Demo-Programmierung unter Windows 95/9.8/?&""’5/3

Dal}

CARSTEN DACHSBACHER/
OLIVER KAFERSTEIN

Elementen von Windows -

schlieBlich ist das Betriebssystem
nach ihnen benannt. Die Fenster sind
nach bestimmten Regeln aufgebaut.
Doch Standards sind auf die Dauer lang-
weilig, erschaffen Sie daher Fenster in
neuen Formen und Farben.

Zunéachst lernen Sie beliebig geformte
Fenster kennen, deren Form Sie durch
eine Bitmap bestimmen. Aul3erdem zei-
gen wir Ihnen, wie Sie auf dem Desktop
— ohne ein Fenster zu sehen — eine Gra-
fik einblenden. Diese sogenannten
Splash-Screens sind sehr beliebt, um
beim Start eines Programms die Copy-
right-Meldungen anzuzeigen.

Bevor Sie eigene Fenster erschaffen,
werfen Sie einen Blick in die entspre-
chenden Beispielprogramme lhres
Compilers. Experimentieren Sie an die-
sen Programmen herum.

Um ein Standardfenster zu erzeugen,
registrieren Sie zunéchst eine eigene
Fensterklasse. Dazu legen Sie eine
WNDCLASS-Struktur an. Diese enthalt
die Parameter fiir die Hintergrundfarbe,
das zugehdrige Icon und andere Eigen-

schaften des Fensters:
WNDCLASS wc;

Fenster gehdren zu den wichtigsten

wc.style = CS_BYTEALIGNCLIENT;
wc.cbClsExtra = 0;

wc.cbWndExtra = 0;

wc.hlnstance = instance;

wc.hlcon = 0;

wc.hCursor = 0;

/[Hintergrundfarbe
wc.hbrBackground = (HBRUSH)
GetStockObject(BLACK_BRUSH);
wc.lpszMenuName = 0;
/I Fensterklassenname
wc.lpszClassName =
,Testfenster";

/IMessagehandler
wec.lpfnWndProc = WindowProc;

/IFensterklasse registrieren
RegisterClass(&wc);

Fro©

~ PC UNDERGROUND

PRAXIS

-

—

aller Standards

sein mussen, zeigte bereits der Kiunstler
Hundertwasser an seinen Gebauden in Wien. Machen Sie es ihm nach.

Bevor Sie in der letzten Listingzeile ein
Fenster dieser Klasse erzeugen, weisen
Sie ihm einen Messagehandler zu. Dieser
Messagehandler arbeitet Nachrichten
ab, die Windows an ihn schickt. Nach-
richten sind Mausklicks auf das Fenster
oder ein Tastendruck, sofern das Fenster
aktiv ist. Alle Nachrichten, die Sie inter-
essieren, geben Sie an den Standard-
Messagehandler von Windows weiter.
Ein selbstdefinierter Messagehandler
konnte dabei wie folgt aussehen:

long CALLBACK WindowProc(
HWND hwnd, UINT message,
WPARAM wParam, LPARAM IParam)

switch (message)

case WM_CREATE:
break;

case WM_KEYDOWN:
keycode = wParam & 255;
return O;

case WM_DESTROY:
break;

}

//alle uninteressanten Nach-
/Irichten an Default-
//Messagehandler weiterleiten
return DefWindowProc(hWnd,
message, wParam, IParam);

An dieser Stelle haben Sie alle Definitio-
nen abgeschlossen, die das Aussehen
und Verhalten lhres Fensters betreffen.

s
z & O
i Tl ..
Rk i] R
Hardware Internet Kennwdrter
o
2 Multimedia
]
e
i
33a
Software
=]
o]

Telefanie

Tastakur

UNTER WINDOWS DEFINIEREN Sie eigene
Fenster aus mehreren Regionen.

