)

PC UNDERGROUND

PRAXIS

0.

v ®

'3. 'e C] -

S, ” b
T -

Demo-Programmierung unter Windows 95/198/‘46'?

IN Perfektion

Zwei neue Klassen von Primitiven vervollstandigen

den bisher entwickelten Raytracer, den Sie zudem

.

CARSTEN DACHSBACHER

nsere Welt besteht aus einer
l 'Vielzahl von Formen. Daher

verlangt die Gestaltung wirk-
lichkeitsgetreuer Szenerien in einem
Raytracer auch nach komplexeren Ob-
jekten. Diese bauen Sie am einfachsten
aus Polygonen und sogenannten CSG-
Primitiven (Constructed Solid Geome-
try) zusammen. Dadurch steigt der An-
spruch an die Rechen-Performance -
dem werden Sie durch gezielte Verbes-
serungen gerecht.

An dieser Stelle lernen Sie die Primitive
kennen, die Sie wahrscheinlich schonam
langsten vermif3t haben: Polygone. Wir
beschrénken uns dabei auf ihre einfach-
sten Vertreter, die Dreiecke. Fir
Schnittpunktberechnungen mit Drei-
ecken existieren verschiedener Algorith-
men. Wir stellen Thnen das allgemeine
Prinzip vor — eine besonders elegante
Variante finden Sie im Quellcode. Sie
stammt aus dem Journal of Graphics
Tools (siehe Literaturtips am Ende).

Ein Dreieck definieren Sie durch seine
drei Eckpunkte. Vielleicht erinnern Sie
sich, daf Sie auf die gleiche Weise auch
eine Ebene im Raum plaziert haben. Um
einen Schnittpunkt mit einem Dreieck
zu besitzen, muf eine Gerade notwendi-
gerweise auch die Ebene schneiden, in
der das Dreieck liegt—also die Ebene, die
durch die drei Eckpunkte bestimmt
wird.

Zudem muB der berechnete Schnitt-
punkt innerhalb des Dreiecks liegen. Be-
trachten Sie dazu das Koordinatensy-
stem in der Abbildung unten.

Dort finden Sie die Funktion

y=-x+1
eingezeichnet. Durch Umformen erhal-
ten Sie daraus

x+y=1
AufRerdem sehen Sie im Bild ein Drei-
eck, dessen linker unterer Eckpunkt
durch den Ortsvektor & festgelegt ist
und dessen Kanten mit b* bzw. T be-
schriftet sind.

Definieren Sie, daf3 der Einheitsvektor
der x-Achse gleich b” und der Einheits-
vektor der y-Achse gleich T
ist, kdnnen Sie in der obigen Formel x
durch u, y durch v und das Gleichheits-

zeichen durch ,klei-

ner gleich* ersetzen.
Daraus ergeben sich
folgende Bedingun-
gen fur die Dreiecks-
flache:

u+v<=1
u>=0
v>=0

(u=0.5, v=0.5)

Die Werte uund v fir
einen berechneten

ANHAND DER WERTE u und v sehen Sie, ob ein Punkt im

Dreieck liegt.

246 Januar 2000 PC Magazin

Schnittpunkt 5 der
Geraden mit der Ebe-

ne entnehmen Sie dem Skalarprodukt.
Dieses berechnet, wie lang die Projekti-
on eines Vektors auf einen anderen ist.
Die Differenz zwischens und & ergibt
genau den Vektor, den Sie auf die Kan-
ten des Dreiecks projizieren:

XS Yol
u; =x> *b~
vy =X *c~

Fur das Skalarprodukt gilt ganz allge-
mein:

(ERCEE)= (T x 7)*y
Um u; und vq richtig zu skalieren,
genigt es daher, sie durch die Lange der
Kanten zu teilen:

u=u ¢ /|b 7|

v=v 4 /lc 7|
Daraus ersehen Sie, ob der Schnittpunkt
im Dreieck liegt:

if (U>0 && v>0 && (u+v)<=1)

return true;
else return false;

Nachdem Sie jetzt Schnittpunkte mit
Dreiecken berechnen kénnen, bleibt die
Frage der Beleuchtung. Nattrlich haben
Dreiecke eine gerade Oberflache — ge-
nauso wie die Ebenen, in denen sie lie-
gen. Die Normale bleibt also Uberall die-
selbe. Daher bréuchten Sie nur die ein-
mal berechnete Normale in der Beleuch-
tungsgleichung verwenden.

