3£

PC UNDERGROUND

PRAXIS

Demo-Programmierung unter Windows 95/@8 1

Mit

v »
5 P
= =
>~

und Zylinder

Virtuelle Welten sehen oft kuinstlich aus. Das mul

nicht sein: Dieser Beitrag

, damit sich die kunstliche Welt der

wirklichen nahert.

CARSTEN DACHSBACHER/
NILS PIPENBRINCK

it den Erweiterungen in die-
sem zweiten Teil unserer
Raytracer-Serie zaubern Sie

weitaus realistischere Landschaften auf
Thren Bildschirm. Doch bevor Sie die
vielen Neuerungen in Thren Raytracer
einbauen und sehen, machen Sie sich an
die mathematische Herleitung der Zy-
linder- und Kegelprimitive. Mit mathe-
matischer Kleinarbeit verfolgen Sie die
Lichtstrahlen und ihre verschiedenarti-
gen Spiegelungen.

Radius an der Spitze (hier =0)
/

/
spitze (x1, y1,21)

_ Basis (x0, y0, z0)

Radius an der Basis

y,

DIESER KEGEL hat seine Basis im Ursprung
des Koordinatensystems und seine Spitze
auf der positiven z-Achse.

Als erstes untersuchen Sie einen Ke-
gel, wie ihn der Sourcecode zum Ray-
tracing-Artikel (Heft 10, ab S. 226, auch
auf der aktuellen Heft-CD) vorwegge-
nommen hat. Es handelt sich hierbei um
einen Spezialfall eines Kegels, bei dem
die Basis, also der Mittelpunkt der unte-

220 Dezember1999 PC Magazin

ren Kreisflache, im Ursprung des Koor-
dinatensystems liegt, und die Spitze sich
auf der positiven z-Achse befindet. Sie
konnen die Schnittpunktberechnungen
aller Kegel auf Schnittpunkte mit solch
einem Kegel zurtickfithren. Und so be-
rechnen Sie diesen Kegel:

Wie bisher beschreiben Sie den ver-
folgten Lichtstrahl durch eine Halbgera-
de, hier gegeben durch ihren Startpunkt
g und ihren Richtungsvektor 0g*, wo-
bei t>0 gilt:

=g +t* 0"

Stellen Sie sich nun den Kegel als einen
Stapel von Kreisscheiben vor, deren Ra-
dius von der Hohe abhingt (Threr z-Ko-
ordinate), in der Sie liegen. So hitte
die unterste Kreisscheibe den Radius
des Basiskreises und die oberste den
Radius 0.

Da sich der Radius linear iandert, stel-
len Sie eine Formel auf, die den Radius
abhingig von z beschreibt. In dieser For-
mel lassen Sie fiir die Spitze auch ein Ra-
dius ungleich Null zu, was einen Kegel-
stumpf beschreiben wiirde:

Radius(z)=Radius(Basis)+

0 (Radius(Spitze)-Radius(Basis))

O*z/lz1
oder:

Radius(z)=Radius(0)+dr*z
mit

dr=(Radius(z1)-Radius(z0))/z1
Den Schnittpunkt mit einer Kreisschei-
be bestimmen Sie — fast analog zur Be-
rechnung der Schnittpunkte mit Kugeln
— tiber die Abstandsberechnung. Auf ei-
nem Kreis liegen alle Punkte x->, deren
Abstand vom Mittelpunkt gleich dem
Radius des Kreises ist, also:

—

[m™ -x7 |=d — =radius
Da Sie sich bei einem Kreis im Zweidi-
mensionalen befinden, sind nur die x-
und y-Komponenten von N7, X und o
von Interesse:
@ *d~ =radius 2
d” x*d~ x+d” y*d y=radius 2
Bei unserem Kegel ist der Radius jedoch
nicht fest, sondern abhangig von z. Dar-
aus ergibt sich:
@ x*d~ x+d” y*d " y=
0 Radius(z) 2
a> x*d~ x+d” y*d " y=
0 (Radius(0)+dr*x
(M X-X7"X)*(M 7 X-X" X)+
O(M”y-x"y)*(m 7 y-x"y)=
O (Radius(0)+drx = —z) 2

4»2)2

Nun ersetzen Sie wieder alle X* durch die
Gleichung der Halbgeraden:

