
246 Januar 2000 PC Magazin

P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R

Unsere Welt besteht aus einer
Vielzahl von Formen. Daher
verlangt die Gestaltung wirk-

lichkeitsgetreuer Szenerien in einem
Raytracer auch nach komplexeren Ob-
jekten. Diese bauen Sie am einfachsten
aus Polygonen und sogenannten CSG-
Primitiven (Constructed Solid Geome-
try) zusammen. Dadurch steigt der An-
spruch an die Rechen-Performance –
dem werden Sie durch gezielte Verbes-
serungen gerecht.

■ Polygon-Primitive
An dieser Stelle lernen Sie die Primitive
kennen, die Sie wahrscheinlich schon am
längsten vermißt haben: Polygone. Wir
beschränken uns dabei auf ihre einfach-
sten Vertreter, die Dreiecke. Für
Schnittpunktberechnungen mit Drei-
ecken existieren verschiedener Algorith-
men. Wir stellen Ihnen das allgemeine
Prinzip vor – eine besonders elegante
Variante finden Sie im Quellcode. Sie
stammt aus dem Journal of Graphics
Tools (siehe Literaturtips am Ende).

Ein Dreieck definieren Sie durch seine
drei Eckpunkte. Vielleicht erinnern Sie
sich, daß Sie auf die gleiche Weise auch
eine Ebene im Raum plaziert haben. Um
einen Schnittpunkt mit einem Dreieck
zu besitzen, muß eine Gerade notwendi-
gerweise auch die Ebene schneiden, in
der das Dreieck liegt – also die Ebene, die
durch die drei Eckpunkte bestimmt
wird.

Zudem muß der berechnete Schnitt-
punkt innerhalb des Dreiecks liegen. Be-
trachten Sie dazu das Koordinatensy-
stem in der Abbildung unten.

Dort finden Sie die Funktion
y = -x + 1

eingezeichnet. Durch Umformen erhal-
ten Sie daraus

x + y = 1

Außerdem sehen Sie im Bild ein Drei-
eck, dessen linker unterer Eckpunkt
durch den Ortsvektor a→ festgelegt ist
und dessen Kanten mit b→ bzw. c→ be-
schriftet sind.

Definieren Sie, daß der Einheitsvektor
der x-Achse gleich b→ und der Einheits-
vektor der y-Achse gleich c→
ist, können Sie in der obigen Formel x
durch u, y durch v und das Gleichheits-

zeichen durch „klei-
ner gleich“ ersetzen.
Daraus ergeben sich
folgende Bedingun-
gen für die Dreiecks-
fläche:
u + v <= 1
u >= 0
v >= 0

Die Werte u und v für
einen berechneten
Schnittpunkt s→ der
Geraden mit der Ebe-

ne entnehmen Sie dem Skalarprodukt.
Dieses berechnet, wie lang die Projekti-
on eines Vektors auf einen anderen ist.
Die Differenz zwischen s→ und a→ ergibt
genau den Vektor, den Sie auf die Kan-
ten des Dreiecks projizieren:

x→ = s→ - a→
u1 = x→ * b→
v1 = x→ * c→

Für das Skalarprodukt gilt ganz allge-
mein:

t * (x → * y→) = (t * x →) * y →

Um u1 und v1 richtig zu skalieren,
genügt es daher, sie durch die Länge der
Kanten zu teilen:

u = u 1 / |b →|
v = v 1 / |c →|

Daraus ersehen Sie, ob der Schnittpunkt
im Dreieck liegt:

if (u>0 && v>0 && (u+v)<=1)
return true;

else return false;

Nachdem Sie jetzt Schnittpunkte mit
Dreiecken berechnen können, bleibt die
Frage der Beleuchtung. Natürlich haben
Dreiecke eine gerade Oberfläche – ge-
nauso wie die Ebenen, in denen sie lie-
gen. Die Normale bleibt also überall die-
selbe. Daher bräuchten Sie nur die ein-
mal berechnete Normale in der Beleuch-
tungsgleichung verwenden.