Allerdings dienen Dreiecke oft dazu,
beliebig geformte Flachen anzunahern.
Um zum Beispiel runde Flachen
rund erscheinen zu lassen, bengtigen Sie
eigentlich Unmengen von Dreiecken.
Dadurch steigt auch der Rechenauf-
wand immens. Mchten Sie mit wenigen
Dreiecken auskommen, konnen Sie
zumindest in der Beleuchtung die
Flache runder erscheinen lassen, als sie
wirklich ist.

Die Phong-Schattierung tduscht ge-
wolbte Flachen durch die Interpolation
des Normalenvektors vor. Dazu weisen
Sie nicht jedem Dreieck, sondern jedem
Eckpunkt eine Normale zu. Die Nor-
male an einem Schnittpunkt innerhalb
des Dreiecks erhalten Sie dann durch die
Interpolation der Normalen an den drei
Eckpunkten. Zu jedem Dreieck berech-
nen Sie dazu die Normale an einem der
Eckpunkte sowie die Differenzen zu
den Normalen an den zwei anliegenden
Kanten.

Sind also ny, n; und 3 die Normalen
an den Eckpunkten, dann berechnen Sie:

k =, -n7y

P =3 -n7y
Aus der Schnittpunktberechnung besit-
zen Sie bereits die beiden Parameter u
und v.

Fir die Normale am Schnittpunkt gilt
dann:

nm =my+u*k = +v*l ~
Bevor Sie diese in die Berechnung der
Beleuchtung einsetzen, normalisieren
Sie sie noch: Auch wenn die urspringli-
chen Normalen an den Eckpunkten be-
reits normalisiert vorliegen, ist durch die
Interpolation nicht mehr gewahrleistet,
dal n* die Lange 1 besitzt.

In der Skriptsprache des Parsers kon-
nen Sie sowohl Dreiecke mit konstanter
Normale als auch solche mit Phong-
Schattierung definieren. Ein 3D-Objekt
aus Dreiecken beginnen Sie zunéachst mit

mesh {...}

Innerhalb der geschweiften Klammern
geben Sie die zwei Dreiecksprimitive an:
triangle
<x1,y1,z1>, <x2,y2,z2>,

}<><3,y3,z3>
definiert Dreiecke mit konstanter Nor-
male, die dann berechnet wird. Fiir Drei-
ecke mit Phong-Schattierung geben Sie
in

smooth_triangle

<x1,y1,z1>, <x2,y2,z2>,
<x3,y3,z3>, <nx1,nyl,nz1>,

) <nx2,ny2,nz2>, <nx3,ny3,nz3>
zusétzlich noch die Normalen der Eck-
punkte an.

Ein solches Polygonobjekt sehen Sie
im Bild unten. Die Polygondaten dafir
stammen aus einer mit POV-Ray gene-
rierten Szenerie.

Auch wenn sich durch Polygone prinzi-
piell alle Oberflachen anndhern lassen,
ist dies manchmal nicht die einfachste
oder genaueste L6sung. Dann eignet
sich vielleicht eher die Klasse der durch
Constructed Solid Geometry (CSG) er-
zeugten Korper. Hinter dieser Bezeich-
nung, die sich nur schwer ins Deutsche
Ubersetzen 1aR3t, verbirgt sich ein Verfah-

DIE PHONG-SCHATTIERUNG rundet die
Kanten des Springers etwas ab.

ren, mit dem Sie zwei oder mehrere ein-
fache Primitive wie Kugel, Ebene oder
Zylinder miteinander verknupfen.

Die mdoglichen Verknipfungen sind
dabei Vereinigung, Schnitt und Diffe-
renz. Diese Begriffe aus der Mengenleh-
re kdnnen Sie ohne weiteres auf die Pri-
mitive Ubertragen, da diese gewisser-
mafen Teilmengen des Raums darstel-
len. Anhand zweier Kugeln kénnen Sie
sich die erlaubten Operationen leicht
vor Augen fiihren. Betrachten Sie dazu
die rot schraffierte Schnittmenge zweier
Kugeln im folgenden Bild.