(M”x-(g 7 x+t*dg 7 x))*

O (™ x-(g ~ x+t*dg ~ x))+

O (n"y-(g ~ y+tdg ~y))*

O(m”y-(g " y+t*dg ~y))=

O (Radius(0)+dr<(g > z+txdg z)) 2
Durch Ausmultiplizieren erhalten Sie
dann:

(M x-g~x) 2-2*

O (M x-g~ x)*t*dg > x+t_2*
0(dg~x) 2+(my-g~y) 2
0-2X(m~yg~y)ytdg ~yst 2
0*dgy) <=

O (Radius(0)+drtg —z) 2+t 2
O*drdg ~z) 2+2%t

0 (dr*dg ~ z)*(Radius(0)+dr*g ~2)

Nun fassen Sie alle Terme so zusammen,
damit Sie wieder eine quadratische Glei-
chung erhalten — wie bei der Schnitt-
punktberechnung mit Kugeln:
art 2+prt+c=0
mit
a=(dg™~x) Z+(dgy) 2
O-(dr*dg ~z) 2-(dr«dg —z) 2
b=-2*(m ~ x-g~ x)*dg ~ x-2*
O(mM”y-g~ y)*dg " y-2*(dr*dg
0 (Radius(0)+dr*g ~2z)
c=(N” x-g " x) 2+(m’y-g " y) 2
O-(Radius(0)+drg ~ —z) 2

— 2)*

a, b und ¢ sind reelle Zahlen. Die mogli-
chen Losungen sind:

tl=(-b+sqri(p 2-4*a*c))/(2*a);

t2=(-b-sqrt(p ~ 2-4*a*c))/(2*a);

Die Zahl der Losungen 1afit sich durch
die Diskriminante

D=b2-4*a*c
bestimmen: Fiir D < 0 gibt es keine Lo-
sung, D = 0 bringt eine Losung, und
D > 0 fihrt zu zwei Losungen.

Setzen Sie t1 und t2 in die Halbgera-
dengleichung ein. Denken Sie daran, nur
die Position t1 und t2 sind interessant.
Sie erhalten dann die Schnittpunkete.

Die Berechnung der Oberflichennor-
malen gestaltet sich komplizierter als bei
einer Kugel. Hier berechnen Sie zuerst
den Differenzvektor des Schnittpunkts

Hohe des Kegels z1 - z0

‘

—
Radius (0) - Radius (z1)

‘

gefallt (ab S. 212).
Diese Matrix benut-
zen Sie, um zum Bei-
spiel Koordinaten ei-
nes Objekts in den
Raum der Kamera zu
transformieren.
Umgekehrt kon-
nen Sie eine Matrix zu
einem Kegel konstru-
ieren, die einen Punkt
im Raum so abbildet,
daf Sie den Spezialfall
erhalten. Multiplizie-
ren Sie zum Beispiel
die Kegelspitze, die

} Z-Wert 1

UM DIE OBERFLACHENNORMALE im Kegel zu berechnen, brau-
chen Sie weitaus mehr Formeln als bei einer Kugel.

(rot eingezeichnet) mit dem Punkt auf
der Mittelachse des Kegels, der auf glei-
cher Hohe liegt, d.h. den gleichen z-
Wert besitzt:

@ =s— -(0,0,s "2
Normalisieren Sie diesen Vektor, und
skalieren Sie ihn mit folgendem Term:

Skalierungsfaktor=

(z1-z0)/(Radius(0)-Radius(z1))

Der Skalierungsfaktor beschreibt, wie
steil der Kegelmantel ist, also das Ver-
hiltnis seiner Hohe zu seiner Breite.

Da eine Normale immer senkrecht zu
einer Oberfliche steht, muff die Norma-
le des Kegels flacher sein, wenn der Ke-
gel steiler wird. Das erreichen Sie, indem
Sie den Vektor skalieren und die z-
Komponente des resultierenden Vek-
tors, die an dieser Stelle der Berechnung
immer 0 ist, auf 1 setzen.

d” =d" *Skalierungsfaktor

dz=1
Der resultierende Vektor d ist die ge-
suchte Normale.

