
PC Magazin Februar 2000 233

P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R /
O L I V E R K Ä F E R S T E I N

Fenster gehören zu den wichtigsten
Elementen von Windows –
schließlich ist das Betriebssystem

nach ihnen benannt. Die Fenster sind
nach bestimmten Regeln aufgebaut.
Doch Standards sind auf die Dauer lang-
weilig, erschaffen Sie daher Fenster in
neuen Formen und Farben.

Zunächst lernen Sie beliebig geformte
Fenster kennen, deren Form Sie durch
eine Bitmap bestimmen. Außerdem zei-
gen wir Ihnen, wie Sie auf dem Desktop
– ohne ein Fenster zu sehen – eine Gra-
fik einblenden. Diese sogenannten
Splash-Screens sind sehr beliebt, um
beim Start eines Programms die Copy-
right-Meldungen anzuzeigen.

Bevor Sie eigene Fenster erschaffen,
werfen Sie einen Blick in die entspre-
chenden Beispielprogramme Ihres
Compilers. Experimentieren Sie an die-
sen Programmen herum.

Um ein Standardfenster zu erzeugen,
registrieren Sie zunächst eine eigene
Fensterklasse. Dazu legen Sie eine
WNDCLASS-Struktur an. Diese enthält
die Parameter für die Hintergrundfarbe,
das zugehörige Icon und andere Eigen-
schaften des Fensters:

WNDCLASS wc;

wc.style = CS_BYTEALIGNCLIENT;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = instance;
wc.hIcon = 0;
wc.hCursor = 0;

//Hintergrundfarbe
wc.hbrBackground = (HBRUSH)

GetStockObject(BLACK_BRUSH);
wc.lpszMenuName = 0;
// Fensterklassenname
wc.lpszClassName =

„Testfenster“;

//Messagehandler
wc.lpfnWndProc = WindowProc;

//Fensterklasse registrieren
RegisterClass(&wc);

Bevor Sie in der letzten Listingzeile ein
Fenster dieser Klasse erzeugen, weisen
Sie ihm einen Messagehandler zu. Dieser
Messagehandler arbeitet Nachrichten
ab, die Windows an ihn schickt. Nach-
richten sind Mausklicks auf das Fenster
oder ein Tastendruck, sofern das Fenster
aktiv ist. Alle Nachrichten, die Sie inter-
essieren, geben Sie an den Standard-
Messagehandler von Windows weiter.

Ein selbstdefinierter Messagehandler
könnte dabei wie folgt aussehen:

long CALLBACK WindowProc(
HWND hWnd, UINT message,
WPARAM wParam, LPARAM lParam)

{
switch (message)
{

case WM_CREATE:
break;

case WM_KEYDOWN:
keycode = wParam & 255;
return 0;

case WM_DESTROY:
break;

}

//alle uninteressanten Nach-
//richten an Default-
//Messagehandler weiterleiten
return DefWindowProc(hWnd,

message, wParam, lParam);
}

An dieser Stelle haben Sie alle Definitio-
nen abgeschlossen, die das Aussehen
und Verhalten Ihres Fensters betreffen.

Sie können nun ein Fenster dieser Klas-
se anlegen. Dazu benutzen Sie die Funk-
tion CreateWindowEx(...). In den über-
gebenen Parametern legen Sie unter an-
derem fest, ob Ihr Fenster Minimize-
und Maximize-Knöpfe besitzt und wie
groß es sein soll. Als Rückgabewert lie-
fert CreateWindowEx(...) ein Handle
vom Typ HWND, das das Fenster ein-
deutig identifiziert. Wichtig ist dabei,
daß Sie das Handle der Application In-
stance – also das Handle, welches Ihr
Programm identifiziert – mit übergeben:

HWND Window;
//Fenster an Position 100/120
//mit der Größe 320/240
Window = CreateWindowEx(

WS_EX_TOPMOST, „Testfenster“,
„Fenstertitel“, WS_POPUP,
100, 120, 320, 240, 0, 0,
instance, 0);

//Fehler:
if (!Window) return 0;

Jetzt brauchen Sie Windows nur noch
mitzuteilen, daß Sie das Fenster sehen
wollen. Dazu steht Ihnen der Befehl
ShowWindow(Window, ...) zur Verfü-
gung.