Schnitt zweier Kugeln:

Kugel 1 Kugel 2

Halbgerade

Differenz zweier Kugelin:

Kugel 1

Kugel 2

Halbgerade

DURCH SCHNITT und Differenz von
Primitiven schaffen Sie CSG-Primitive.

Um die Schnittpunkte mit der Schnitt-
menge festzustellen, berechnen Sie
zundchst alle Schnittpunkte der betrach-
teten Geraden mit den beiden Primiti-
ven. Die Schnittpunkte mit der Schnitt-
menge finden Sie durch folgenden Algo-
rithmus in Pseudocode:

Betrachte alle Schnittpunkte
der Primitive:
Ist der Punkt von Primitiv 1
und liegt in Primitiv 2
oder
ist der Punkt von Primitiv 2
und liegt in Primitiv 1
dann Schnittpunkt gefunden

Sie sehen: Die Primitive — oder vielmehr
die entsprechenden C++-Klassen — ver-
langen eine Methode, die angibt, ob ein
Punkt im Inneren des Primitivs liegt. Im
Falle der Kugel berechnet diese einfach
den Abstand des Punkts vom Kugelmit-
telpunkt. Ist er kleiner oder gleich dem
Radius, dann liegt der Punkt im Inneren.

Bei einer Ebene ist zunachst unklar,
welche Seite den inneren bzw. dul3eren
Teil darstellen soll. Per Definition sei da-

PC UNDERGROUND
PRAXIS

her festgelegt, daR der Halbraum — eine
Ebene teilt den Raum in zwei Halften —
auBen ist, in den die Normale zeigt.
Dadurch reduziert sich der Aufwand
fur den Innen-/AufRen-Test auf ein Ska-
larprodukt des zu prufenden Punkts mit
der Normalen, wovon Sie noch den (im-
mer vorberechneten) Abstand der Ebe-
ne zum Ursprung subtrahieren. Ist das
Resultat kleiner oder gleich Null, liegt
der Punkt im Inneren.
Naturlich kénnen Sie CSG-Objekte
auch aus solchen Primitiven zusammen-
setzen, die ihrerseits CSG-Objekte sind.
Auch diese haben alle fiir die Schnitt-
punktberechnung notwendigen Metho-
den implementiert.
Eine weitere mogliche Verknupfung
zweier Objekte ist die Vereinigung. Die-
se gestaltet sich besonders einfach, da Sie
alle Schnittpunkte der Einzelprimitive
auch als Schnittpunkte des CSG-Ob-
jekts verwenden kdnnen. Das ist deshalb
erlaubt, da beim Raytracing sowieso der
néchste Schnittpunkt gesucht wird. Alle
weiter entfernten Schnittpunkte — auch
die im Inneren des Vereinigungsobjekts
— fallen nicht ins Gewicht.
Die letzte Verknupfungsmethode ist
die Differenz. Sie kdnnen sich das als das
Herausschneiden eines Objekts aus ei-
nem anderen vorstellen.
In diesem Fall gilt fir die Schnitt-
punktklassifikation:
Betrachte alle Schnittpunkte
der Primitive:
Ist der Punkt von Primitiv 1
und liegt nicht in Primitiv 2
oder
ist der Punkt von Primitiv 2
und liegt in Primitiv 1

dann Schnittpunkt gefunden

Damit haben Sie das Prinzip der CSG-
Objekte erfalit.

Ein Beispiel fur ein komplexeres CSG-
Objekt ist der Wrfel in der Abbildung
auf der ndchsten Seite. Der Wirfel ist die
Schnittmenge aus sechs Ebenen. Die
Vertiefungen der Augenzahlen entste-
hen durch herausgeschnittene Kugeln.
Die Skriptdatei dazu finden Sie auf der
Heft-CD bei den Quelltexten.

Wollen Sie die Berechnung eines Bilds
mit dem Raytracer beschleunigen, be-
ginnen Sie bei den am haufigsten ver-
wendeten Routinen. lhr Augenmerk
fallt dabei wohl zuerst auf die Schnitt-
punktberechnungen, die den gréfiten
Teil der Rechenzeitin Anspruch neh- ©

PC Magazin Januar 2000 247

£l

9-E]

PC UNDERGROUND
PRAXIS

DIE AUGEN DES WURFELS sind halbkugel-
formige Vertiefungen.

men. An diesen mathematischen Proble-
men haben sich bereits viele versucht,
und dementsprechend viele Algorith-
men fur Schnittpunktberechnungen fr
Primitive aller Art gibt es.