Am besten ist, Sie versuchen sich
die Berechnung der Normalen anhand
kleiner Skizzen verschiedener Kegel
vorzustellen. Dabei bleibt die Frage, wie
Sie alle moglichen Kegel auf den hier
hergeleiteten Spezialfall zuriickfihren.
Die Antwort liefert die Matrizenrech-
nung.

Dazu berechnen Sie eine Matrix,
die die Transformation einer anderen
Matrix riickgingig macht. Mathemati-
ker bezeichnen dies als eine inverse
Matrix.

In PC Underground, Heft 10/99,
wurden alle Transformationen eines
Objekts und die durch die Kamera re-
sultierenden Transformationen in einer
Matrix eines jeden Objekts zusammen-

Sie frei im Raum pla-
zieren konnen, mit
dieser Matrix, erhal-
ten Sie einen Punkt
auf der positiven z-Achse; transformie-
ren Sie die Basis des Kegels, erhalten Sie
den Ursprung. Man spricht hierbei von
einem Wechsel des Koordinatensy-
stems.

Der grofle Vorteil von Matrizen ist,
daf Sie solche Matrizen invertieren kon-
nen. Sie berechnen also eine Matrix, die
genau die umgekehrte Abbildung zur
Folge hat. Haben Sie also einen Schnitt-
punkt im Koordinatensystem des Ke-
gels — wie zuvor beschrieben — berech-
net, konnen Sie ihn mit der invertierten
Matrix in seine richtige Position im
Raum zuriicktransformieren.

Ohne Sie mit den Details der Ma-
trixrechnung zu belasten, lernen Sie hier
die Losungsidee fir das Aufstellen der
Kegelmatrix kennen.

Die Matrix fur die Abbildung in das
gewlinschte Koordinatensystem des Ke-
gels erhalten Sie, indem Sie drei senk-
recht aufeinander stehende Vektoren
finden, bei denen im Kreuzungspunkt
der Basismittelpunkt des Kegels und
dessen Spitze auf der z-Achse liegt. Den
ersten Vektor erhalten Sie durch Sub-
traktion des Ortsvektors der Spitze vom
Ortsvektor des Basismittelpunkts.

Nun benétigen Sie einen Vektor, der
senkrecht zu diesen steht. Eine einfache
Methode besteht darin, zwei Kompo-
nenten des ersten Vektors zu vertau-
schen und eine der vertauschten zu ne-
gieren. Den dritten Vektor, der senk-
recht auf den ersten beiden steht, erhal-
ten Sie durch das Kreuzprodukt dieser
Vektoren.

Damit haben Sie eine Matrix, die den
Kegel so rotiert, daf§ er die richtige Ori-
entierung fiir den Spezialfall besitzt.
Jetzt fehlt noch eine Verschiebungsma-

PC UNDERGROUND
PRAXIS

trix zur Losung. Diese verschiebt alle
Punkte um das Negative des Ortsvek-
tors des Basismittelpunkts. Die Matrix
fiir den Kegel erhalten Sie also aus der
Matrixmultiplikation (Hintereinander-
ausfihrung) der Verschiebungs- und
Rotationsmatrix.

Mit der Berechnung von Schnittpunk-
ten mit Kegeln haben Sie den allgemei-
neren Fall kennengelernt. Ein Spezialfall
des Kegels ist der Zylinder. Bei einem
Zylinder ist der Radius unabhingig von
der z-Komponente, das heifit die For-
meln fir die Schnittpunktberechnung
vereinfachen sich deutlich. Sie finden das
Resultat im Sourcecode. Eine weitere
Herleitung ergibt keinerlei Neuerung
gegentiber dem Kegel.

Die Implementation des Kegel- und
Zylinderprimitivs finden Sie in im
Quellcode von RTCone.cpp und RTCy-
linder.cpp.

In PC Magazin 10/99 haben Sie ab S. 212
den einfachsten Fall von Lichtquellen
beim Raytracing kennengelernt. Dabei
handelte es sich um Lichtquellen, die
von einem Punkt aus Licht in alle Rich-
tungen aussenden, ohne selbst eine licht-
emittierende Fliche zu besitzen.

