i
v . e
| Sy o
4\!?“-[— . < S
Effiziente Datenkompression in C f; L=

Digitaler

Viele Informationen in wenig Daten unterbringen,

so lautet die Devise beim

. Wir machen Sie mit speziellen Kompri-

mierverfahren und Pack-Algorithmen vertraut.

CARSTEN DACHSBACHER

m Multimedia-Daten in ein
' ' handliches Format zu bringen,

mussen sie effektiv kompri-
miert sein. Auch Text- und Grafikdatei-
en konnen Sie um ein Vielfaches
schrumpfen. In dieser und den folgen-
den Ausgaben lernen Sie Pack-Algorith-
men und die theoretischen Grundlagen

mit der RLE-Methode. Es gibt drei
Mdoglichkeiten:
< Wenn Sie die doppelte Buchstabenfol-
ge ss durch 2s ersetzen, kdnnen Sie das
zur Kompression eingesetzte Zahlzei-
chen 2 nicht von der Kapitelnumerie-
rung unterscheiden und den Original-
text nicht eindeutig wiederherstellen.
Verwenden Sie daher ein nicht benétig-
tes Zeichen wie @ als Escape-Code. Sein
Auftreten im komprimierten Text signa-
lisiert, dass eine Léan-

genangabe folgt:

2. Datenkompre @2si-

on

In unserem Beispiel
wird der Originaltext
ein Byte langer. Es
lassen sich aber Bei-
spiele konstruieren,
bei denen eine

BEIM ABTASTEN groRer Flachen gleicher Farbe interessiert bei
der RLE-Kompression nur deren Beginn und Lange.

dazu kennen (vgl. die Textbox ,,Am An-
fang war das Bit* auf S. 254).

Die Lauflangencodierung (Run Length
Encoding, RLE) ist ein intuitives Ver-
fahren. Tritt ein Zeichen Z mehrmals in
Folge in der Eingabe auf, schreiben Sie in
der Ausgabe nur ein einzelnes Zeichen.
Damit Sie wissen, wie oft dieses Zeichen
an dieser Stelle vorkommt, stellen Sie die
Anzahl n voran. Der Wert n heif3t auch
die Run Length des Zeichens Z an dieser
Stelle. Als Beispiel behandeln Sie in ei-
nem Buchtext die KapitelUberschrift
2. Datenkompression

Schrumpfung auftritt.
e Anstatt des Escape-
Codes kdnnen Sie vor
jedem Zeichen dessen
Run Length vermerken:

121.1

1Dlaltlelnlklolmlplrle2sliloln
Dieser Ansatz lohnt sich jedoch nur bei
l&éngeren Zeichenketten, die grofere
Blocke gleicher Zeichen enthalten.
e Die eleganteste Methode: Legen Sie
eine minimale Anzahl von Wiederho-
lungen fest, ab der Sie ein Zeichen erset-
zen. Im folgenden Beispiel betragt der
Minimalwert drei Zeichen: Nur wenn
das gleiche Zeichen dreimal oder 6fter in
Folge auftritt, vermerken Sie nach dem
dritten Zeichen, wie oft es noch wieder-
holt werden soll. So arbeitet auch der Al-
gorithmus im Listing rle.cpp:

L~

PC UNDERGROUND

PRAXIS
~~ abba —> abba
abbbbbba —> abbb3a
abbba -> abbbOa
Das PCX-Dateiformat verdichtet

Schwarzwei3-Grafiken und Bilder mit
einer Palette mit dem RLE-Verfahren.
Benachbarte Pixel gleicher Farbe wie im
Bild links unten werden so platzsparend
zusammengefalt.

Der Grad der Kompression hangt vor
allem bei Strichzeichnungen wie in der
Abbildung unten stark von der Reihen-
folge der Abtastung ab. Neben einem
horizontalen Durchlauf der Pixel (zei-
lenweise Abtastung) konnen Sie die Pi-
xel auch vertikal (spaltenweise) oder im
Zickzack-Muster abarbeiten (siehe Ab-
bildung auf S. 254. Sie kénnen die Zeilen
bzw. Spalten in beliebig vertauschter
Reihenfolge behandeln.