Im Quelltext RTTriangle.cpp des Po-
lygonprimitivs finden Sie etwa einen ele-
ganten Ansatz, um einen Schnittpunkt
einer Gerade und eines Dreiecks zu be-
rechnen. An dieser Stelle mdchten wir
Ihnen zeigen, wie Sie die Schnittpunkte
einer Kugel anhand geometrischer
Uberlegungen schneller berechnen.

Vor einer Schnittpunktberechnung
wissen Sie nicht, ob es Uberhaupt einen
Schnittpunkt gibt. Eine oft verwendete
Technik bei der Optimierung von
Schnittests ist es, durch moglichst einfa-
che Berechnungen bereits sehr friih fest-
zustellen, ob der Strahl das Objekt sicher
verfehlt. Diese Tests werden Rejection-
Tests genannt —verlduft der Test negativ,
gibt es keinen Schnittpunkt. Fir den Fall
der Kugel betrachten Sie am besten die
drei Skizzen unten, die sich jeweils nur
in der Lage von 0" unterscheiden. 0 ist
dabei der Startpunkt der Halbgeraden,
ax die Richtung der Geraden. Fur die
Halbgerade gilt:

X =0 +t* ox
Schliellich gibt es noch den Vektor T
fir den Kugelmittelpunkt. Der erste Re-
jection-Test bertcksichtigt die Lage der
Kugel beziglich 0. Von Interesse sind
nur Kugeln, die vor dem Startpunkt der
Geraden liegen. Dazu berechnen Sie den

Vektor vom Startpunkt zum Kugelmit-
telpunkt, also

P =c -0~
Daraus ermitteln Sie die quadrierte Lan-
gevonT —also das Quadrat des Abstan-
des — mit:

12 =1~ |~
Gleichzeitig haben Sie mit r2 das Qua-
drat des Kugelradius gegeben, der bei
der Initialisierung eines Kugelobjekts
vorberechnet wird. Damit entscheiden
Sie nun folgendes: Ist 12 kleiner als r2, be-
findet sich 0" in der Kugel, und es gibt
(genau) einen Schnittpunkt. Wollen Sie
nur feststellen, ob es Uberhaupt einen
Schnittpunkt gibt, kénnen Sie an dieser
Stelle die Berechnung abbrechen.

Da Sie allerdings den Schnittpunkt be-
stimmen wollen, berechnen Sie als néch-
stes die Projektion vonT auf d”. Dies ge-
schieht mit dem Skalarprodukt

d=1 - * ox
Nun wenden Sie den ersten Rejection-
Test an: Liegt 0" auferhalb der Kugel —
also ist 12 groRer als r2 —, und ist d nega-
tiv? Falls ja, gibt es keinen Schnittpunkt.
Ansonsten fahren Sie mit der Berech-
nung fort.

Als néchstes interessiert Sie m2, das
Abstandsquadrat des Kugelmittelpunkts
zu der Projektion vonT . Da es sich um
ein rechtwinkliges Dreieck handelt,
wenden Sie den Satz des Pythagoras an:

e =12-d?2
Nun sind Sie am zweiten Rejection-Test
angelangt: Ist m2 groRer als r2, dann wird
der Strahl am Objekt vorbeischiefen,
ansonsten sicher treffen. Im letzteren
Fall existieren also Schnittpunkte, die es
zu berechnen gilt. Lésen Sie dazu die
Gleichung

g2 =r2-m2
Da wegen des letzten Rejection-Tests
m2 <= r2 gilt, ist g2 groRer oder gleich
Null. Das bedeutet, da® Sie ohne Pro-
bleme die Wurzel daraus ziehen kdnnen:

q=sqrt(@ ?)

Um schlieBlich die Schnittpunkte zu be-
stimmen, berechnen Sie die Entfernun-
gen zu den Schnittpunkten — also die

Werte flr t aus der

Geradengleichung.
Dabei gilt:

t1=d-q

3 t=d+q

Die Routine sieht
dann in etwa folgen-
dermafen aus:

bool RaySphereln-
tersect(

MIT REJECTION-TESTS bestimmen Sie frihzeitig, ob der Strahl

ein Objekt verfehlt.