Allerdings dienen Dreiecke oft dazu,
beliebig geformte Flächen anzunähern.
Um zum Beispiel runde Flächen
rund erscheinen zu lassen, benötigen Sie
eigentlich Unmengen von Dreiecken.
Dadurch steigt auch der Rechenauf-
wand immens. Möchten Sie mit wenigen
Dreiecken auskommen, können Sie
zumindest in der Beleuchtung die
Fläche runder erscheinen lassen, als sie
wirklich ist.

Die Phong-Schattierung täuscht ge-
wölbte Flächen durch die Interpolation
des Normalenvektors vor. Dazu weisen
Sie nicht jedem Dreieck, sondern jedem
Eckpunkt eine Normale zu. Die Nor-
male an einem Schnittpunkt innerhalb
des Dreiecks erhalten Sie dann durch die
Interpolation der Normalen an den drei
Eckpunkten. Zu jedem Dreieck berech-
nen Sie dazu die Normale an einem der
Eckpunkte sowie die Differenzen zu
den Normalen an den zwei anliegenden
Kanten.

Sind also n1
→, n2

→ und n3
→ die Normalen

an den Eckpunkten, dann berechnen Sie:
k→ = n 2

→ - n 1
→

l→ = n 3
→ - n 1

→

Aus der Schnittpunktberechnung besit-
zen Sie bereits die beiden Parameter u
und v.

Demo-Programmierung unter Windows 95/98/NT

Primitive
in Perfektion
Zwei neue Klassen von Primitiven vervollständigen

den bisher entwickelten Raytracer, den Sie zudem

gezielt optimieren.

ANHAND DER WERTE u und v sehen Sie, ob ein Punkt im

Dreieck liegt.

PC Magazin Januar 2000 247

P C U N D E R G R O U N D
P R A X I S

Für die Normale am Schnittpunkt gilt
dann:

n→ = n 1
→ + u * k → + v * l →

Bevor Sie diese in die Berechnung der
Beleuchtung einsetzen, normalisieren
Sie sie noch: Auch wenn die ursprüngli-
chen Normalen an den Eckpunkten be-
reits normalisiert vorliegen, ist durch die
Interpolation nicht mehr gewährleistet,
daß n→ die Länge 1 besitzt.

In der Skriptsprache des Parsers kön-
nen Sie sowohl Dreiecke mit konstanter
Normale als auch solche mit Phong-
Schattierung definieren. Ein 3D-Objekt
aus Dreiecken beginnen Sie zunächst mit

mesh {...}

Innerhalb der geschweiften Klammern
geben Sie die zwei Dreiecksprimitive an:

triangle
{

<x1,y1,z1>, <x2,y2,z2>,
<x3,y3,z3>

}

definiert Dreiecke mit konstanter Nor-
male, die dann berechnet wird. Für Drei-
ecke mit Phong-Schattierung geben Sie
in

smooth_triangle
{

<x1,y1,z1>, <x2,y2,z2>,
<x3,y3,z3>, <nx1,ny1,nz1>,
<nx2,ny2,nz2>, <nx3,ny3,nz3>

}

zusätzlich noch die Normalen der Eck-
punkte an.

Ein solches Polygonobjekt sehen Sie
im Bild unten. Die Polygondaten dafür
stammen aus einer mit POV-Ray gene-
rierten Szenerie.

■ CSG-Primitive
Auch wenn sich durch Polygone prinzi-
piell alle Oberflächen annähern lassen,
ist dies manchmal nicht die einfachste
oder genaueste Lösung. Dann eignet
sich vielleicht eher die Klasse der durch
Constructed Solid Geometry (CSG) er-
zeugten Körper. Hinter dieser Bezeich-
nung, die sich nur schwer ins Deutsche
übersetzen läßt, verbirgt sich ein Verfah-

ren, mit dem Sie zwei oder mehrere ein-
fache Primitive wie Kugel, Ebene oder
Zylinder miteinander verknüpfen.