Doch diese Vorstellung entspricht
nicht den real vorhandenen Lichtquel-
len. Der deutlichste Unterschied, den
punktformige und sich ausdehnende
Lichtquellen besitzen, ist, daf§ punktfor-
mige immer einen harten Schatten wer-
fen, wihrend Sie in der Realitit fast im-
mer weiche Schatten vorfinden.

Wie Sie eine solche Lichtquelle in ei-
nen Raytracer implementieren, zeigt Th-
nen dieser Teil. Dabei indern Sie die re-
kursive Raytracing-Prozedur nur an
zwei Stellen.

Die erste Stelle ist die Schattenberech-
nung. Es geniigt nun nicht mehr, einen
Schattenstrahl auszusenden, sondern Sie
benotigen mehrere — besser gesagt viele.

Bei einem Schattentest priifen Sie die
Sichtbarkeit der Lichtquelle mit ver-
schiedenen, moglichst gleichmifig auf
der Lichtquelle verteilten Punkten.
Der Schattentest eines einzelnen Punkts
funktioniert genauso wie bei punkt-
formigen Lichtquellen. Die resultieren-
de Farbe ergibt sich durch Mittelung
der Schattenfarben aller Schatten-
strahlen.

Im Pseudocode sicht die Vorgehens-
weise wie folgt aus: (>

PC Magazin Dezember 1999 221

5)-6

9-E]

PC UNDERGROUND
PRAXIS

for (viele Schattenstrahlen)
{Wéahle Punkt auf der Lichtquelle
Berechne Schattenfarbe fir _
diesen Punkt per Schattentest
Kumuliere Schattenfarbe}
Resultierende Schattenfarbe =
Kumulierte Schattenfarbe /

0 Anzahl Schattenstrahlen

Die Auswahl der Zielpunkte auf der
Lichtquelle erledigen Sie mit einem Zu-
fallsgenerator, wobei die Punkte mog-
lichst gut verteilt liegen sollten. Das er-
reichen Sie, indem Sie jeden bereits be-
rechneten Punkt speichern.

Benotigen Sie dann einen neuen Zu-
fallspunkt, generieren Sie mit einem Zu-
fallszahlengenerator mehrere neue Kan-
didaten, nehmen aber nur denjenigen,
der von allen Zufallspunkten den grofi-
ten Abstand besitzt. Je mehr Kandidaten
Sie zulassen, desto besser wird die zufil-
lige Verteilung.

Da Sie aber nur im Halbschatten viele
Schattenstrahlen benotigen, um ein gu-
tes visuelles Ergebnis zu erhalten, defi-
nieren Sie ein Abbruchkriterium. Dieses
stellt sicher, dafl weitere Schattenstrah-
len getestet werden, wenn die Helligkeit
der bisherigen zu stark variiert. Umge-
kehrt lassen Sie zu, daf der Schattentest
endet, wenn die Schattenstrahlen alle
dhnliche Helligkeit besitzen.

Aus diesen Uberlegungen ergibt sich
als mogliche Formel:

max = Max. aller Helligkeiten

min = Min. aller Helligkeiten

if ((max-min)/(max+min)>

Toleranzschwelle) mehr Strahlen;
else Ende;

Die Funktionen dazu, die von den
Schattenfarben auch die Rot-, Griin-
und Blaukomponenten separat behan-
deln, finden Sie in der Datei RTFunc-
tions.h. Zusitzlich zu diesem Abbruch-
kriterium legen Sie noch eine mindeste
und eine maximale Anzahl von Schat-
tenstrahlen fest.

Bedenken Sie, daff eine gute Darstel-
lung von solchen Lichtquellen gewalti-
gen Rechenaufwand erfordern kann. Die
Werte fiir die minimale Zahl von Schat-
tenstrahlen liegen zwischen 4 und 8, die
der maximalen Zahl bei 100 oder mehr.

Der zweite Punkt, an dem Sie in der
Raytracing-Prozedur Hand anlegen, ist
die Berechnung der Glanzlichter. Bei
punktformigen Lichtquellen haben Sie
das einfallende Licht an der Oberfliche
eines Korpers gespiegelt. Die Intensitit
des Glanzlichts hing dann davon ab, wie
genau der Betrachter von diesem gespie-
gelten Strahl getroffen wurde.