248 Januar 2000 PC Magazin

VERTEX3D o, d, ¢,
FLOAT 1)

{

VERTEX3D | = c-0;
Float d = I*d;

float 12 = I*I;

float r2 = r*r;

if (d<0 && 12>r2) return 0;

float m2 = 12-d2;
if (m2>r2) return 0;

q = sqrt(r2-m2);

t1 =d-q;

t2 = d+q;

return 1;

}

Wie Sie sehen, reduziert sich der Auf-
wand fur eine Schnittpunktberechnung
im Vergleich zur ursprunglichen Imple-
mentierung in Ausgabe 10/99 deutlich.
Der damalige Ansatz verfolgt gewisser-
mafien eine analytische Losung und
dient vor allem als Einfuihrung in die
Schnittpunktberechnungen.

Schnelle Algorithmen fir effiziente
Schnittpunktberechnungen sind eine
gute Grundlage fiir einen Raytracer. Bei
Szenen mit Tausenden von Objekten
wird Ihr Rechner trotzdem unertraglich
lange arbeiten, da er fUr jedes Pixel des
Bildes, fur jede Rekursionstiefe und fir
jeden Schattenstrahl Schnittpunkttests
mit allen Objekten durchfiihren muR.
Deshalb erzielen Sie bei komplexen Sze-
nen deutliche Geschwindigkeitssteige-
rungen, wenn Sie sich dartiber Gedan-
ken machen, wie Sie Schnitttests ganz
vermeiden kénnen.

Nutzen Sie fur dreidimensionale Um-
gebungen das sogenannte Octrees-Ver-
fahren: Octrees sind baumartige Spei-
cherstrukturen mit jeweils acht Nach-
folgern.

Im zweidimensionalen Raum IaRt sich
das Prinzip noch anschaulicher an den
dort verwendeten Quadtrees verdeutli-
chen. Wie ihr Name besagt, besitzen die-
se jeweils vier Nachfolger.

Stellen Sie sich eine beliebige Anord-
nung mehrerer Objekte in einer Ebene
vor, wie etwa in der Abbildung auf der
néchsten Seite links oben. Nun ordnen
Sie die Obijekte in einer hierarchischen
Struktur wie folgt an: Legen Sie ein mog-
lichst kleines Quadrat so um die Objek-
te, daf? diese vollstdndig darin enthalten
sind. Vierteln Sie das Quadrat, und Sie
erhalten vier kleinere, im ursprunglichen
Quadrat enthaltene Quadrate. Diesen
Vorgang wiederholen Sie so lange, bis je-
des Quadrat entweder leer ist oder genau
ein Objekt enthdlt. Sie erhalten dann ein
Gittermuster.

Rekursionstiefe 0:

Rekursionstiefe 3:

Wirfels bezeichnet
man — analog zur Na-

®.

bt mengebung bei struk-
turierten Baumen -
als Node (Knoten).
Folgender Pseude-
code flugt ein Objekt

b

in den Octree ein:
BOOL

InsertObject(OCTRE-
ENODE
*node, RTObject

REKURSIV BAUEN SIE einen Octree fur eine Szene auf.

Wollen Sie einen Schnittest eines
Strahls mit einem Objekt durchfiihren,
testen Sie nur die Objekte, bei denen Sie
auch das dazugehorige Quadrat treffen.
Trifft ein Strahl ein Quadrat nicht, so
konnen Sie auch alle Objekte, die in den
darin enthaltenen Quadraten liegen, von
dem Schnittest ausschlieRen.

Bei den dreidimensionalen Octrees
teilen Sie einen Wirfel rekursiv in seine
acht Unterwiarfel auf. Um herauszufin-
den, wieviel Platz ein Primitiv benétigt,
geben Sie einen mdglichst kleinen Wiir-
fel an, der ein Primitiv vollstandig ent-
hélt. Das gestaltet sich relativ einfach,
wenn Sie einen Wiirfel — eine sogenann-
te Bounding Box — verwenden, dessen
Kanten parallel zu den Koordinatenach-
sen verlaufen. Somit sind seine Seiten-
flachen parallel zu den x/y- und x/z-
Ebenen des Koordinatensystems.

