Der Unterschied ist, daß der Gewich-
tungsfaktor (hier f) bei der Kosinusin-
terpolation – durch die Kosinusfunktion
an den Rändern (sprich bei Nachkom-
maanteilen nahe bei 0 oder 1 – langsamer
steigt. Dadurch erhalten Sie in der Nähe
der Zufallswerte abgerundete Verläufe.

Nehmen Sie nun alles zusammen, er-
halten Sie eine Perlin-Noise-Routine
wie im folgenden Pseudocode für eine
Dimension:

int Noise(int x)
{return Zufallstabelle

[x % Größe der Tabelle];}
float Interpolate

(float a,float b, float x)
{return a*(1-x) + b*x;}
float InterpolatedNoise(float x)
{GanzzahlX = (int)x;
NachkommaX = x - GanzzahlX;
v1 = Noise(x);
v2 = Noise(x + 1);
return Interpolate

(v1,v2,NachkommaX);}
float PerlinNoise(float x)
{floattotal= (FLOAT)0;
floatPersistence= material.p;
int Octaves= material.o;
floatFrequenz= material.f;
floatAmplitude=

material.a * Persistence;
for (int i= 0;i<Octaves;i++)
{total += InterpolatedNoise3D
(x * Frequenz) * Amplitude;
Frequenz *= 2.0;
Amplitude *= Persistence;

}
}....

Für dreidimensionale Noise-Funktio-
nen berechnen Sie nicht zwei Punkte
und interpolieren, sondern Sie berech-
nen acht Werte. Ein Punkt liegt im Drei-
dimensionalen innerhalb eines Würfels,
dessen Kanten durch die jeweiligen
nächstkleineren bzw. -größeren ganz-
zahligen Koordinaten bestimmt sind.
Berechnen Sie die Werte für die Eck- q

DIE PERLIN-NOISE-FUNKTION im zweidimensionalen Raum er-

innert hier an Flora.

DIE SUMME aus diesen vier Noise-Funktionen ergibt im letzten

Bild unten rechts die Perlin-Noise-Funktion

DIE KOSINUSINTERPOLATION liefert rea-

listischere Bilder als die lineare.

Lineare Interpolaion

Kosinusinterpolaion

224 Dezember 1999 PC Magazin

P C U N D E R G R O U N D
P R A X I S

punkte des Würfels, und interpolieren
Sie anschließend.

Was haben Sie von einer 3D-Noise-
Funktion? Sie können zu jedem Punkt
im Raum einen Farb- oder Helligkeits-
wert bestimmen. Wollen Sie ein Objekt
mit einer prozeduralen Textur versehen,
speichern Sie in der Materialstruktur des
Raytracers die Werte für die Noise-
Funktionen und berechnen für jeden
Schnittpunkt den Noise-Wert. Damit
erzeugen Sie Texturen wie auf den unten
abgebildeten Kugeln.

Mit den Noise-Werten berechnen Sie
auch andere Texturen, zum Beispiel eine

marmorähnliche Struktur. Hierzu be-
rechnen Sie für jeden Raumpunkt zwei
Noise-Werte: einen an seiner Original-
position und einen an einem Punkt, den
Sie durch eine beliebig große Verschie-
bung erreichen.

Dann nehmen Sie die x-Komponente
des Originalvektors und addieren den
ersten Noise-Wert dazu. Genauso ver-
fahren Sie mit der y-Komponente und
dem zweiten Wert.

Die Nachkommastellen der resultie-
renden Werte bilden Sie mit der Funkti-
on cycloidal(...) auf eine Sinusfunktion
ab und multiplizieren das Ergebnis mit
dem Turbulenzparameter, den Sie noch
in der Materialbeschreibung einführen.
Der Rückgabewert der Noise-Funktion
entspricht jetzt nur der Länge des Er-
gebnisvektors, auf eine Dreiecksfunkti-
on umgelegt:

{...}
floatcycloidal(float x)
{float temp = fmod(x, 1);

if (temp < 0) temp += 1;
return sin(temp * 2 * PI);}

floattriangle_wave(float x)
{float offset = fmod(x, 1);
if (offset < 0) offset += 1;
if (offset>0.5) offset=1-offset;
return offset + offset;}
{...}
// Marmor Wert am Punkt p
r = Noise(p.x, p.y, p.z);
r2 = Noise(p.x+1000, p.y,p.z);
p.x += cycloidal(p.x + r)

* PTexture.Turbulenz;
p.y += cycloidal(p.y + r2)

* PTexture.Turbulenz;
return triangle_wave

(VLength(p));
{...}

Es gibt noch unzählige Wege, um die
Noise-Werte zu anderen prozeduralen
Texturen zu verknüpfen. Im Sourcecode
(RTNoise.cpp) finden Sie eine Variante
für holzähnliche Muster.

Wie Sie die Helligkeit der Farbe an ei-
nem Schnittpunkt mit prozeduralen Tex-
turen verändern können, so modifizieren
Sie auch die Oberflächennormale an ei-
nem Schnittpunkt, um die Beleuchtung,
Spiegelung und Lichtbrechung zu beein-
flussen. Hierzu berechnen Sie für einen
Schnittpunkt drei Noise-Werte, einen an
der Originalposition und zwei an ver-
schobenen Stellen. Interpretieren Sie die-
se Werte als Vektor, skalieren Sie ihn, und
addieren Sie den Vektor auf die Norma-
le, die Sie im Zuge der Schnittpunktbe-
rechnungen erhalten haben. Als Ergebnis
erhalten Sie die Kugeln rechts im Bild.

■ Anti-Aliasing
Ein Problem sind die Aliasing-Effekte –
auch als Treppenstufen bezeichnet. Als
Aliasing wird das irrtümliche Erschei-
nen von niederfrequenten Signalen be-
zeichnet, das aus fehlerhaftem Messen
von hochfrequenten Signalen resultiert.

Anders ausgedrückt: Wenn Sie sich
den Bildschirm als Fläche vorstellen, re-
präsentiert jeder Pixel einen kleinen Teil
der Gesamtfläche. Verfolgen Sie nur ei-
nen Lichtstrahl pro Pixel zurück, kön-
nen Sie durch zu geringes Abtasten
Treppcheneffekte bekommen.

Sie lösen das Problem, indem Sie
einen Pixel als Fläche behandeln und
mehrere Strahlen durch diesen Pixel ver-
folgen. Ein Ansatz für das Anti-Aliasing
ist das statistische Super-Sampling. Hier-
bei verfolgen Sie Strahlen, die vom Be-
trachter aus durch Punkte verlaufen, die
zufällig auf der Fläche des Pixels verteilt
sind.

Achten Sie dabei darauf, daß diese
Punkte, wie schon bei den Schatten-

strahlen der Halbschatten, möglichst
gleich verteilt sind. Auch die Abbruch-
kriterien sind dieselben wie die bereits
vorgestellten. Da das Verfolgen der
Stahlen der rechenintensive Teil des
Raytracing ist, ist der Preis für das Anti-
Aliasing hoch, aber die deutlich bessere
Darstellungsqualität rechtfertigt dies.

Die vorgestellten Neuerungen bei
den Texturen und dem Bump Mapping
im Raytracing-Programm sind auch
in den Parser integriert. Die Parameter

für das Abtasten der Lichtquellen und
das Anti-Aliasing finden Sie in den
Quelldateien RTPolylight.cpp und RT-
Camera.c. s E T

Die kompletten Quelltexte finden Sie auf der Heft-
CD im Verzeichnis Praxis\PC-Underground und auf
unserer Website unter

www.pc-magazin.de/magazin/
➥extras.htm

Klicken Sie in der Tabelle Online Extras unter
Praxis auf das entsprechende Download-Feld.

MIT EINER 3D-NOISE-FUNKTION sehen

diese Kugeln zum Greifen echt aus.

DAS ANTI-ALIASING-VERFAHREN beseitigt

unschöne Treppcheneffekte.

SIE BEHANDELN einen Pixel als Fläche

und verfolgen mehrere Strahlen durch

diesen Pixel.

Betrachter

Lichtst
rahlen