Die möglichen Verknüpfungen sind
dabei Vereinigung, Schnitt und Diffe-
renz. Diese Begriffe aus der Mengenleh-
re können Sie ohne weiteres auf die Pri-
mitive übertragen, da diese gewisser-
maßen Teilmengen des Raums darstel-
len. Anhand zweier Kugeln können Sie
sich die erlaubten Operationen leicht
vor Augen führen. Betrachten Sie dazu
die rot schraffierte Schnittmenge zweier
Kugeln im folgenden Bild.

Um die Schnittpunkte mit der Schnitt-
menge festzustellen, berechnen Sie
zunächst alle Schnittpunkte der betrach-
teten Geraden mit den beiden Primiti-
ven. Die Schnittpunkte mit der Schnitt-
menge finden Sie durch folgenden Algo-
rithmus in Pseudocode:

Betrachte alle Schnittpunkte
der Primitive:

Ist der Punkt von Primitiv 1
und liegt in Primitiv 2
oder
ist der Punkt von Primitiv 2
und liegt in Primitiv 1

dann Schnittpunkt gefunden

Sie sehen: Die Primitive – oder vielmehr
die entsprechenden C++-Klassen – ver-
langen eine Methode, die angibt, ob ein
Punkt im Inneren des Primitivs liegt. Im
Falle der Kugel berechnet diese einfach
den Abstand des Punkts vom Kugelmit-
telpunkt. Ist er kleiner oder gleich dem
Radius, dann liegt der Punkt im Inneren.

Bei einer Ebene ist zunächst unklar,
welche Seite den inneren bzw. äußeren
Teil darstellen soll. Per Definition sei da-

her festgelegt, daß der Halbraum – eine
Ebene teilt den Raum in zwei Hälften –
außen ist, in den die Normale zeigt.

Dadurch reduziert sich der Aufwand
für den Innen-/Außen-Test auf ein Ska-
larprodukt des zu prüfenden Punkts mit
der Normalen, wovon Sie noch den (im-
mer vorberechneten) Abstand der Ebe-
ne zum Ursprung subtrahieren. Ist das
Resultat kleiner oder gleich Null, liegt
der Punkt im Inneren.

Natürlich können Sie CSG-Objekte
auch aus solchen Primitiven zusammen-
setzen, die ihrerseits CSG-Objekte sind.
Auch diese haben alle für die Schnitt-
punktberechnung notwendigen Metho-
den implementiert.

Eine weitere mögliche Verknüpfung
zweier Objekte ist die Vereinigung. Die-
se gestaltet sich besonders einfach, da Sie
alle Schnittpunkte der Einzelprimitive
auch als Schnittpunkte des CSG-Ob-
jekts verwenden können. Das ist deshalb
erlaubt, da beim Raytracing sowieso der
nächste Schnittpunkt gesucht wird. Alle
weiter entfernten Schnittpunkte – auch
die im Inneren des Vereinigungsobjekts
– fallen nicht ins Gewicht.

Die letzte Verknüpfungsmethode ist
die Differenz. Sie können sich das als das
Herausschneiden eines Objekts aus ei-
nem anderen vorstellen.

In diesem Fall gilt für die Schnitt-
punktklassifikation:

Betrachte alle Schnittpunkte
der Primitive:

Ist der Punkt von Primitiv 1
und liegt nicht in Primitiv 2
oder
ist der Punkt von Primitiv 2
und liegt in Primitiv 1

dann Schnittpunkt gefunden

Damit haben Sie das Prinzip der CSG-
Objekte erfaßt.
Ein Beispiel für ein komplexeres CSG-
Objekt ist der Würfel in der Abbildung
auf der nächsten Seite. Der Würfel ist die
Schnittmenge aus sechs Ebenen. Die
Vertiefungen der Augenzahlen entste-
hen durch herausgeschnittene Kugeln.
Die Skriptdatei dazu finden Sie auf der
Heft-CD bei den Quelltexten.

■ Schnittpunktberechnun-
gen optimieren
Wollen Sie die Berechnung eines Bilds
mit dem Raytracer beschleunigen, be-
ginnen Sie bei den am häufigsten ver-
wendeten Routinen. Ihr Augenmerk
fällt dabei wohl zuerst auf die Schnitt-
punktberechnungen, die den größten
Teil der Rechenzeit in Anspruch neh- q

DIE PHONG-SCHATTIERUNG rundet die

Kanten des Springers etwas ab.

