
PC Magazin März 2000 257

P C U N D E R G R O U N D

P R A X I S

C A R S T E N D A C H S B A C H E R /
O L I V E R K Ä F E R S T E I N

In dieser Ausgabe programmieren
wir eine Lupe für den Windows-
Desktop, die Sie mit der Maus an die

näher zu betrachtende Stelle fahren kön-
nen. Die Schwierigkeit besteht darin,
solch ein kleines, frei bewegliches Gra-
fikobjekt (Sprite) so über den Desktop
zu bewegen, daß der Hintergrund kor-
rekt dargestellt wird. In einem zweiten
Programmierbeispiel zeigen wir Ihnen,
wie Sie ins Windows-System eingreifen,
um die Bewegungen des Mauszeigers
abzufangen.

■ Sprites auf dem Desktop
In der letzten Ausgabe von PC Under-
ground haben Sie gesehen, wie Sie belie-
big geformte Fenster verwenden. War-
um sollte man nicht auch animierte
Sprites mit dieser Technik realisieren?
Auf den ersten Blick wären damit alle
Darstellungsprobleme gelöst: Windows
restauriert den Hintergrund selbst.

Doch so einfach ist das nicht. Dieser
Ansatz funktioniert nur, solange das
Fenster seine Form beibehält. Sobald Sie
die Konturen ändern, also dem Fenster
eine neue Window-Region zuordnen,
kann Windows ins Schleudern geraten
und mit unschönen Darstellungsfehlern
reagieren – abhängig vom jeweiligen
Bildschirm- bzw. Grafikkartentreiber.
Das Problem liegt bei der Behandlung
von Window-Messages und beim Zeich-
nen des Desktops.

Sie arbeiten nach wie vor mit recht-
eckigen Fenstern ohne Rahmen. Der
Fensterinhalt, also das Bild, das Sie im

Rechteck darstellen, besteht aus Teilen
des Hintergrunds und dem darzustel-
lenden Sprite. Der Hintergrund ist ein
Screenshot des Desktops. Dieses trick-
reiche Vorgehen ist ähnlich wie bei den
Splash-Screens in der vergangenen Aus-
gabe. Sie verwenden den Desktop als
Hintergrundbild in Ihrem Fenster,
zeichnen darauf Ihr Sprite – aber eben
nur die sichtbaren Teile – und lassen die
übrigen Hintergrundpixel stehen.

Einen Screenshot vom Desktop-Be-
reich unter dem Fenster erzeugen Sie,
bevor Sie Ihr Fenster anzeigen lassen.
Die Daten behalten Sie als Hintergrund-
bild. Das funktioniert, wenn Sie Ihr Fen-
ster an einer Stelle auf dem Bildschirm
erzeugen und dort belassen.

Schwierig wird es, wenn Sie das Fen-
ster bewegen wollen. Bei einer kleinen
Bewegung überschneidet sich die neue
Fensterposition höchstwahrscheinlich
mit der alten. Wenn Sie einen Screenshot
vom Desktop machen, bekommen Sie
Ihr eigenes Fenster
mit auf das Bild. Ge-
nau das wollen Sie
aber vermeiden.

Es gibt mehrere
Methoden, um an die
ersehnten Hinter-
grunddaten zu gelan-
gen. Zunächst ein An-
satz, der in eine Sack-
gasse führt: Sie könn-
ten den Hintergrund
in einen eigenen Spei-
cherbereich kopieren
und diesen als Fen-
sterhintergrund ver-
wenden. Bei beweg-
ten Fenstern würden

Sie dann Ihr eigenes Fenster im Hinter-
grund sehen, Ihre Sprite-Animation wä-
re zuerst einmal unsichtbar. Dies funk-
tioniert ohne Schwierigkeiten mit der
WM_HIDE-Window-Message. Nach-
dem das Fenster nicht mehr auf dem
Desktop zu sehen ist, könnten Sie dann
einen Screenshot machen, den Sie mit
dem zu zeichnenden Sprite kombinieren
und danach im Fenster darstellen.

Das Problem dabei: Alle Änderungs-
wünsche an den Desktop werden in ei-
nem Cache verwaltet . Windows nimmt
also zuerst einmal alle Zeichenbefehle –
unter anderem WM_HIDE, WM_
SHOW und den Befehl für Screenshots
– entgegen, führt sie aber nicht zwingend
in derselben Reihenfolge und auch nicht
zu bestimmten Zeiten aus. Sie können
deshalb keine Aussagen über den aktu-
ellen Inhalt oder Zustand des Desktops
treffen. Und eine Anfrage an Windows,
ob bestimmte Befehle ausgeführt wur-
den, kommt ebensowenig in Betracht.