Solche Wiirfel heilRen Axis-Aligned
Bounding Boxes (AABBs). Eine AABB
legen Sie durch zwei Ortsvektoren fest:
Diese geben jeweils die minimalen bzw.
maximalen x-, y- und z-Koordinaten an,
die das eingeschlossene Primitiv an-
nimmt. Fur eine Kugel bestimmen Sie ei-
ne AABB also wie folgt:

Kugelmittelpunkt o

Kugelradius r

minV = (X-r, y-r, z-r)
maxV = (X+r, y+r, z+r)

T =(xy.2)

Nicht fur alle Primitive kénnen Sie ohne
weiteres eine AABB bestimmen: Das
Ebenenprimitiv besitzt zum Beispiel
keine endliche Ausdehnung. Diese spe-
ziellen Primitive behandeln Sie deshalb
unabhéngig vom Octree-Verfahren.
Um den Octree flr eine 3D-Szenerie
aufzubauen, berechnen Sie die AABBs
fir alle Primitive, bei denen dies méglich
ist. Dann bestimmen Sie einen Wiirfel,
dessen Mitte im Koordinatenursprung
liegt und der alle AABBs enthdlt. Nun
fligen Sie jedes Primitiv mit einer rekur-
siven Prozedur in den Octree ein. Die
Speicherungsstruktur eines Octree-

*Ov
const EXTEND *e)

Liegt die AABB
des Objekts
(EXTEND e) in dem Node ?
Wenn nein, return False;
if (noch nicht maximale
Unterteilung)

Erzeuge 8 Unterwurfel
Versuche, das Objekt dort
einzufigen
}

Wenn noch nicht eingefugt,
dann in den aktuellen
Octreenode einfiigen

return True;

}

Den programmierten Code zeigt der
Ausschnitt aus der Datei RTOctree.cpp
(Listing 1) auf der n&chsten Seite oben.

Bei einer Schnittpunktberechnung te-
sten Sie einfach rekursiv den Octree mit
den darin enthaltenen Objekten. Sie
starten an der Wurzel, dem ersten Node
des Octrees. Schneidet der Strahl die da-
zugehorige AABB, berechnen Sie die
Schnittpunkte mit den Objekten in die-
sem Node.

AnschlieBend rufen Sie die Berech-
nungsroutine fir jeden der acht Sub-
nodes (Unterwirfel) auf. Dadurch
schlieBen Sie bei den meisten Schnitt-
punktberechnungen viele Objekte durch
wenige Schnittests mit AABBs aus.

Die Objekte, zu denen Sie keine
AABBs berechnen konnten, speichern
Sie in einer Liste. All diese Objekte un-
terziehen Sie wie bisher den Schnitt-
punkttests. Die gesamte Schnittpunkt-
berechnung lduft schematisch wie im
zweiten Listing auf der néchsten Seite.

Damit haben Sie fast alle Routinen fiir
das Octree-Verfahren zusammen. Es
fehlt noch der Schnittest fur einen Strahl
und eine AABB. Begrenzungsvolumen
fur Korper wie AABBs sind in der 3D-
Grafik ein weitverbreitetes Mittel fur
Geschwindigkeitssteigerungen. Daher
gibt es fir solche Problemstellungen
verschiedene Algorithmen.

Unser Raytracer verwendet die soge-
nannte Slab-Methode. Diese kommt
auch mit Bounding Boxes zurecht, bei

PC UNDERGROUND
PRAXIS

denen die Kanten nicht Axis-Aligned
sind — also wie die AABBs an den Koor-
dinatenachsen ausgerichtet. Der Begriff
Slab bezeichnet hier zwei parallele Ebe-
nen, die aus Geschwindigkeitsgriinden
bei der Berechnung gruppiert sind.

Da eine AABB durch drei parallele
Ebenenpaare begrenzt wird, kénnen Sie
sie durch drei Slabs darstellen. Diese
Slabs benennen Sie mit u, v und w. Fir
ein Slab kdnnen Sie —analog zu Ebenen-
primitiven — Schnittpunkte berechnen.
Da es sich immer um zwei Ebenen han-
delt, erhalten Sie jeweils einen maxima-
len und einen minimalen Wert fur die
Schnittpunkte.