DURCH SCHNITT und Differenz von

Primitiven schaffen Sie CSG-Primitive.

248 Januar 2000 PC Magazin

P C U N D E R G R O U N D
P R A X I S

men. An diesen mathematischen Proble-
men haben sich bereits viele versucht,
und dementsprechend viele Algorith-
men für Schnittpunktberechnungen für
Primitive aller Art gibt es.

Im Quelltext RTTriangle.cpp des Po-
lygonprimitivs finden Sie etwa einen ele-
ganten Ansatz, um einen Schnittpunkt
einer Gerade und eines Dreiecks zu be-
rechnen. An dieser Stelle möchten wir
Ihnen zeigen, wie Sie die Schnittpunkte
einer Kugel anhand geometrischer
Überlegungen schneller berechnen.

Vor einer Schnittpunktberechnung
wissen Sie nicht, ob es überhaupt einen
Schnittpunkt gibt. Eine oft verwendete
Technik bei der Optimierung von
Schnittests ist es, durch möglichst einfa-
che Berechnungen bereits sehr früh fest-
zustellen, ob der Strahl das Objekt sicher
verfehlt. Diese Tests werden Rejection-
Tests genannt – verläuft der Test negativ,
gibt es keinen Schnittpunkt. Für den Fall
der Kugel betrachten Sie am besten die
drei Skizzen unten, die sich jeweils nur
in der Lage von o→ unterscheiden. o→ ist
dabei der Startpunkt der Halbgeraden,
∂x→ die Richtung der Geraden. Für die
Halbgerade gilt:

x→ = o→ + t * ∂x→

Schließlich gibt es noch den Vektor c→
für den Kugelmittelpunkt. Der erste Re-
jection-Test berücksichtigt die Lage der
Kugel bezüglich o→. Von Interesse sind
nur Kugeln, die vor dem Startpunkt der
Geraden liegen. Dazu berechnen Sie den

Vektor vom Startpunkt zum Kugelmit-
telpunkt, also

l→ = c→ - o→

Daraus ermitteln Sie die quadrierte Län-
ge von l→ – also das Quadrat des Abstan-
des – mit:

l 2 = l→ * l →

Gleichzeitig haben Sie mit r2 das Qua-
drat des Kugelradius gegeben, der bei
der Initialisierung eines Kugelobjekts
vorberechnet wird. Damit entscheiden
Sie nun folgendes: Ist l2 kleiner als r2, be-
findet sich o→ in der Kugel, und es gibt
(genau) einen Schnittpunkt. Wollen Sie
nur feststellen, ob es überhaupt einen
Schnittpunkt gibt, können Sie an dieser
Stelle die Berechnung abbrechen.

Da Sie allerdings den Schnittpunkt be-
stimmen wollen, berechnen Sie als näch-
stes die Projektion von l→ auf d→. Dies ge-
schieht mit dem Skalarprodukt

d = l → * ∂x→

Nun wenden Sie den ersten Rejection-
Test an: Liegt o→ außerhalb der Kugel –
also ist l2 größer als r2 –, und ist d nega-
tiv? Falls ja, gibt es keinen Schnittpunkt.
Ansonsten fahren Sie mit der Berech-
nung fort.

Als nächstes interessiert Sie m2, das
Abstandsquadrat des Kugelmittelpunkts
zu der Projektion von l→ . Da es sich um
ein rechtwinkliges Dreieck handelt,
wenden Sie den Satz des Pythagoras an:

m2 = l 2 - d 2

Nun sind Sie am zweiten Rejection-Test
angelangt: Ist m2 größer als r2, dann wird
der Strahl am Objekt vorbeischießen,
ansonsten sicher treffen. Im letzteren
Fall existieren also Schnittpunkte, die es
zu berechnen gilt. Lösen Sie dazu die
Gleichung

q2 = r 2 - m 2

Da wegen des letzten Rejection-Tests
m2 <= r2 gilt, ist q2 größer oder gleich
Null. Das bedeutet, daß Sie ohne Pro-
bleme die Wurzel daraus ziehen können:

q = sqrt(q 2)