Um das Fenster mit einem Inhalt zu
füllen, verwenden Sie den sogenannten
Device Context. Damit können Sie zum
Beispiel in das Fenster zeichnen oder
Bitmaps darin anzeigen. Der Device
Context ist eine Datenstruktur mit allen
Informationen, die Windows braucht,
um auf ein Device zu schreiben. Ein De-
vice muß nicht unbedingt ein Fenster
oder ein Bildschirm sein, es kann sich da-
bei auch um einen Drucker handeln.
Den Device Context erhalten Sie über

HDC DeviceContext;
DeviceContext = GetDC(Window);

Möchten Sie beispielsweise eine Bitmap
aus dem Hauptspeicher in das Fenster
zeichnen, legen Sie eine BITMAPIN-
FO-Struktur an. In dieser beschreiben
Sie den Aufbau der Bitmap im Speicher:

int bisize = sizeof(
BITMAPINFOHEADER);

bitmapinfo = (BITMAPINFO *)
malloc(bisize+12);

ZeroMemory(&bitmapinfo-> q

Demo-Programmierung unter Windows 95/98/NT

Jenseits aller Standards
Daß Fenster nicht immer eckig sein müssen, zeigte bereits der Künstler

Hundertwasser an seinen Gebäuden in Wien. Machen Sie es ihm nach.

UNTER WINDOWS DEFINIEREN Sie eigene

Fenster aus mehreren Regionen.

234 Februar 2000 PC Magazin

P C U N D E R G R O U N D
P R A X I S

bmiHeader, bisize);

//BitmapInfoHeader erzeugen
bitmapinfo->bmiHeader.biSize

= bisize;
bitmapinfo->bmiHeader.biWidth

= SCREEN_X;
bitmapinfo->bmiHeader.biHeight

= -SCREEN_Y;
bitmapinfo->bmiHeader.biPlanes

= 1;
bitmapinfo->

bmiHeader.biBitCount = 16;
bitmapinfo->

bmiHeader.biCompression =
BI_BITFIELDS;

//Farbfelder des Bitmaps setzen
((long) bitmapinfo->

bmiColors +0) = 0xFF0000;
((long) bitmapinfo->

bmiColors +1) = 0x00FF00;
((long) bitmapinfo->

bmiColors +2) = 0x0000FF;

Dank dieser Struktur weiß Windows,
wie die Grafikdaten im Speicher vorlie-
gen. Sie können Windows veranlassen,
die Bitmap in das Fenster zu zeichnen:

SetDIBitsToDevice(
DeviceContext, 0, 0, Breite,
Höhe, 0, 0, 0, Höhe,
BitmapPtr, bitmapinfo,
DIB_RGB_COLORS);

Sind Fenster und Bitmap unterschied-
lich groß, übernimmt Windows auf
Wunsch auch die Skalierung des Bildes.
In diesem Fall verwenden Sie folgende
Syntax:

//Größe des Fensters holen
GetClientRect(Window, &r);
StretchDIBits(DeviceContext,

0, 0, r.right, r.bottom,
0, 0, Breite, Höhe,
BitmapPtr, bitmapinfo,
DIB_RGB_COLORS, SRCCOPY);

Windows stellt Ihnen für die Behand-
lung von Bitmaps und Device Contexts
noch weitere mächtige Befehle zur Ver-
fügung. Diese sind in der Online-Hilfe
Ihres Compilers erklärt.

■ Fenster in allen Formen
Die Standardfenster in Windows sind
rechteckig. Doch gerade Linien wirken
steif und fördern nicht gerade die Krea-
tivität. Diese Weisheit verdanken wir
nicht zuletzt Stardesigner Colani und
seinem legendären Biodesign. Nutzen
Sie die Option von Windows, Fenster in
einer beliebigen Form – sogar in nicht
zusammenhängenden Teilen – anzuzei-
gen.

Definieren Sie sogenannte Regionen,
mit denen Sie die sichtbaren Bereiche ei-
nes Fensters festlegen. Diese Regionen
setzen Sie aus beliebigen Rechtecken zu-
sammen. Da ein solches Rechteck auch
nur ein Pixel groß sein kann, können Sie
so jede beliebige Form erzeugen.

Die gewünschte Form legen Sie am
besten durch eine Bitmap fest, die Sie in

einem Zeichenprogramm Ihrer Wahl
anfertigen. Für die spätere Anzeige des
Fensters zerlegen Sie die undurchsichti-
gen Stellen der Bitmap in einige wenige
Rechtecke – wenige deshalb, weil bei zu
vielen Rechtecken die Performance lei-
den kann.