Die erste funktionierende Variante
nutzt zwei Speicherbereiche (Bitmaps).
Diese sind so groß wie Ihr Fenster bzw.
Sprite. Die Bitmaps dienen als Hinter-
grundpuffer. Sie legen sie mit Hilfe der
pcPicture-Klasse an. Wenn Sie diese
Klasse nicht schon aus der letzten Aus-
gabe kennen, finden Sie den Quellcode
und die dazugehörige dokumentierte
Header-Datei bei den anderen Quelltex-
ten dieser Ausgabe:

//Spriteeffekte und
//Anzeigeroutinen
pcPicture _spr;
//Fensterhintergrund
pcPicture _bkg;
pcPicture _bkg2;

//Sprite laden
_spr.load(„irgendwas.bmp“);
//Speicher reservieren
_bkg.create(_spr.width(),

_spr.height(), 32, true); q

Demo-Programmierung unter Windows 95/98/NT

Sternenhagel
unter der Lupe
Durch geschickte Eingriffe in das Windows-

System vergrößern Sie Teile Ihres Desktops und

lassen Sterne rieseln.

IN DER EINFACHEN VARIANTE der Hintergrundberechnung

fallen große Mengen an Screenshot-Daten an.

258 März 2000 PC Magazin

P C U N D E R G R O U N D

P R A X I S

_bkg2.create(_spr.width(),
_spr.height(), 32, true);

Der Wert 32 im Aufruf der create-Me-
thode bestimmt, daß Bilder mit einer
Farbtiefe von 32 Bit angelegt werden.
Dadurch verbraucht Ihr Programm
mehr Speicher, vor allem steigt der Ko-
pieraufwand für den Speicherinhalt. Für
einen guten visuellen Eindruck ist dieser
Aufwand gerechtfertigt: Würden Sie
beim Zwischenspeichern nur eine Farb-
tiefe von 16 Bit einsetzen, käme es bei
Desktops mit 32-Bit-Farben zum Ver-
lust von Grafikdaten. Diese würden sich
dann in Form von leichten Verfärbun-
gen bemerkbar machen. Umgekehrt
können Sie 32-Bit-Screenshots selbst
dann verwenden, wenn Ihre Grafikkar-
te auf 16 Bit eingestellt ist. Windows
kümmert sich um die korrekte Farbkon-
vertierung der Pixel.

Bevor Sie ein Fenster bewegen, ferti-
gen Sie einen Screenshot von dem Be-
reich an, den das Fenster einnehmen
wird. Auf einem Teil dieses Screenshots
sehen Sie Ihr eigenes Fenster. Um das zu

vermeiden, berech-
nen Sie, welchen Teil
des Bildschirms das
Fenster sowohl vor
als auch nach der Be-
wegung überdeckt –
der alte Fensterhin-
tergrund ist in einem
der Hintergrundpuf-
fer gespeichert.

Wie Sie im Bild auf
S. 257 unten erken-
nen, handelt es sich
um die Schnittmenge
(das Schnittrechteck).
Den Originalinhalt
dieses Rechtecks
müssen Sie selbst wie-
derherstellen, weil Sie
ihn nicht auslesen können. Sie kopieren
den Teil des Hintergrunds, der das
Schnittrechteck abdeckt, vom alten in
den neuen Hintergrundpuffer.

Wie das funktioniert, sehen Sie in Li-
sting 1. Bei größeren Sprites dauert das
Erzeugen des Screenshots relativ lange,

weil dazu Zugriffe auf den Bildschirm-
speicher notwendig sind. Deshalb emp-
fiehlt sich diese Methode nur bei kleinen
Objekten. Durch den immensen Ko-
pieraufwand bei größeren Fenstern kön-
nen Sie diese nicht mehr flüssig über den
Bildschirm bewegen.

DIE ELEGANTERE VERSION der Hintergrundberechnung schießt

statt einem großen Screenshot zwei kleinere.