Sie kdnnen nun ein Fenster dieser Klas-
se anlegen. Dazu benutzen Sie die Funk-
tion CreateWindowEXx(...). In den Uber-
gebenen Parametern legen Sie unter an-
derem fest, ob Ihr Fenster Minimize-
und Maximize-Knopfe besitzt und wie
grof es sein soll. Als Riickgabewert lie-
fert CreateWindowEXx(...) ein Handle
vom Typ HWND, das das Fenster ein-
deutig identifiziert. Wichtig ist dabei,
daR Sie das Handle der Application In-
stance — also das Handle, welches Ihr
Programm identifiziert — mit Gbergeben:

HWND Window;

/IFenster an Position 100/120

/Imit der GroRe 320/240

Window = CreateWindowEx(

WS_EX_TOPMOST, ,Testfenster,
JFenstertitel“, WS_POPUP,

100, 120, 320, 240, 0, 0,

instance, 0);

/IFehler:

if ('"Window) return O;

Jetzt brauchen Sie Windows nur noch
mitzuteilen, dal Sie das Fenster sehen
wollen. Dazu steht lhnen der Befehl
ShowWindow(Window, ...) zur Verfi-
gung.

Um das Fenster mit einem Inhalt zu
fullen, verwenden Sie den sogenannten
Device Context. Damit kbnnen Sie zum
Beispiel in das Fenster zeichnen oder
Bitmaps darin anzeigen. Der Device
Context ist eine Datenstruktur mit allen
Informationen, die Windows braucht,
um auf ein Device zu schreiben. Ein De-
vice muf3 nicht unbedingt ein Fenster
oder ein Bildschirm sein, es kann sich da-
bei auch um einen Drucker handeln.
Den Device Context erhalten Sie tiber

HDC DeviceContext;

DeviceContext = GetDC(Window);
Mochten Sie beispielsweise eine Bitmap
aus dem Hauptspeicher in das Fenster
zeichnen, legen Sie eine BITMAPIN-
FO-Struktur an. In dieser beschreiben
Sie den Aufbau der Bitmap im Speicher:

int bisize = sizeof(

BITMAPINFOHEADER);
bitmapinfo = (BITMAPINFO *)

malloc(bisize+12);
ZeroMemory(&bitmapinfo->

>

PC Magazin Februar 2000 233

5)-6

)

PC UNDERGROUND
PRAXIS

bmiHeader, bisize);

/IBitmaplInfoHeader erzeugen
bitmapinfo->bmiHeader.biSize
= bisize;
bitmapinfo->bmiHeader.biWidth
= SCREEN_X;
bitmapinfo->bmiHeader.biHeight
=-SCREEN_Y;
bitmapinfo->bmiHeader.biPlanes
=1;
bitmapinfo->
bmiHeader.biBitCount = 16;
bitmapinfo->
bmiHeader.biCompression =
BI_BITFIELDS;
/[Farbfelder des Bitmaps setzen
((long) bitmapinfo->
bmiColors +0) = 0xFF0000;
((long) bitmapinfo->
bmiColors +1) = 0x00FF0O;
((long) bitmapinfo->
bmiColors +2) = 0xO000FF;
Dank dieser Struktur weil Windows,
wie die Grafikdaten im Speicher vorlie-
gen. Sie kénnen Windows veranlassen,
die Bitmap in das Fenster zu zeichnen:

SetDIBitsToDevice(
DeviceContext, 0, O, Breite,
Hohe, 0, 0, 0, Hohe,
BitmapPtr, bitmapinfo,
DIB_RGB_COLORS);
Sind Fenster und Bitmap unterschied-
lich groR, Ubernimmt Windows auf
Wunsch auch die Skalierung des Bildes.
In diesem Fall verwenden Sie folgende
Syntax:
/IGréRe des Fensters holen
GetClientRect(Window, &r);
StretchDIBits(DeviceContext,
0, 0, r.right, r.bottom,
0, 0, Breite, Hohe,
BitmapPtr, bitmapinfo,
DIB_RGB_COLORS, SRCCOPY);
Windows stellt Thnen fir die Behand-
lung von Bitmaps und Device Contexts
noch weitere machtige Befehle zur Ver-
figung. Diese sind in der Online-Hilfe
Ihres Compilers erklért.