In diese Werte —zum Beispiel t_u_min
oder t_v_max — fliel3t noch der Faktor t
aus der Geradengleichung ein. Die néch-
ste Berechnung ist dann der eigentliche
Trick:

t_min = max(t_u_min, t_v_min,

t_w_min);

t_max = min(t_u_max, t_v_max,

t_w_max);

Bei t_min <=t_max schneidet der Strahl
die Bounding Box, ansonsten verfehlt er
sie. Den Sourcecode zu dieser Routine
finden Sie in der Datei RTOctree.cpp.
Der einfachere zweidimensionale Fall in
der Skizze unten veranschaulicht die Ar-
beitsweise recht gut.

Auch Slabs sind hier eine Dimension
kleiner, also zwei parallele Geraden. In
der Grafik sehen Sie eine zweidimensio-
nale Bounding Box aus zwei Slabs sowie
zwei Geraden, an denen Schnittests
durchgefihrt werden sollen.

Im ersten Fall ist t_min das Maximum
der Werte t_u_min und t_v_min, also
t_u_min. Ebenfalls rot gekennzeichnet
ist t v_max, was dem Minimalwert
t_max von t u_max und t v_max ©

k)
\ Fall 2: ‘.\‘ VA
\ /\

X
Fall 1:

>\ u_max
.

DIE ROT MARKIERTEN WERTE sagen aus,
ob der Strahl das Rechteck schneidet.

PC Magazin Januar 2000 249

5)-6

5-E]

PC UNDERGROUND
PRAXIS

entspricht. Da t_min Kleiner als t_max
ist, schneidet die linke Gerade die Boun-
ding Box.

Im zweiten Fall ist t_min =t v_min
groReralst_max=t_u_max. Daher zielt
die rechte Gerade an der Bounding Box
vorbei.

Mit dem fertigen Raytracing-Pro-
gramm OORT.exe konnen Sie nun
faszinierende Computerwelten ent-
werfen und beleuchten. Berechnen
Sie schone Bilder damit, und schicken
Sie sie uns zu — wir freuen uns auf lhre
Zusendung.

Selbstverstandlich kdnnen Sie das

quellen, Beleuchtungsmethoden oder
Optimierungen erweitern.

Mdochten Sie sich weiter Uber Raytra-
cing informieren, empfehlen wir Thnen
die im Anschluf? zitierte Literatur sowie
einen Blick in den Sourcecode von
POV-Ray. Dessen Webseite finden Sie
unter

WWWw.povray.org PEI

Die Quelltexte sowie den tbersetzten Raytracer
OORT.exe finden Sie zusammen mit der zugrunde-
liegenden Grafikbibliothek auf unserer Heft-CD 2
in der Rubrik Praxis/Programmierung/PC Under-

ground und in unserem Internet-Angebot unter
www.pc-magazin.de/magazin/
[extras.htm

Klicken Sie unter Online Extras im Men Praxis auf
das entsprechende Download-Feld.

Literatur zum Thema Raytracing:

Journal of Graphics Tools (JGT): Online-Magazin,
erhaltlich unter

www.acm.org/jgt
Foley, van Dam, Feiner, Hughes, Phillips: Grundla-
gen der Computergrafik, Addison Wesley 1994, 100
Mark, ISBN 3-89319-647-1
Wilt: Object-Oriented Raytracing in C++, John Wi-
ley & Sons 1993, etwa 130 Mark, ISBN 0-47130-415-8
Watkins, Coy, Finlay: Fotorealismus und Raytracing
in C, Heise-Verlag 1993, 88 Mark, ISBN 3-88229-
024-2

Muiller, Haines: Real-Time Rendering, AK Peters

Programm um neue Primitive, Licht-

Ltd., ISBN 1-56881-101-2

el se node- >SubNode[i]->m z += s2;

for (SINT32 i =0; i<8; i++
{

if (lnsertQject(node->SubNode[i], o, index, e) ==

node- >Cbj ect | ndex. Add(i ndex) ;