PC Magazin März 2000 259

P C U N D E R G R O U N D

P R A X I S

In einer Verfeinerung dieses Verfah-
rens sparen Sie den Bereich des Hinter-
grunds, in dem Ihr Fenster liegt, von den
Screenshots aus. Wie Sie in der Abbil-
dung S. 258 unten erkennen, berechnen
Sie zuerst die Position und Größe der
beiden Streifen Rect 1 und Rect 2, die mit
neuen Daten vom Screenshot des Desk-
tops gefüllt werden. Wenn Sie nur diese
Bereiche kopieren, sparen Sie eine Men-
ge langsamer Zugriffe auf den Bild-
schirmspeicher. Danach brauchen Sie
nur noch das Schnittrechteck von der
entsprechenden Position des einen Hin-
tergrundpuffers an die richtige Stelle im
anderen zu übertragen.

Durch diese Berechnungen können
Sie eine merkliche Geschwindigkeits-
steigerung erzielen. Erst durch diesen
Kniff können Sie große Sprites ohne
Ruckeln auf dem Bildschirm bewegen.
Den Code für diese elegantere Version
sehen Sie in Listing 2.

■ Lupenreine Bewegungen
Mit dem beschriebenen Verfahren er-
zeugen wir eine elektronische Lupe, die
Sie über den Bildschirm bewegen kön-
nen. Auch wenn sich die Form der Lupe
nicht ändert – um einen Teil des Bild-
schirms zu vergößern, brauchen Sie eine
Bitmap, die den Bildschirminhalt hinter
dem Fenster enthält.

Sie stehen wieder vor dem Problem,
daß Sie keinen Screenshot vom Desktop
unterhalb Ihres Fensters bekommen. Sie
müssen sich das Hintergrundbild wieder
selbst zusammenbauen. Das Programm
für die Lupe verwendet somit drei Bit-
maps:
• eine für den Hintergrund,
• eine für die Vergößerung des Hinter-
grundes
• sowie eine mit dem Bild der Lupe
selbst:

//Spriteeffekte und
//Anzeigeroutinen
pcPicture _spr;
//Fensterhintergrund

pcPicture _bkg;
pcPicture _bkg2;

//Sprite laden
_spr.load(„lupe.bmp“);
_bkg.create(_spr.width(),

_spr.height(), 32, true);
_cmb.create(_spr.width(),

_spr.height(), 32, true);
{...}
//Hintergrund zur Bearbeitung
//in Puffer kopieren
_bkg.blitTO(&wnd->_cmb);
//Lupe berechnen
_lupe.calc(&wnd->_cmb,

&wnd->_bkg);
//Lupe darüber zeichnen
_spr.blitTRANSTO(&wnd->_cmb);
//... und ab damit ins Fenster
_cmb.blitTO(hdc);

Die Funktion pcLupe.calc(...) gibt zwei
Objekte der pcPicture-Klasse zurück.
Diese Klasse bietet die Option, einen
Zeiger auf die Bitmap-Daten zu bekom-
men. In diesem Fall handelt es sich um
Bitmaps mit 32 Bit Farbtiefe, da Sie die
Bitmaps so angelegt haben.

Die Zeiger erhalten Sie mit:
pcLupe::calc(pcPicture*

trgPIC, pcPicture* srcPIC)
{

{...}
unsigned int *dst =

(unsigned int *)trgPIC->
_bytes;

unsigned int *src =
(unsigned int *)srcPIC->
_bytes;

{...}
}

Jetzt können Sie sowohl auf die Bitmap-
Daten des Hintergrundes als auch auf
die des Fensters zugreifen. Sie haben fast
alles, was Sie zum Zeichnen brauchen:
Es fehlt nur noch die Routine für die
Darstellung einer Vergrößerungslinse.

Um einen interessanten Verzerrungs-
effekt wie im Bild links unten zu errei-
chen, soll die Linse im Zentrum stärker
vergrößern als im Randbereich. Dazu le-
sen Sie jeden Hintergrundpixel, den Sie
setzen, an einer leicht verschobenen Po-
sition aus. Diese Verschiebung entneh-

men Sie einer Tabelle,
die Sie während des
Programmstarts ein-
mal berechnen.

Um die Tabelle mit
Werten zu füllen, ge-
hen Sie wie folgt vor:
Zuerst wählen Sie ei-
ne bestimmte Breite
für die Linse und le-
gen eine Tabelle mit
doppelt so vielen In-
teger-Werten an, wie
die Breite zum Qua-
drat ist, also
Tabellengröße = 2 *

Linsenbreite 2

Dann gehen Sie mit zwei Schleifen – die
äußere für die Zeilen, die innere für die
Spalten – innerhalb der Tabelle jeden
Punkt durch. Ermitteln Sie zuerst die
Differenz zwischen der Position des ak-
tuellen Punkts und des Mittelpunkts der
Linse. Mit diesem „Vektor“ können Sie
den Abstand zum Mittelpunkt berech-
nen.