Die Standardfenster in Windows sind
rechteckig. Doch gerade Linien wirken
steif und fordern nicht gerade die Krea-
tivitat. Diese Weisheit verdanken wir
nicht zuletzt Stardesigner Colani und
seinem legendaren Biodesign. Nutzen
Sie die Option von Windows, Fenster in
einer beliebigen Form — sogar in nicht
zusammenhdngenden Teilen — anzuzei-
gen.

Definieren Sie sogenannte Regionen,
mit denen Sie die sichtbaren Bereiche ei-
nes Fensters festlegen. Diese Regionen
setzen Sie aus beliebigen Rechtecken zu-
sammen. Da ein solches Rechteck auch
nur ein Pixel groR sein kann, kénnen Sie
so jede beliebige Form erzeugen.

Die gewunschte Form legen Sie am
besten durch eine Bitmap fest, die Sie in

234 Februar 2000 PC Magazin

einem Zeichenprogramm lhrer Wahl
anfertigen. Fir die spatere Anzeige des
Fensters zerlegen Sie die undurchsichti-
gen Stellen der Bitmap in einige wenige
Rechtecke — wenige deshalb, weil bei zu
vielen Rechtecken die Performance lei-
den kann.

Die Funktionen zum Laden und Be-
handeln der Bitmaps finden Sie in der

DIESE BITMAP DIENT als Vorlage fur den
Splash-Screen.

pcPicture-Klasse im Quelltext zu dieser
Ausgabe. Sie kdnnen damit ein Bild la-
den und mit 32 Bit Farbtiefe im Speicher
ablegen:

pcWndRegion _pic;

/IBMP laden
_pic.load(szPathName);

1132-Bit-Kopie anlegen
pcPicture bmReg(_pic.width(),
_pic.height(), 32, TRUE);

/lund BMP dorthin kopieren
_pic.blitTO(bmReg.hdc());

/I Transparenzfarbe
COLORREF cTransCol =
GetPixel(bmReg.hdc(), 0, 0);

Um die Bitmap in eine Region zu kon-
vertieren, durchsuchen Sie es Zeile fir
Zeile. Jeweils zusammenhéngende,
nicht-transparente Pixel in einer Bit-
map-Zeile ergeben ein Rechteck. Das ist
kein optimaler, aber ein ausreichender
Algorithmus, um die Bitmap in eine Re-
gion zu konvertieren. Als transparent
gelten Pixel in einer vorgegebenen Far-
be. Das Programm verwendet als Trans-
parenzfarbe jeweils die Farbe des linken
oberen Pixels der Bitmap:
for (y = 0; y < height; y ++)

for (x = 0; x < width; x ++)

/Isuche zusammenhangendes
/IGebiet von nicht trans-
/Iparenten Pixeln
dword x0 = x;
dword *p = BitmapPtr +
X +y * width;
while (x < width)
{
I transparentes Pixel?
if (*p == trancol) break;
p ++;
X ++;

}
if (x > x0)
/IRechteck gefunden

}
}
}

Nachdem Sie die Rechtecke gefunden

haben, speichern Sie diese in der Daten-

struktur RGNDATA, die Sie dann

Ihrem Fenster zuweisen. Diese Struktur

ist von Windows wie folgt definiert:
typedef struct

RGNDATAHEADER rdh;
char Buffer[1];
} RGNDATA;

typedef struct _RGNDATAHEADER
{

DWORD dwsSize;
DWORD iType;
DWORD nCount;
DWORD nRgnSize;
RECT rcBound;

} RGNDATAHEADER;

RGNDATA *pData = new RGNData;