Um schließlich die Schnittpunkte zu be-
stimmen, berechnen Sie die Entfernun-
gen zu den Schnittpunkten – also die

Werte für t aus der
Geradengleichung.
Dabei gilt:
t1 = d - q
t = d + q

Die Routine sieht
dann in etwa folgen-
dermaßen aus:
bool RaySphereIn-
tersect(

VERTEX3D o, d, c,
FLOAT r)
{

VERTEX3D l = c-o;
Float d = l*d;
float l2 = l*l;
float r2 = r*r;

if (d<0 && l2>r2) return 0;

float m2 = l2-d2;
if (m2>r2) return 0;

q = sqrt(r2-m2);
t1 = d-q;
t2 = d+q;
return 1;

}

Wie Sie sehen, reduziert sich der Auf-
wand für eine Schnittpunktberechnung
im Vergleich zur ursprünglichen Imple-
mentierung in Ausgabe 10/99 deutlich.
Der damalige Ansatz verfolgt gewisser-
maßen eine analytische Lösung und
dient vor allem als Einführung in die
Schnittpunktberechnungen.

■ Schnittpunktberech-
nungen vermeiden
Schnelle Algorithmen für effiziente
Schnittpunktberechnungen sind eine
gute Grundlage für einen Raytracer. Bei
Szenen mit Tausenden von Objekten
wird Ihr Rechner trotzdem unerträglich
lange arbeiten, da er für jedes Pixel des
Bildes, für jede Rekursionstiefe und für
jeden Schattenstrahl Schnittpunkttests
mit allen Objekten durchführen muß.
Deshalb erzielen Sie bei komplexen Sze-
nen deutliche Geschwindigkeitssteige-
rungen, wenn Sie sich darüber Gedan-
ken machen, wie Sie Schnitttests ganz
vermeiden können.

Nutzen Sie für dreidimensionale Um-
gebungen das sogenannte Octrees-Ver-
fahren: Octrees sind baumartige Spei-
cherstrukturen mit jeweils acht Nach-
folgern.

Im zweidimensionalen Raum läßt sich
das Prinzip noch anschaulicher an den
dort verwendeten Quadtrees verdeutli-
chen. Wie ihr Name besagt, besitzen die-
se jeweils vier Nachfolger.

Stellen Sie sich eine beliebige Anord-
nung mehrerer Objekte in einer Ebene
vor, wie etwa in der Abbildung auf der
nächsten Seite links oben. Nun ordnen
Sie die Objekte in einer hierarchischen
Struktur wie folgt an: Legen Sie ein mög-
lichst kleines Quadrat so um die Objek-
te, daß diese vollständig darin enthalten
sind. Vierteln Sie das Quadrat, und Sie
erhalten vier kleinere, im ursprünglichen
Quadrat enthaltene Quadrate. Diesen
Vorgang wiederholen Sie so lange, bis je-
des Quadrat entweder leer ist oder genau
ein Objekt enthält. Sie erhalten dann ein
Gittermuster.

DIE AUGEN DES WÜRFELS sind halbkugel-

förmige Vertiefungen.

MIT REJECTION-TESTS bestimmen Sie frühzeitig, ob der Strahl

ein Objekt verfehlt.

PC Magazin Januar 2000 249

P C U N D E R G R O U N D
P R A X I S

Wollen Sie einen Schnittest eines
Strahls mit einem Objekt durchführen,
testen Sie nur die Objekte, bei denen Sie
auch das dazugehörige Quadrat treffen.
Trifft ein Strahl ein Quadrat nicht, so
können Sie auch alle Objekte, die in den
darin enthaltenen Quadraten liegen, von
dem Schnittest ausschließen.