Wenn Sie diesen Abstand durch den
maximalen Abstand vom Mittelpunkt
(also durch den Kreisradius, der der hal-
ben Breite der Lupe entspricht) teilen,
erhalten Sie einen Skalierungsfaktor.
Daraus schließen Sie auf die Koordinate
des auszulesenden Punktes. Da die Ta-
belle relative Angaben enthalten soll,
ziehen Sie davon noch die Originalposi-
tion ab. Was sich in der Beschreibung
kompliziert anhört, liest sich im C-
Quelltext kurz und bündig:

#define LSIZE 100
signed int lupe[LSIZE*LSIZE]

[2];

int i, j;

for (j=0; j<LSIZE; j++)
for (i=0; i<LSIZE; i++)

{
//Vektor bilden
double x=i-LSIZE/2;
double y=j-LSIZE/2;

//Entfernung zum
//Mittelpunkt der Linse
double d=sqrt(x*x+y*y);

//Verhältnis zur maximalen
//Entfernung
double q=d/sqrt(

(LSIZE/2)*(LSIZE/2));

//Lupe auf runden Rand
//begrenzen

if (d>(LSIZE/2)) q=1.0;

//Verschiebung der Koordi-
//nate des auszulesenden
//Pixels in Relation zur
//originalen Position
double nx=(double)

(i-LSIZE/2)*(q-1.0); q

DIE LINSE VERGRÖßERT im Zentrum

stärker als an den Rändern.

UNTER DER LUPE erkennen Sie auch kleinste Details auf Ihrem

Desktop.

260 März 2000 PC Magazin

P C U N D E R G R O U N D

P R A X I S

double ny=(double)
(j-LSIZE/2)*(q-1.0);

lupe[i+j*LSIZE][0]=(int)nx;
lupe[i+j*LSIZE][1]=(int)ny;

}

Der folgende Code-Ausschnitt demon-
striert, wie einfach der Lupeneffekt ist,
wenn Ihnen erst einmal die Tabelle zur
Verfügung steht. Um den Bereich der
Lupe zu zeichnen, brauchen Sie nur die
Zeiger auf die Bitmap-Daten und die
Breite der Bitmaps einzugeben:

//Zeiger auf Zielbitmap
//und deren Breite
unsigned int *dest;
int dwidth;
//Zeiger auf Quellbitmap
//und deren Breite
unsigned int *source;
int swidth;
//Position der Lupe
int x, y;

for (int j=0; j<LSIZE;
j++)
for (int i=0; i<LSIZE;

i++)
{

//Koordinaten in Bitmaps
int nx=i+x;
int ny=i+y;
dest[nx+ny*dwidth]=

source[lupe[i+j*LSIZE]+
nx+ny*swidth];

}

Diesen Code bauen Sie in die WM_
MOVE- und WM_PAINT-Message-
Behandlung des Fensters ein, welches
die Lupe darstellen soll. Damit besitzen
Sie ein Vergrößerungsglas, das Sie belie-
big über den Desktop bewegen können.

■ Sternchenregen
Jetzt wollen wir Ihrem Windows-Bild-
schirm noch einen Sternchenregen spen-
dieren. Die einzelnen Sterne sind Instan-
zen der beschriebenen Fensterklasse für
animierte, bewegte Sprites. Es fehlt nur
eine geeignete Verwaltung der Sterne.

Dazu legen Sie in Ihrem Hauptpro-
gramm ein Array mit einer festgelegten
Anzahl ANZ_STERNE von Sternklas-
sen an. Ein Stern enthält Bitmaps, ein
Fenster und eine Zeitsteuerung für die
Animation. Zudem verfügt er über
Funktionen, um sich wieder zu reinitia-
lisieren. Bei dieser Reinitialisierung
taucht er an einer zufälligen Stelle des
Bildschirms wieder auf und fällt ein
Stück herunter.