68:
69: }
1: // Ausdehnung ei nes Chjekts 70z node- >nSubNodes = 8;
2: typedef struct 71:
3: { 72:
4: [/endliche Ausdehnung? 73:
5: BOOL finite; 745
6: //wenn ja, dann hier die AABB-Daten 75:
7: VERTEX3D Amin, Anmax; 763 TRUE) return TRUE
8: FLOAT si ze; 77: }
9: } EXTEND, 78: }
10z 79:
11: typedef struct NODE 80:
12: { 81: I/H er einfugen
13: [/ Cbjekte imWirfel 82: node- >Cbj ect s. Add(0) ;
14: Li st <RTCbj ect*> (bj ect s; 83:
15: 84: return TRUE
16: //Zeiger auf die Unterwurfel 85: '}
17: NCDE *SubNode] 8] ; 86: }

18:

19: //Mttel punkt und G sse des Wirfels
20: VERTEX3D m

21: FLOAT si ze;

223

23: //Rekursionstiefe des Wirfels

24: U NT32 Level ;

25: } OCTREENCDE;

Das Octree-Verfahren in RTOctree.cpp

26> 1: Void RecCectree(OCTREENCDE *node)

27: static OCTREENCDE *Cctree; 2: {

28: 3: SINT32 i;

29: BOOL | nsert Chj ect (OCTREENCDE *node, RTChj ect *o, 4;

30: const EXTEND *e) S: [/Trifft der Strahl diesen Wirfel uberhaupt?
31: { 6: if (RayAABBIntersect(...) == FALSE) return;
32: //gehsrt das Cbjekt uberhaupt in di esen Node ? 7=

33: FLOAT s = node->si ze*0. 5f +0. 1f ; 8: //alle Schnittpunkte mit Cbjekten i m Node berechnen
34: 9: for (i = 0; i<node->hjects. num i++)

35: if (node->Level >0) 10z

36: {) 11: SINT32 n =

37: if (e->Anmn.x<(node->mx-s)) return FALSE 12: node- >Cbj ect s[i] - >Get A osest I nt er secti on(*iray);
38: if (e->Anin.y<(node->my-s)) return FALSE 13: if (n!=-1) Intersections++;

39: if (e->Amn.z<(node->mz-s)) return FALSE 14:

40; if (e->Amax.x>(node->mx+s)) return FALSE 15:;

41z !f (e- >Amax. y>(node- >m y+s)) return FALSE; 16: //Nun di e Subnodes testen

423 if (e->Amax.z>(node->mz+s)) return FALSE 17: for (UNT32 j = 0;]<node->nSubNodes; j++)
43: } 18:

44z 19: RecCct r ee(node- >SubNode[j 1) ;

45: if (node->Level <=MAXSUBDI VI DE) 20: }

463 21: }

47; //in Subnodes ei nfugen 223

48:; if (!node->nSubNodes) 23: int Getlntersections(...)

49: { 24: {

50: /1 Subnodes erst anl egen 25: Intersecti ons=0;

il FLOAT s = node->si ze*0. 5f; 26:

52: FLOAT s2 = node- >si ze*0. 25f; 27: |/ Chjekte imQctree testen

533 ;or (SINT32 i = 0; i<8; i++) 28: RecQotree(Cotree);

54: 29:

58: node- >SubNode[i] = new CCTREENCDE; 30: //Cojekte ohne AABBs

56: node- >SubNode] i] - >nSubNodes = 0; 31: for (i =0; i<ninfinite; i++)

57: node- >SubNode[i] - >Level = node- >Level +1; 32:

58: node- >SubNode[i] - >si ze = s; 333 int n=RTScene[i]->Cetd osest | ntersection(pray);
59:; node- >SubNode][i] - >Chj ect s = Li st <RTChj ect *>(0); 34z if (nl=-1) Intersections++

60: node- >SubNode[i] - >Chj ect | ndex = Li st <U NT32>(0) ; 35:

61: node- >SubNode[i] - >m = node- >m 36:

62: 37: return Intersections;

63: if (i & 1) node->SubNode[i]->mx -= s2; 38: }

64: el se node->SubNode[i]->mx += s2; 393

65: if (i &2) node->SubNode[i]->my -= s2;

66: el se node->SubNode[i]->my += s2; Lo .

& it (I &4) node->Subode[i]->mz -= s2; Pseudocode firr die Schnittpunktberechnung

250 Januar 2000 PC Magazin