Bei den dreidimensionalen Octrees
teilen Sie einen Würfel rekursiv in seine
acht Unterwürfel auf. Um herauszufin-
den, wieviel Platz ein Primitiv benötigt,
geben Sie einen möglichst kleinen Wür-
fel an, der ein Primitiv vollständig ent-
hält. Das gestaltet sich relativ einfach,
wenn Sie einen Würfel – eine sogenann-
te Bounding Box – verwenden, dessen
Kanten parallel zu den Koordinatenach-
sen verlaufen. Somit sind seine Seiten-
flächen parallel zu den x/y- und x/z-
Ebenen des Koordinatensystems.

Solche Würfel heißen Axis-Aligned
Bounding Boxes (AABBs). Eine AABB
legen Sie durch zwei Ortsvektoren fest:
Diese geben jeweils die minimalen bzw.
maximalen x-, y- und z-Koordinaten an,
die das eingeschlossene Primitiv an-
nimmt. Für eine Kugel bestimmen Sie ei-
ne AABB also wie folgt:

Kugelmittelpunkt o → = (x,y,z)
Kugelradius r
minV = (x-r, y-r, z-r)
maxV = (x+r, y+r, z+r)

Nicht für alle Primitive können Sie ohne
weiteres eine AABB bestimmen: Das
Ebenenprimitiv besitzt zum Beispiel
keine endliche Ausdehnung. Diese spe-
ziellen Primitive behandeln Sie deshalb
unabhängig vom Octree-Verfahren.

Um den Octree für eine 3D-Szenerie
aufzubauen, berechnen Sie die AABBs
für alle Primitive, bei denen dies möglich
ist. Dann bestimmen Sie einen Würfel,
dessen Mitte im Koordinatenursprung
liegt und der alle AABBs enthält. Nun
fügen Sie jedes Primitiv mit einer rekur-
siven Prozedur in den Octree ein. Die
Speicherungsstruktur eines Octree-

Würfels bezeichnet
man – analog zur Na-
mengebung bei struk-
turierten Bäumen –
als Node (Knoten).

Folgender Pseude-
code fügt ein Objekt
in den Octree ein:
BOOL
InsertObject(OCTRE-
ENODE

*node, RTObject
*o,

const EXTEND *e)
{

Liegt die AABB
des Objekts

(EXTEND e) in dem Node ?
Wenn nein, return False;
if (noch nicht maximale

Unterteilung)
{

Erzeuge 8 Unterwürfel
Versuche, das Objekt dort

einzufügen
}
Wenn noch nicht eingefügt,

dann in den aktuellen
Octreenode einfügen

return True;
}

Den programmierten Code zeigt der
Ausschnitt aus der Datei RTOctree.cpp
(Listing 1) auf der nächsten Seite oben.

Bei einer Schnittpunktberechnung te-
sten Sie einfach rekursiv den Octree mit
den darin enthaltenen Objekten. Sie
starten an der Wurzel, dem ersten Node
des Octrees. Schneidet der Strahl die da-
zugehörige AABB, berechnen Sie die
Schnittpunkte mit den Objekten in die-
sem Node.

Anschließend rufen Sie die Berech-
nungsroutine für jeden der acht Sub-
nodes (Unterwürfel) auf. Dadurch
schließen Sie bei den meisten Schnitt-
punktberechnungen viele Objekte durch
wenige Schnittests mit AABBs aus.

Die Objekte, zu denen Sie keine
AABBs berechnen konnten, speichern
Sie in einer Liste. All diese Objekte un-
terziehen Sie wie bisher den Schnitt-
punkttests. Die gesamte Schnittpunkt-
berechnung läuft schematisch wie im
zweiten Listing auf der nächsten Seite.

Damit haben Sie fast alle Routinen für
das Octree-Verfahren zusammen. Es
fehlt noch der Schnittest für einen Strahl
und eine AABB. Begrenzungsvolumen
für Körper wie AABBs sind in der 3D-
Grafik ein weitverbreitetes Mittel für
Geschwindigkeitssteigerungen. Daher
gibt es für solche Problemstellungen
verschiedene Algorithmen.

Unser Raytracer verwendet die soge-
nannte Slab-Methode. Diese kommt
auch mit Bounding Boxes zurecht, bei

denen die Kanten nicht Axis-Aligned
sind – also wie die AABBs an den Koor-
dinatenachsen ausgerichtet. Der Begriff
Slab bezeichnet hier zwei parallele Ebe-
nen, die aus Geschwindigkeitsgründen
bei der Berechnung gruppiert sind.