Nun gehen Sie den umgekehrten
Weg. Sie spiegeln den einfallenden

222 Dezember 1999 PC Magazin

Lichtstrahl und testen, ob dieser Licht-
strahl einen Schnittpunkt mit der Licht-
quelle besitzt. Wenn ja, ist die Intensitat
des Glanzlichts maximal und seine Far-
be die der Lichtquelle. Gibt es keinen
Schnittpunkt, existiert fiir den betrach-
teten Oberflichenpunkt kein Glanz-
licht.

DIESE SZENE beleuchtet eine rechteckige
Lichtquelle mit schén ausgedehntem
Halbschatten.

An dieser Stelle ist interessant, wel-
che Form die neue Lichtquelle besitzt.
Als Beispiel fir diesen Raytracer haben
wir eine rechteckige Lichtquelle ver-
wendet. Die Schnittpunktberechnung,
die Sie fiir die Glanzlichter verwenden,
heifit BOOL IntersectTriangle(...) und
befindet sich in RTFunctions.h. Eine
entsprechende Herleitung nimmt die
nichste Ausgabe in Angriff, die auch
polygonale Primitive und aus Polygo-
nen zusammengesetzte Objekte behan-

delt.

Nachdem Sie sich mit einer Reihe von
geometrischen Primitiven beschaftigt
und auch einiges an Aufwand mit den
Lichtquellen getrieben haben, widmen
Sie sich nun den Oberflichen der Ob-
jekte. Bisher haben Sie Oberflichen
durch ihre physikalischen Parameter,
wie den Reflektionskoeffizienten oder

Prinzipiell konnen Sie Objekte mit
zwel Arten von Texturen belegen:
¢ Das eine Verfahren projeziert eine
zweidimensionale Bitmap auf einen
Korper. So arbeiten 3D-Beschleuniger
sowie die auf Polygonen basierenden
3D-Engines.
¢ Bei Raytracern verwenden Sie hinge-
gen fast immer sogenannte prozedurale
Texturen. Hierbei setzen Sie keine Bit-
maps ein, sondern berechnen die Farbe
von Punkten im Raum.

Im Zusammenhang mit prozeduralen
Texturen und Raytracern filltimmer der
Begriff Perlin Noise. Dieses Verfahren,
das Ken Perlin entwickelt hat, setzen Ex-
perten haufig ein, um Texturen zu syn-
thetisieren. Besuchen Sie Ken Perlin auf
seiner Homepage:

http://mrl.nyu.edu/perlin

Wenn Sie sich Dinge in der Natur anse-
hen, stellen Sie fest, dafi es verschiedene
Detailstufen gibt, dhnlich wie bei Frak-
talen. Ein anschauliches Beispiel ist ein
Gebirge. Es enthilt grofle Hohenunter-
schiede wie Berge, mittlere wie Hiigel,
kleine wie Felsbrocken und winzige De-
tails wie Steine.

Noise bedeutet so viel wie Lirm oder
Rauschen. Eine Noise-Funktion ist eine
Funktion, die zu einem Parameter — in
diesem Fall eine ganze Zahl - eine zufil-
lige Zahl zuriickliefert. Wenn Sie zwei-
mal denselben Parameter tibergeben,
muf sie auch zweimal dasselbe Resultat
erzeugen, sonst funktioniert das Perlin-
Noise-Verfahren nicht.

Perlin Noise ahmt die in der Natur
vorkommenden Detailstufen nach, in-
dem es unterschiedlich skalierte Noise-
Funktionen nach einem System addiert.

Beachten Sie bei der im Bild unten
dargestellten Noise-Funktion, daff nur
die roten Punkte generierte Zufallszah-
len sind. Alle Zwischenwerte sind durch

durch ihre Eigenfarbe
definiert.

Damit konnten Sie
nur die Eigenschaften
fur die ganze Ober-
fliche bestimmen.
Viel interessanter ge-
staltet sich eine Szene,
wenn Sie die Objekte
mit Texturen belegen

oder ihren Ober-

die Transparenz, und

et

Wellenlange

Amplitude

flichen eine aufge-
rauhte Struktur oder
Beulen verpassen.

BEI DER NOISE-FUNKTION sind die roten Punkte durch Zufalls-
zahlen, die Zwischenwerte durch Interpolation entstanden.