Ein Stern übernimmt die Kontrolle
über seine Animation und seine Bewe-
gung. Im Hauptprogramm befindet sich
ein Timer, der das Array mit den Zeigern
auf die Sterne im 20-Millisekunden-Takt
überprüft und einen Eintrag sucht, in
dem sich ein nicht aktiver Stern (dessen

Animation abgelaufen ist) befindet. Sol-
che Einträge werden reaktiviert und an
einer zufälligen Bildschirmposition neu
gestartet.

Sterne funktionieren nur, wenn sie
sich bewegen. Nur durch die Bewegung
kann ein Sprite die nötigen Daten von
Windows erfragen, die für eine korrekte
Berechnung des Hintergrunds wichtig
sind: Windows kann einem Fenster zwar
mitteilen, daß ein anderes Fenster über
ihm die Position geändert hat, ohne auf-
wendige Tricks wissen Sie jedoch nicht,
ob ein Fenster unter dem eigenen den In-
halt ändert.

Damit die Stern-
chen immer in der
Nähe des Mauszei-
gers auftauchen, müs-
sen Sie dessen Positi-
onsänderungen mit-
bekommen. Dazu in-
stallieren Sie einen so-
genannten „Hook“
unter Windows. Die
Code-Auszüge fin-
den Sie im Unterverzeichnis MOUSE-
HOOK bei den Quelltexten zu dieser
Ausgabe.

So „haken“ Sie sich in die Mausüber-
wachung ein:

HHOOK SetWindowsHookEx
(

//Was wollen wir „hooken“
int idHook,
//Adresse auf Hook-Prozedur
HOOKPROC lpfn,
//Application Instance
HINSTANCE hMod,
//Thread ID
DWORD dwThreadId

);

Diese Prozedur verlangt zunächst die
Instanz Ihrer Anwendung und des
Thread-Identifiers. Außerdem müssen
Sie ihr mitteilen, was Sie überwachen
wollen – hier die Mausbewegung.

Übergeben Sie als idHook die Kon-
stante WH_MOUSE. Sie brauchen nur
noch einen Zeiger auf eine Hook-Proze-
dur zu übergeben. Diese führt das Sy-
stem immer dann aus, wenn die Anwen-
dung GetMessage() oder PeekMessage()
aufruft und eine die Maus betreffende
Nachricht gesendet wird.

Für diese Hook-Prozedur ist folgende
Prozedurdefinition vorgegeben:

LRESULT CALLBACK MouseProc
(

//Hook-Code
int nCode,
//Message ID
WPARAM wParam,
//Maus-Koordinaten
LPARAM lParam

);

Da sich auch mehrere Programme in die
Nachrichtenkette einhaken können, er-
hält Ihre MouseProc von Windows un-
ter Umständen den Auftrag, manche
Nachrichten weiterzuleiten. Dies ist im-
mer dann der Fall, wenn der Hook-
Code nCode kleiner als 0 ist.

Nachrichten leiten Sie mit der folgen-
den Prozedur weiter:

LRESULT CallNextHookEx
(

//Handle Ihres Hooks
HHOOK hhk,
//Hook-Code
int nCode,

//Parameter weitergeben
WPARAM wParam,
LPARAM lParam

);

Der ID-Code im Parameter wParam
der MouseProc-Funktion benennt den
Typ der Mausnachricht. Den Wert von
lParam interpretieren Sie als Zeiger auf
eine MOUSEHOOKSTRUCT-Struk-
tur:“

typedef struct
tagMOUSEHOOKSTRUCT

{
//Koordinaten der Maus
POINT pt;
//hwnd des Fensters, das
//die Mousemessage
//bekommen wird
HWND hwnd;
//sonstiges
UINT wHitTestCode;
DWORD dwExtraInfo;

} MOUSEHOOKSTRUCT;

In dieser Struktur finden Sie die Koordi-
naten die Sie brauchen, um die kleinen
Sternchen wie im Bild unten auf den
Desktop loszulassen.

Die vorgestellten Programme verwei-
gern auf einigen älteren Matrox-My-

stique-Grafikkarten ihren Dienst. Das liegt an de-
ren Treibern. s P E I

Die Quelltexte zu den animierten Fenstern finden
Sie zusammen mit der zugrundeliegenden Grafikbi-
bliothek auf unserer Heft-CD in der Rubrik Pra-
xis/Programmierung/PC Underground und auf un-
serer Website unter

www.pc-magazin.de/magazin/ex-
tras.htm

Klicken Sie in der Tabelle Online Extras unter Pra-
xis auf das entsprechende Download-Feld.

JEDES DER STERNCHEN steuert sich selbst.