Die Funktionen zum Laden und Be-
handeln der Bitmaps finden Sie in der

pcPicture-Klasse im Quelltext zu dieser
Ausgabe. Sie können damit ein Bild la-
den und mit 32 Bit Farbtiefe im Speicher
ablegen:

pcWndRegion _pic;

//BMP laden
_pic.load(szPathName);

//32-Bit-Kopie anlegen
pcPicture bmReg(_pic.width(),

_pic.height(), 32, TRUE);

//und BMP dorthin kopieren
_pic.blitTO(bmReg.hdc());

// Transparenzfarbe
COLORREF cTransCol =

GetPixel(bmReg.hdc(), 0, 0);

Um die Bitmap in eine Region zu kon-
vertieren, durchsuchen Sie es Zeile für
Zeile. Jeweils zusammenhängende,
nicht-transparente Pixel in einer Bit-
map-Zeile ergeben ein Rechteck. Das ist
kein optimaler, aber ein ausreichender
Algorithmus, um die Bitmap in eine Re-
gion zu konvertieren. Als transparent
gelten Pixel in einer vorgegebenen Far-
be. Das Programm verwendet als Trans-
parenzfarbe jeweils die Farbe des linken
oberen Pixels der Bitmap:

for (y = 0; y < height; y ++)
{

for (x = 0; x < width; x ++)
{

//suche zusammenhängendes
//Gebiet von nicht trans-
//parenten Pixeln
dword x0 = x;
dword *p = BitmapPtr +

x + y * width;
while (x < width)
{

// transparentes Pixel?
if (*p == trancol) break;
p ++;
x ++;

}

if (x > x0)
{

//Rechteck gefunden
....

}
}

}

Nachdem Sie die Rechtecke gefunden
haben, speichern Sie diese in der Daten-
struktur RGNDATA, die Sie dann
Ihrem Fenster zuweisen. Diese Struktur
ist von Windows wie folgt definiert:

typedef struct
{

RGNDATAHEADER rdh;
char Buffer[1];

} RGNDATA;

typedef struct _RGNDATAHEADER
{

DWORD dwSize;
DWORD iType;
DWORD nCount;
DWORD nRgnSize;
RECT rcBound;

} RGNDATAHEADER;

RGNDATA *pData = new RGNData;

Zunächst füllen Sie den RGN-
DATAHEADER aus:

pData->rdh.dwSize =
sizeof(RGNDATAHEADER);

pData->rdh.iType =
RDH_RECTANGLES;

//Bisherige Anzahl Rechtecke
pData->rdh.nCount =

pData->rdh.nRgnSize = 0;
//Größe der Regions auf
//Extremwerte setzen
SetRect(&pData->rdh.rcBound,

MAXLONG, MAXLONG, 0, 0);

Wenn Sie nun ein Rechteck in Ihrer Bit-
map ausgemacht haben, fügen Sie dieses
der Region mit folgenden Codezeilen
hinzu:

RECT *pr =
(RECT *)&pData->Buffer;

SetRect(&pr[pData->rdh.nCount],
x0, y, x, y+1);

//Größe der gesamten Region
//anpassen:
if (x0 < (dword)pData->

URLS FÜR DIE C/C++- UND WINDOWS-PROGRAMMIERUNG

Thema Adresse
C++ Report www.creport.com

MS VC++ Tutorials http://msdn.microsoft.com/visualc/technical/training.asp

MS System Journal www.microsoft.com/msj

MFC Professional Links www.visionx.com/mfcpro/links.htm

DIESE BITMAP DIENT als Vorlage für den

Splash-Screen.

PC Magazin Februar 2000 235

P C U N D E R G R O U N D
P R A X I S

rdh.rcBound.left)
pData->rdh.rcBound.left = x0;

if (y < (dword)pData->
rdh.rcBound.top)
pData->rdh.rcBound.top = y;

if (x > (dword)pData->
rdh.rcBound.right)
pData->rdh.rcBound.right = x;

if (y+1 > (dword)pData->
rdh.rcBound.bottom)
pData->rdh.rcBound.bottom =

y + 1;
pData->rdh.nCount ++;

Nun können Sie aus den Regionendaten
eine Gesamtregion erzeugen:

HRGN hrgn = ExtCreateRegion(
NULL, sizeof(RGNDATAHEADER)
+ (sizeof(RECT) *
AnzRechtecke), pData);

An dieser Stelle haben Sie prinzipiell
schon alles, was Sie benötigen. Sie kön-
nen nun einfach ein „normales“ Win-
dows-Fenster erzeugen und diesem
dann die berechnete Region zuweisen.
Dazu verwenden Sie einfach:

SetWindowRgn(Window, hrgn,
FALSE);

ShowWindow(Window,
SW_SHOWNORMAL);

Damit besitzen Sie das Handwerkszeug,
Fenster in jeder erdenklichen Form zu
gestalten. Sie können auch die Form ei-
nes Fensters während der Laufzeit än-
dern. Dadurch können Sie zum Beispiel
kleine Figuren programmieren, die auf
dem Desktop herumlaufen. Oder Sie
schreiben Fenster, die sich automatisch
ihrem Inhalt anpassen. Die Anwen-
dungsbereiche für selbstgeformte Fen-
ster sind sehr vielseitig.

■ Splash-Screens
Kennen Sie Splash-Screens? Das sind
kleine Bilder mit Programminformatio-
nen oder Copyright-
Meldungen, die ein
Programm beim Start
einblendet. Würden
Sie dazu ein Fenster
ohne Titelleiste und
Rahmen erzeugen,
könnten Sie den
Splashscreen – in un-
serem Fall eine einfa-
che Bitmap – nicht
mit optisch interes-
santen Effekten ein-
oder ausblenden.

Wir zeigen Ihnen,
wie Sie eine Bitmap
auf das aktuell auf
Ihrem Monitor sicht-
bare Bild einblenden.
Leider stellt Win-
dows keine Funktio-

nen zur Verfügung, um (halb)transpa-
rente Fenster darzustellen. Also würde
der weiter oben beschriebene Ansatz mit
beliebig geformten Fenstern hier nicht
funktionieren.

Verwenden Sie einen anderen Trick.
Da Sie mit Device Contexts sowohl in
Fenstern zeichnen als auch aus ihnen le-
sen können, legen Sie eine Kopie des
Desktops an und nutzen diese als Hin-
tergrundbild für das eigene Splash-
Screen-Fenster. Sie brauchen nur den
Teil des Desktops zu kopieren, den Ihr
Fenster verdeckt. Dazu brauchen Sie
den Handle des Desktop-Fensters:

HWND DesktopWindow =
GetDesktopWindow();

HDC DesktopHDC =
GetDC(DesktopWindow);

Nach diesen Zeilen greifen Sie auf den
Desktop zu wie auf jedes andere Fenster.

Verwenden Sie die Bitmap-Klasse, die
Sie bei den Quelltexten finden. Laden Sie
die Splashscreen-Bitmap, und erzeugen
Sie eine neue Bitmap der gleichen Größe
mit 32 Bit Farbtiefe. In die neue Bitmap
kopieren Sie den später vom Splash-
Screen verdeckten Desktop-Bereich:

picORG = new pcPicture;
picORG->load(„screen.bmp“);

picBACKGR = new pcPicture;
if (!picBACKGR) return FALSE;

//Screenshot-Buffer anlegen
picBACKGR->create(picORG->

_width, picORG->_height, 32,
TRUE);

//Screenshot des überdeckten
//Bereichs
RECT src = {pt.x, pt.y, pt.x +

picORG->_width, pt.y +
picORG->_height};

HDC hdc = GetDC(
GetDesktopWindow());

picBACKGR->blitFROM(hdc, &src);
ReleaseDC(GetDesktopWindow(),

hdc);

Nun können Sie einfach die Splash-
Screen-Bitmap mit dem Screenshot des
Desktops kombinieren. Unser Beispiel-
programm benutzt dabei wieder die Far-
be des linken oberen Pixels als Transpa-
renzfarbe:

picCOMBINE = new pcPicture(
picORG->width(),
picORG->height(), 32, TRUE);

if (!picCOMBINE) return FALSE;

picTRG = new pcPicture(
picORG->width(),
picORG->height(), 32, TRUE);

if (!picTRG) return FALSE;

bInitialized = picBACKGR->
blitTO(picCOMBINE);

//Originalbild transparent
//über combine zeichnen
if (bInitialized)

bInitialized = picORG->
blitTRANSTO(picCOMBINE);

//noch ein Kopie für später
picBACKGR->blitTO(picTRG);

Wenn Sie auf weitere Effekte verzichten
möchten, können Sie das kombinierte
Bild jetzt schon in Ihr Fenster zeichnen:

picTRG->blitTO(hdc);

Blenden Sie das Bild schrittweise ein.
Dazu lassen Sie das Hintergrundbild –
also den Screenshot – und das kombi-
nierte Bild ineinander übergehen. Inter-
polieren Sie zu diesem Zweck jeweils die
RGB-Werte jedes einzelnen Pixels.