Interpolation entstanden. Die Wellen-
linge bezeichnet den Abstand zweier
Zufallszahlen. Die Frequenz berechnet
sich — analog zu Wellen in der Physik —
als Kehrwert der Wellenlinge.
Addieren Sie mehrere Noise-Funk-

ratoren, die Thnen in C zur Verfiigung
stehen, liefern bei jedem Aufruf eine
neue Zahl. Da das Ergebnis jedoch re-
produzierbar sein mufi, weil Sie eine
Noise-Funktion eventuell mehrmals an
derselben Stelle berechnen miissen, kon-

nen Sie diese nicht

Amplitude: 64
Frequenz: 8

Amplitude: 128
Frequenz: 4

— T

e

Amplitude: 16
Frequenz: 32

Amplitude: 8
Frequenz: 64

AP SN,V + S VA Sy

Amplitude: 32
Frequenz: 16

RN VAN

Summe = Perlin Noise

B

verwenden.

Eine Maoglichkeit
besteht darin, eine
Funktion zu finden,
die relativ zufillig
Werte liefert. Solche
Funktionen enthalten
meist sehr grofle
Primzahlen. Ein Bei-
spiel mit Zufallszahl

DIE SUMME aus diesen vier Noise-Funktionen ergibt im letzten

Bild unten rechts die Perlin-Noise-Funktion

tionen, wie im Bild unten zu sehen, er-
halten Sie die Perlin-Noise-Funktion.
Dasgleiche konnen Sie auch im zweidi-
mensionalen Raum tun. Dazu bendtigen
Sie nur eine Noise-Funktion, die zu ei-
nem Zahlenpaar einen Zufallswert lie-
fert. Das Ergebnis sehen Sie im Bild, das
schattierte Griinflachen zeigt.

Die Amplitude und die Frequenz, die
Sie fiir die einzelnen

zwischen -1 und 1 zu
X sieht so aus:

X = (x<13) " x;

return (1.0-
((x*(x*x*15731+
789221)+1376312589) &Tfffffff)
/1073741824.0);

Ein anderer Losungsweg: Legen Sie
beim Start des Programms eine Tabelle
mit Zufallszahlen mit Hilfe Thres her-
kommlichen Generators an. Es geniigen
4096 verschiedene Zahlen. Als Funktion
dient dann

Noise-Funktionen

verwenden, legen Sie
durch die sogenannte
Persistence fest. Sie
bestimmen noch eine
Amplitude und eine
Frequenz fir die erste
Funktion. Fiir die je-

weils nichste Funkti-
on verdoppeln Sie die
Frequenz und multi-
plizieren die Ampli-
tude mit der Persistence.

Der Wert der Persistence sollte zwi-
schen 0 und 1 liegen. Groflere Werte be-
deuten stirkere hohe Frequenzen, also
mehr Rauschen. Bei der Anzahl der
Funktionen, die uberlagert werden,
spricht man auch von Oktaven. Der Be-
griff wurde aus der Musik entliehen, da
bei Klingen eine Verdopplung der Fre-
quenz einem Sprung von einer Oktave
entspricht.

Wieviel Oktaven Sie wihlen, ist Thre
Entscheidung. Berticksichtigen Sie nur,
daf die Amplitude irgendwann so klein
wird, dafl die Funktion nicht mehr ins
Gewicht fillt. In unserem Fall empfeh-
len sich etwa zwei bis acht Oktaven.

Wie erzeugen Sie Noise-Funktionen?
Die herkommlichen Zufallszahlengene-

DIE PERLIN-NOISE-FUNKTION im zweidimensionalen Raum er-
innert hier an Flora.

return Zufallstabelle

[x % GroRe der Tabelle J;
Wenn Sie nun einen Zufallswert zu nicht
ganzzahligen X-Werten benotigen, erle-
digen Sie dies durch Interpolation.

Dazu werten Sie die Noise-Funktion
an der von X aus gesehen nichstkleineren
und nichstgrofleren ganzen Zahl aus.
Mit dem Nachkommaanteil von X be-
rechnen Sie den interpolierten Wert.