Zunachst fillen Sie den RGN-
DATAHEADER aus:
pData->rdh.dwSize =
sizeof(RGNDATAHEADER);

pData->rdh.iType =
RDH_RECTANGLES;
/IBisherige Anzahl Rechtecke
pData->rdh.nCount =
pData->rdh.nRgnSize = 0;
//GréR3e der Regions auf
/[Extremwerte setzen
SetRect(&pData->rdh.rcBound,
MAXLONG, MAXLONG, 0, 0);

Wenn Sie nun ein Rechteck in lhrer Bit-
map ausgemacht haben, fligen Sie dieses
der Region mit folgenden Codezeilen
hinzu:
RECT *pr =
(RECT *)&pData->Buffer;
SetRect(&pr[pData->rdh.nCount],
x0, y, X, y+1);
/IGréBe der gesamten Region
/lanpassen:
if (x0 < (dword)pData->

C++ Report www.creport.com
MS VC++ Tutorials http://msdn.microsoft.com/visualc/technical /training.asp
MS System Journal www.microsoft.com/msj

MFC Professional Links

www.visionx.com/mfcpro/links.htm

rdh.rcBound.left)
pData->rdh.rcBound.left = x0;
if (y < (dword)pData->
rdh.rcBound.top)
pData->rdh.rcBound.top =y;
if (x > (dword)pData->
rdh.rcBound.right)
pData->rdh.rcBound.right = x;
if (y+1 > (dword)pData->
rdh.rcBound.bottom)
pData->rdh.rcBound.bottom =
y+1
pData->rdh.nCount ++;
Nun konnen Sie aus den Regionendaten
eine Gesamtreglon erzeugen:
HRGN hrgn = ExtCreateRegion(
NULL, sizeof(RGNDATAHEADER)
+ (sizeof(RECT) *
AnzRechtecke), pData);

An dieser Stelle haben Sie prinzipiell
schon alles, was Sie bendtigen. Sie kdn-
nen nun einfach ein ,,normales* Win-
dows-Fenster erzeugen und diesem
dann die berechnete Region zuweisen.
Dazu verwenden Sie einfach:

SetWindowRgn(Window, hrgn,

FALSE);

ShowWindow(Window,
SW_SHOWNORMALY);

Damit besitzen Sie das Handwerkszeug,
Fenster in jeder erdenklichen Form zu
gestalten. Sie kdnnen auch die Form ei-
nes Fensters wahrend der Laufzeit &n-
dern. Dadurch kdnnen Sie zum Beispiel
kleine Figuren programmieren, die auf
dem Desktop herumlaufen. Oder Sie
schreiben Fenster, die sich automatisch
ihrem Inhalt anpassen. Die Anwen-
dungsbereiche fir selbstgeformte Fen-
ster sind sehr vielseitig.

Kennen Sie Splash-Screens? Das sind
kleine Bilder mit Programminformatio-
nen oder Copyright-

nen zur Verfligung, um (halb)transpa-
rente Fenster darzustellen. Also wiirde
der weiter oben beschriebene Ansatz mit
beliebig geformten Fenstern hier nicht
funktionieren.

Verwenden Sie einen anderen Trick.
Da Sie mit Device Contexts sowohl in
Fenstern zeichnen als auch aus ihnen le-
sen konnen, legen Sie eine Kopie des
Desktops an und nutzen diese als Hin-
tergrundbild fur das eigene Splash-
Screen-Fenster. Sie brauchen nur den
Teil des Desktops zu kopieren, den Ihr
Fenster verdeckt. Dazu brauchen Sie
den Handle des Desktop-Fensters:

HWND DesktopWindow =

GetDesktopWindow();

HDC DesktopHDC =
GetDC(DesktopWindow);

Nach diesen Zeilen greifen Sie auf den
Desktop zu wie auf jedes andere Fenster.
Verwenden Sie die Bitmap-Klasse, die
Sie bei den Quelltexten finden. Laden Sie
die Splashscreen-Bitmap, und erzeugen
Sie eine neue Bitmap der gleichen GrolRe
mit 32 Bit Farbtiefe. In die neue Bitmap
kopieren Sie den spater vom Splash-
Screen verdeckten Desktop-Bereich:

picORG = new pcPicture;
picORG->load(,screen.bmp*);

picBACKGR = new pcPicture;
if (\picBACKGR) return FALSE;