Da eine AABB durch drei parallele
Ebenenpaare begrenzt wird, können Sie
sie durch drei Slabs darstellen. Diese
Slabs benennen Sie mit u, v und w. Für
ein Slab können Sie – analog zu Ebenen-
primitiven – Schnittpunkte berechnen.
Da es sich immer um zwei Ebenen han-
delt, erhalten Sie jeweils einen maxima-
len und einen minimalen Wert für die
Schnittpunkte.

In diese Werte – zum Beispiel t_u_min
oder t_v_max – fließt noch der Faktor t
aus der Geradengleichung ein. Die näch-
ste Berechnung ist dann der eigentliche
Trick:

t_min = max(t_u_min, t_v_min,
t_w_min);

t_max = min(t_u_max, t_v_max,
t_w_max);

Bei t_min <= t_max schneidet der Strahl
die Bounding Box, ansonsten verfehlt er
sie. Den Sourcecode zu dieser Routine
finden Sie in der Datei RTOctree.cpp.
Der einfachere zweidimensionale Fall in
der Skizze unten veranschaulicht die Ar-
beitsweise recht gut.

Auch Slabs sind hier eine Dimension
kleiner, also zwei parallele Geraden. In
der Grafik sehen Sie eine zweidimensio-
nale Bounding Box aus zwei Slabs sowie
zwei Geraden, an denen Schnittests
durchgeführt werden sollen.

Im ersten Fall ist t_min das Maximum
der Werte t_u_min und t_v_min, also
t_u_min. Ebenfalls rot gekennzeichnet
ist t_v_max, was dem Minimalwert
t_max von t_u_max und t_v_max q

REKURSIV BAUEN SIE einen Octree für eine Szene auf.

DIE ROT MARKIERTEN WERTE sagen aus,

ob der Strahl das Rechteck schneidet.

250 Januar 2000 PC Magazin

P C U N D E R G R O U N D
P R A X I S

entspricht. Da t_min kleiner als t_max
ist, schneidet die linke Gerade die Boun-
ding Box.

Im zweiten Fall ist t_min = t_v_min
größer als t_max = t_u_max. Daher zielt
die rechte Gerade an der Bounding Box
vorbei.

Mit dem fertigen Raytracing-Pro-
gramm OORT.exe können Sie nun
faszinierende Computerwelten ent-
werfen und beleuchten. Berechnen
Sie schöne Bilder damit, und schicken
Sie sie uns zu – wir freuen uns auf Ihre
Zusendung.

Selbstverständlich können Sie das
Programm um neue Primitive, Licht-

quellen, Beleuchtungsmethoden oder
Optimierungen erweitern.

Möchten Sie sich weiter über Raytra-
cing informieren, empfehlen wir Ihnen
die im Anschluß zitierte Literatur sowie
einen Blick in den Sourcecode von
POV-Ray. Dessen Webseite finden Sie
unter

www.povray.org s P E I

1 Ausschnitt aus RTOctree.cpp

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:

//Ausdehnung eines Objekts
typedef struct
{
//endliche Ausdehnung?
BOOL finite;
//wenn ja, dann hier die AABB-Daten
VERTEX3D Amin, Amax;
FLOAT size;

} EXTEND;

typedef struct NODE
{
//Objekte im WÅrfel
List<RTObject*> Objects;

//Zeiger auf die UnterwÅrfel
NODE *SubNode[8];

//Mittelpunkt und Grî·e des WÅrfels
VERTEX3D m;
FLOAT size;

//Rekursionstiefe des WÅrfels
UINT32 Level;

} OCTREENODE;

static OCTREENODE *Octree;

BOOL InsertObject(OCTREENODE *node, RTObject *o,
const EXTEND *e)