Die einfachste Methode ist es, linear
zu interpolieren:

return Wert1*(1-NachkommaX)

+ Wert1*NachkommaX
Bei der linearen Interpolation erhalten
Sie jedoch keine sehr schonen Ergebnis-
se. Mit ein wenig mehr Rechenaufwand
erzielen Sie mit der Kosinusinterpolati-
on abgerundetere Ergebnisse:

PC UNDERGROUND
PRAXIS

Lineare Interpolaion

Kosinusinterpolaion

DIE KOSINUSINTERPOLATION liefert rea-
listischere Bilder als die lineare.

ft = NachkommaX * PI
f=(@-cos(ft))*0.5
return a*(1-f) + b*f

Der Unterschied ist, daf} der Gewich-
tungsfaktor (hier) bei der Kosinusin-
terpolation — durch die Kosinusfunktion
an den Rindern (sprich bei Nachkom-
maanteilen nahe bei 0 oder 1 - langsamer
steigt. Dadurch erhalten Sie in der Nihe
der Zufallswerte abgerundete Verliufe.
Nehmen Sie nun alles zusammen, er-
halten Sie eine Perlin-Noise-Routine
wie im folgenden Pseudocode fiir eine
Dimension:
int Noise(int x)
{return Zufallstabelle
[x % GrofRRe der Tabelle];}
float Interpolate
(float a,float b, float x)
{return a*(1-x) + b*x;}
float InterpolatedNoise(float x)
{GanzzahlIX = (int)x;
NachkommaX = x - GanzzahlX;
v1 = Noise(x);
v2 = Noise(x +1);
return Interpolate
(v1,v2,NachkommaX);}
float PerlinNoise(float x)
{floattotal= (FLOAT)O;
floatPersistence= material.p;
int Octaves= material.o;
floatFrequenz= material.f;
floatAmplitude=
material.a * Persistence;
for (int i= 0;i<Octaves;i++)
{total += InterpolatedNoise3D
(x * Frequenz) * Amplitude;
Frequenz *=2.0;
Amplitude *= Persistence;
}
Fir dreidimensionale Noise-Funktio-
nen berechnen Sie nicht zwei Punkte
und interpolieren, sondern Sie berech-
nen acht Werte. Ein Punkt liegt im Drei-
dimensionalen innerhalb eines Wiirfels,
dessen Kanten durch die jeweiligen
nichstkleineren bzw. -grofleren ganz-
zahligen Koordinaten bestimmt sind.

Berechnen Sie die Werte fiir die Eck- ©

PC Magazin Dezember 1999 223

£l

PC UNDERGROUND
PRAXIS

9-E]

punkte des Wiirfels, und interpolieren
Sie anschlieflend.

Was haben Sie von einer 3D-Noise-
Funktion? Sie konnen zu jedem Punkt
im Raum einen Farb- oder Helligkeits-
wert bestimmen. Wollen Sie ein Objekt
mit einer prozeduralen Textur versehen,
speichern Sie in der Materialstruktur des
Raytracers die Werte fir die Noise-
Funktionen und berechnen fiir jeden
Schnittpunkt den Noise-Wert. Damit
erzeugen Sie Texturen wie auf den unten
abgebildeten Kugeln.

Mit den Noise-Werten berechnen Sie
auch andere Texturen, zum Beispiel eine

MIT EINER 3D-NOISE-FUNKTION sehen
diese Kugeln zum Greifen echt aus.

marmorahnliche Struktur. Hierzu be-
rechnen Sie fiir jeden Raumpunkt zwei
Noise-Werte: einen an seiner Original-
position und einen an einem Punkt, den
Sie durch eine beliebig grofie Verschie-
bung erreichen.

Dann nehmen Sie die x-Komponente
des Originalvektors und addieren den
ersten Noise-Wert dazu. Genauso ver-
fahren Sie mit der y-Komponente und
dem zweiten Wert.