/IScreenshot-Buffer anlegen

picBACKGR->create(picORG->
_width, picORG->_height, 32,
TRUE);

//Screenshot des Uberdeckten

//Bereichs

RECT src = {pt.x, pt.y, pt.x +
picORG->_width, pt.y +
picORG->_height};

HDC hdc = GetDC(
GetDesktopWindow());

Meldungen, die ein =

1z[s[4]s]s 7]z

< wakn | =]

Programm beim Start

[Eepien |

o
HEREEERTE
x o [p o[zl
ojojojalofafololo

>
[
o

ojofo

o

+ .
[putfnafo
HAmEE
o o
3 T

einblendet. Wirden : o
Sie dazu ein Fenster : 7 i
ohne Titelleiste und
Rahmen erzeugen,
kdénnten Sie den
Splashscreen — in un-
serem Fall eine einfa-
che Bitmap - nicht
mit optisch interes-
santen Effekten ein-

oder ausblenden.

T T Tl 1 1o

R> Windous 98

2]
|
o

] = s e =N

Wir zeigen Ihnen, Sl
wie Sie eine Bitmap = e |EE
auf das aktuell auf || 7|] 3] |
lhrem Monitor sicht-]| +] 5| s %
bare Bild einblenden. | 1] 2] "]
o FEAE = e o A

Leider stellt Win-

§
il
o

right Microsoft Coxp 1981-1998.

BEIEINE

1
1]}
o

T

o
Ausschneiden|

=loix]

= q

Compiler (D:) Cof

= 4

(G) Frograms (H:) ot

dows keine Funktio-

DER SPLASH-SCREEN wird in den Desktop eingeblendet.

PC UNDERGROUND
PRAXIS

picBACKGR->blitFROM(hdc, &src);
ReleaseDC(GetDesktopWindow(),
hdc);

Nun koénnen Sie einfach die Splash-
Screen-Bitmap mit dem Screenshot des
Desktops kombinieren. Unser Beispiel-
programm benutzt dabei wieder die Far-
be des linken oberen Pixels als Transpa-
renzfarbe:

picCOMBINE = new pcPicture(
picORG->width(),
picORG->height(), 32, TRUE);

if ('picCOMBINE) return FALSE;

picTRG = new pcPicture(
picORG->width(),
picORG->height(), 32, TRUE);
if (IpicTRG) return FALSE;

binitialized = picBACKGR->
blitTO(picCOMBINE);

/IOriginalbild transparent
[/liber combine zeichnen
if (bInitialized)
binitialized = picORG->
blitTRANSTO(picCOMBINE);

/Inoch ein Kopie fir spater
picBACKGR->blitTO(picTRG);

Wenn Sie auf weitere Effekte verzichten
mochten, kénnen Sie das kombinierte
Bild jetzt schon in Ihr Fenster zeichnen:
picTRG->blitTO(hdc);
Blenden Sie das Bild schrittweise ein.
Dazu lassen Sie das Hintergrundbild —
also den Screenshot — und das kombi-
nierte Bild ineinander Uibergehen. Inter-
polieren Sie zu diesem Zweck jeweils die
RGB-Werte jedes einzelnen Pixels.
Spatestens an dieser Stelle zahlt es sich
aus, daB Sie die Bitmaps in 32 Bit Farb-
tiefe im Speicher haben. Dadurch kdn-
nen Sie die Pixel leicht adressieren und
ebenso einfach auf die RGB-Werte zu-
greifen. Eine mdgliche Implementation
des Uberblendens kénnte so aussehen:

/IGewichtung der Bilder
float percentage = 0.3;