Spätestens an dieser Stelle zahlt es sich
aus, daß Sie die Bitmaps in 32 Bit Farb-
tiefe im Speicher haben. Dadurch kön-
nen Sie die Pixel leicht adressieren und
ebenso einfach auf die RGB-Werte zu-
greifen. Eine mögliche Implementation
des Überblendens könnte so aussehen:

//Gewichtung der Bilder
float percentage = 0.3;

//Zeiger auf die Bitmapdaten
pRGBS = (RGBQUAD*)

(picBACKGR->_bytes);
pRGBT = (RGBQUAD*)

(picCOMBINE->_bytes);
pRGBD = (RGBQUAD*)

(picTRG->_bytes);

pDWS = (dword*)
(picBACKGR->_bytes);

pDWT = (dword*)
(picCOMBINE->_bytes);

//Anzahl der Pixel
dword iPixels = picORG->

_width * picORG->_height;

//alle Pixel blenden
while(–iPixels)
{

//nicht transparent?
if (*pDWS++ != *pDWT++)
{

pRGBD->rgbRed = pRGBS-> qDER SPLASH-SCREEN wird in den Desktop eingeblendet.

236 Februar 2000 PC Magazin

P C U N D E R G R O U N D
P R A X I S

rgbRed - ((pRGBS->
rgbRed - pRGBT->
rgbRed) * percentage);

pRGBD->rgbGreen = pRGBS->
rgbGreen - ((pRGBS->
rgbGreen - pRGBT->
rgbGreen) * percentage);

pRGBD->rgbBlue = pRGBS->
rgbBlue - ((pRGBS->
rgbBlue - pRGBT->
rgbBlue) * percentage);

}
++ pRGBS;
++ pRGBT;
++ pRGBD;

}

Sie brauchen nur die Pixel zu überblen-
den, die im Ausgangs- und Zielbild un-
terschiedliche Farben aufweisen. Des-
halb befindet sich in der Schleife eine
entsprechende if-Abfrage. Nun zeich-
nen Sie das berechnete Bild:

picTRG->blitTO(hdc);

Durch den einfachen Zugriff auf die
Grafikdaten können Sie jeden beliebigen
Effekt darstellen. Wenn Sie die Effekte
wie in unserem Beispielprogramm
animieren und zeitabhängig gestalten
wollen, können Sie die Steuerung über
die WM_TIMER-Nachricht Ihres
Messagehandlers ablaufen lassen. Die

Timer-Aufrufe gewährleisten, daß Ani-
mationen auf jedem Rechner unabhän-
gig von dessen Geschwindigkeit ab-
laufen.

Zunächst starten Sie einen Timer:
SetTimer(WindowHWND, ID,

TimeOut, NULL);

Dabei müssen Sie den HWND Ihres
Fensters übergeben. Sonst weiß Win-
dows nicht, an welches Fenster die
Nachrichten gehen sollen. Die überge-
bene ID vom Typ UINT dient zur Iden-
tifikation des Timers, da Sie mehrere
Timer starten können.
Der TimeOut gibt die Dauer der Zeitin-
tervalle in Millisekunden an, nach denen
die Nachricht an das Fenster geschickt
wird.

Die Timer-Nachrichten empfangen
Sie wie folgt:

long CALLBACK WindowProc(
HWND hWnd, UINT message,
WPARAM wParam, LPARAM lParam)

{
switch (message)
{

...
case WM_TIMER:

if (wParam == ID)

{
//irgendwas tun
...

}
break;

...
}
...

}

Unsere Beispielprogramme, mit denen
Sie frei herumexperimentieren können,
finden Sie auf der Heft-CD. Tips und
Tricks zu C, C++ und zur Windows-
Programmierung finden Sie im Internet
unter den in der Textbox unten angege-
benen Adresse.

In der nächsten Ausgabe stellen wir
Ihnen weitere Effekte vor, mit denen Sie
Ihrer Oberfläche eine persönliche Note
verpassen. s P E I

Beispielprogramme sowie die Quelltexte zu den
Fensterroutinen finden Sie zusammen mit der zu-
grundeliegenden Grafikbibliothek auf unserer
Heft-CD unter der Rubrik Praxis/PC Underground
und auf unserer Website

www.pc-magazin.de/magazin/
➥extras.htm

Klicken Sie unter Online Extras im Menü Praxis auf
das entsprechende Download-Feld.