Die Nachkommastellen der resultie-
renden Werte bilden Sie mit der Funki-
on cycloidal(...) auf eine Sinusfunktion
ab und multiplizieren das Ergebnis mit
dem Turbulenzparameter, den Sie noch
in der Materialbeschreibung einfiihren.
Der Ruckgabewert der Noise-Funktion
entspricht jetzt nur der Linge des Er-
gebnisvektors, auf eine Dreiecksfunkti-
on umgelegt:

224 Dezember 1999 PC Magazin

..}
floatcycloidal(float x)
{float temp = fmod(x, 1);

if (temp < 0) temp +=1;

return sin(temp * 2 * P1);}
floattriangle_wave(float x)
{float offset = fmod(x, 1);
if (offset < 0) offset +=1;
if (offset>0.5) offset=1-offset;
return offset + offset;}

{1
/I Marmor Wert am Punkt p
r = Noise(p.x, p.y, p.z);
r2 = Noise(p.x+1000, p.y,p.z);
p.x += cycloidal(p.x +)
* PTexture.Turbulenz;
p.y += cycloidal(p.y + r2)
* PTexture.Turbulenz;
return triangle_wave
(VLength(p));
{..}

Es gibt noch unzahlige Wege, um die
Noise-Werte zu anderen prozeduralen
Texturen zu verkniipfen. Im Sourcecode
(RTNoise.cpp) finden Sie eine Variante
fur holzihnliche Muster.

Wie Sie die Helligkeit der Farbe an ei-
nem Schnittpunkt mit prozeduralen Tex-
turen verandern konnen, so modifizieren
Sie auch die Oberflichennormale an ei-
nem Schnittpunkt, um die Beleuchtung,
Spiegelung und Lichtbrechung zu beein-
flussen. Hierzu berechnen Sie fiir einen
Schnittpunkt drei Noise-Werte, einen an
der Originalposition und zwei an ver-
schobenen Stellen. Interpretieren Sie die-
se Werte als Vektor, skalieren Sie thn, und
addieren Sie den Vektor auf die Norma-
le, die Sie im Zuge der Schnittpunktbe-
rechnungen erhalten haben. Als Ergebnis
erhalten Sie die Kugeln rechts im Bild.

DAS ANTI-ALIASING-VERFAHREN beseitigt
unschone Treppcheneffekte.

strahlen der Halbschatten, moglichst
gleich verteilt sind. Auch die Abbruch-
kriterien sind dieselben wie die bereits
vorgestellten. Da das Verfolgen der
Stahlen der rechenintensive Teil des
Raytracing ist, ist der Preis fiir das Anti-
Aliasing hoch, aber die deutlich bessere
Darstellungsqualitat rechtfertigt dies.
Die vorgestellten Neuerungen bei
den Texturen und dem Bump Mapping
im Raytracing-Programm sind auch
in den Parser integriert. Die Parameter

Ein Problem sind die Aliasing-Effekte —
auch als Treppenstufen bezeichnet. Als
Aliasing wird das irrttimliche Erschei-
nen von niederfrequenten Signalen be-
zeichnet, das aus fehlerhaftem Messen
von hochfrequenten Signalen resultiert.

Anders ausgedriickt: Wenn Sie sich
den Bildschirm als Fliche vorstellen, re-
prasentiert jeder Pixel einen kleinen Teil
der Gesamtfliche. Verfolgen Sie nur ei-
nen Lichtstrahl pro Pixel zuriick, kon-
nen Sie durch zu geringes Abtasten
Treppcheneffekte bekommen.

Sie 16sen das Problem, indem Sie
einen Pixel als Fliche behandeln und
mehrere Strahlen durch diesen Pixel ver-
folgen. Ein Ansatz fir das Anti-Aliasing
ist das statistische Super-Sampling. Hier-
bei verfolgen Sie Strahlen, die vom Be-
trachter aus durch Punkte verlaufen, die
zufillig auf der Fliche des Pixels verteilt
sind.

Achten Sie dabei darauf, daf} diese
Punkte, wie schon bei den Schatten-

%

)
\\\2
\\“"@
\;\(-

Betrachter

SIE BEHANDELN einen Pixel als Flache
und verfolgen mehrere Strahlen durch
diesen Pixel.

fir das Abtasten der Lichtquellen und
das Anti-Aliasing finden Sie in den
Quelldateien RTPolylight.cpp und RT-
Camera.c. ET

Die kompletten Quelltexte finden Sie auf der Heft-
CD im Verzeichnis Praxis\PC-Underground und auf
unserer Website unter
www.pc-magazin.de/magazin/
O extras.htm
Klicken Sie in der Tabelle Online Extras unter
Praxis auf das entsprechende Download-Feld.