{
//gehîrt das Objekt Åberhaupt in diesen Node ?
FLOAT s = node->size*0. 5f+0. 1f;

if (node->Level>0)
{
if (e->Amin. x<(node->m. x-s)) return FALSE;
if (e->Amin. y<(node->m. y-s)) return FALSE;
if (e->Amin. z<(node->m. z-s)) return FALSE;
if (e->Amax. x>(node->m. x+s)) return FALSE;
if (e->Amax. y>(node->m. y+s)) return FALSE;
if (e->Amax. z>(node->m. z+s)) return FALSE;

}

if (node->Level<=MAXSUBDIVIDE)
{
//in Subnodes einfÅgen
if (! node->nSubNodes)
{
//Subnodes erst anlegen
FLOAT s = node->size*0. 5f;
FLOAT s2 = node->size*0. 25f;
for (SINT32 i = 0; i<8; i++)
{
node->SubNode[i] = new OCTREENODE;
node->SubNode[i]->nSubNodes = 0;
node->SubNode[i]->Level = node->Level+1;
node->SubNode[i]->size = s;
node->SubNode[i]->Objects = List<RTObject*>(0);
node->SubNode[i]->ObjectIndex = List<UINT32>(0);
node->SubNode[i]->m = node->m;

if (i & 1) node->SubNode[i]->m. x -= s2;
else node->SubNode[i]->m. x += s2;
if (i & 2) node->SubNode[i]->m. y -= s2;
else node->SubNode[i]->m. y += s2;
if (i & 4) node->SubNode[i]->m. z -= s2;

68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:

else node->SubNode[i]->m. z += s2;
}
node->nSubNodes = 8;

}

for (SINT32 i = 0; i<8; i++)
{
if (InsertObject(node->SubNode[i], o, index, e) ==
TRUE) return TRUE;

}
}

{
//Hier einfÅgen
node->Objects. Add(o);
node->ObjectIndex. Add(index);
return TRUE;

}
}

Das Octree-Verfahren in RTOctree.cpp

2 Prinzip der Schnittpunktberechnung

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:

Void RecOctree(OCTREENODE *node)
{
SINT32 i;

//Trifft der Strahl diesen WÅrfel Åberhaupt?
if (RayAABBIntersect(. . .) == FALSE) return;

//alle Schnittpunkte mit Objekten im Node berechnen
for (i = 0; i<node->Objects. num; i++)
{
SINT32 n =
node->Objects[i]->GetClosestIntersection(*iray);

if (n! =-1) Intersections++;
}

//Nun die Subnodes testen
for (UINT32 j = 0; j<node->nSubNodes; j++)
{
RecOctree(node->SubNode[j]);

}
}

int GetIntersections(. . .)
{
Intersections=0;

//Objekte im Octree testen
RecOctree(Octree);

//Objekte ohne AABBs
for (i = 0; i<nInfinite; i++)
{
int n=RTScene[i]->GetClosestIntersection(pray);
if (n! =-1) Intersections++;

}

return Intersections;
}

Pseudocode für die Schnittpunktberechnung

Die Quelltexte sowie den übersetzten Raytracer
OORT.exe finden Sie zusammen mit der zugrunde-
liegenden Grafikbibliothek auf unserer Heft-CD 2
in der Rubrik Praxis/Programmierung/PC Under-
ground und in unserem Internet-Angebot unter

www.pc-magazin.de/magazin/
➥extras.htm

Klicken Sie unter Online Extras im Menü Praxis auf
das entsprechende Download-Feld.

Literatur zum Thema Raytracing:

Journal of Graphics Tools (JGT): Online-Magazin,
erhältlich unter

www.acm.org/jgt

Foley, van Dam, Feiner, Hughes, Phillips: Grundla-
gen der Computergrafik, Addison Wesley 1994, 100
Mark, ISBN 3-89319-647-1

Wilt: Object-Oriented Raytracing in C++, John Wi-
ley & Sons 1993, etwa 130 Mark, ISBN 0-47130-415-8

Watkins, Coy, Finlay: Fotorealismus und Raytracing
in C, Heise-Verlag 1993, 88 Mark, ISBN 3-88229-
024-2

Müller, Haines: Real-Time Rendering, AK Peters
Ltd., ISBN 1-56881-101-2