/IZeiger auf die Bitmapdaten
pRGBS = (RGBQUAD*)
(picBACKGR->_bytes);
pRGBT = (RGBQUAD¥)
(picCOMBINE->_bytes);
pRGBD = (RGBQUAD?)
(picTRG->_bytes);

pDWS = (dword*)
(picBACKGR->_hytes);

pDWT = (dword*)
(picCOMBINE->_bytes);

/IAnzahl der Pixel
dword iPixels = picORG->
_width * picORG->_height;

/lalle Pixel blenden
while(-iPixels)

/Inicht transparent?
if *pDWS++ = *pDWT++)

pRGBD->rgbRed = pRGBS-> (>

PC Magazin Februar 2000 235

Ol —+@

PC UNDERGROUND
PRAXIS

rgbRed - (pPRGBS->
rgbRed - pRGBT->
rgbRed) * percentage);
pRGBD->rgbGreen = pRGBS->
rgbGreen - ((pPRGBS->
rgbGreen - pRGBT->
rgbGreen) * percentage);
pRGBD->rgbBlue = pRGBS->
rgbBlue - ((pPRGBS->
rgbBlue - pRGBT->
rgbBlue) * percentage);

}

++ pRGBS;
++ pRGBT;
++ pRGBD;

}
Sie brauchen nur die Pixel zu Uiberblen-
den, die im Ausgangs- und Zielbild un-
terschiedliche Farben aufweisen. Des-
halb befindet sich in der Schleife eine
entsprechende if-Abfrage. Nun zeich-
nen Sie das berechnete Bild:

picTRG->blitTO(hdc);
Durch den einfachen Zugriff auf die
Grafikdaten kdnnen Sie jeden beliebigen
Effekt darstellen. Wenn Sie die Effekte
wie in unserem Beispielprogramm
animieren und zeitabhdngig gestalten
wollen, kénnen Sie die Steuerung tber
die WM_TIMER-Nachricht lhres
Messagehandlers ablaufen lassen. Die

Timer-Aufrufe gewahrleisten, da3 Ani-
mationen auf jedem Rechner unabhén-
gig von dessen Geschwindigkeit ab-
laufen.

Zunéchst starten Sie einen Timer:

SetTimer(WindowHWND, ID,

TimeOut, NULL);

Dabei missen Sie den HWND lhres
Fensters Ubergeben. Sonst wei3 Win-
dows nicht, an welches Fenster die
Nachrichten gehen sollen. Die tiberge-
bene ID vom Typ UINT dient zur Iden-
tifikation des Timers, da Sie mehrere
Timer starten kdnnen.
Der TimeOut gibt die Dauer der Zeitin-
tervalle in Millisekunden an, nach denen
die Nachricht an das Fenster geschickt
wird.

Die Timer-Nachrichten empfangen
Sie wie folgt:

long CALLBACK WindowProc(

HWND hwWnd, UINT message,
WPARAM wParam, LPARAM |Param)

switch (message)

case WM_TIMER:
if (wParam == ID)

/lirgendwas tun

break;

}

Unsere Beispielprogramme, mit denen
Sie frei herumexperimentieren kénnen,
finden Sie auf der Heft-CD. Tips und
Tricks zu C, C++ und zur Windows-
Programmierung finden Sie im Internet
unter den in der Textbox unten angege-
benen Adresse.

In der ndchsten Ausgabe stellen wir
lhnen weitere Effekte vor, mit denen Sie
Ihrer Oberfléche eine persdnliche Note
verpassen. PEI

Beispielprogramme sowie die Quelltexte zu den
Fensterroutinen finden Sie zusammen mit der zu-
grundeliegenden Grafikbibliothek auf unserer
Heft-CD unter der Rubrik Praxis/PC Underground

und auf unserer Website
www.pc-magazin.de/magazin/
O extras.htm

Klicken Sie unter Online Extras im Menii Praxis auf
das entsprechende Download-Feld.

236 Februar 2000 PC Magazin