Das komplexe LZW-Verfahren (be-
nannt nach den Initialien seiner Erfin-
der) fuhrt zu deutlich besseren Ergeb-
nissen als die Lauflangenkodierung.
Dem Verfahren liegt der von Lempel
und Ziv erfundene LZ78-Algorithmus
zugrunde, an dem Welch einige Modifi-
kationen und Optimierungen vorge-
nommen hat.

Unter anderem der Dateipacker gzip
aus der Unix-Welt sowie verschiedene
Bildformate wie Graphics Interchange
Format (GIF) und Tagged Image File
Format (TIFF) verwenden das LZW-
Verfahren. Inzwischen hat die Firma
Unisys das Patentrecht an diesem Algo-
rithmus: Eine kommerzielle Nutzung ist
nur mit ihrer Erlaubnis gestattet.

Die Kompression beruht auf einem
Dictionary (Worterbuch). Dieses baut
der Algorithmus wéhrend des Kompri-
miervorgangs selbstandig auf. Um spa-
ter wieder an die Originaldaten heran-
zukommen, brauchen Sie dieses Dictio-
nary nicht mit zu speichern. >

DIE PIXEL schrager Linienzuge kann das
RLE-Verfahren bei zeilen- oder spalten-
weiser Abtastung nicht zusammenfassen.

PC Magazin April 2000 253

£

PC UNDERGROUND
PRAXIS

Das Worterbuch besteht aus einer Li-
ste von Strings unterschiedlicher Lénge.
Es umfal3t zu Beginn des Kompressi-
onsvorgangs in den ersten 256 Eintragen
(0 bis 255) alle ASCII1-Zeichen, also nur
ein Zeichen lange Strings.

Der Encoder liest ein Zeichen nach
dem anderen ein und reiht sie in einem
String aneinander. Dann durchsucht er
das Worterbuch nach dieser Zeichenket-
te. Findet er sie nicht, bricht er diesen
Prozess ab. Wenn der bisherige String |

Informatiker messen den Informationsge-
halt einer Nachricht in Bit. Das entspricht
der Informationsmenge, die eine Antwort
auf eine Ja-/Nein-Frage enthalt. Die Ant-
wort ,ja“ kénnte man durch den Wert 1, die
Antwort ,nein“ durch eine O darstellen.
Eine der wichtigsten Fragen der Informati-
onstheorie ist, wie viele Entscheidungen —
oder binare Fragestellungen — notwendig
sind, um eine Information aus einer Viel-
zahl von Nachrichten auszuwahlen. Eine
elementare Entscheidung besteht dabei
naturlich aus einem Bit.

Kann die Informationsquelle n Informatio-
nen liefern, sind mindestens "ld(n)' (also
das Ergebnis der Logarithmus-Funktion auf
die nachsthohere ganze Zahl aufgerundet)

noch im Worterbuch verzeichnet ist,
lasst das néchste Zeichen z die Zeichen-
kette auf 1z wachsen.

Besitzt diese keinen Eintrag im Dic-
tionary, fuhrt der Encoder folgende
Schritte durch:

» Er schreibt den Index des Strings I im
Worterbuch in die Ausgabe.

 Er fligt den String 1z dem Wérterbuch
hinzu.

« Er Uberschreibt den bisherigen String
I mit dem Zeichen z.

I(N) = -Id(P(N))
als lhr Informationsgehalt definiert. Diese
Festlegung ist vernunftig:
1.1(N) ist umso kleiner, je groRer P(N) ist, al-
so je ofter die Information N auftritt.
2. Wenn das Eintreffen zweier Informatio-
nen N1 und N2 statistisch gesehen unab-
hangig ist, dann addiert sich Ihr Informati-
onsgehalt:

I(N1und N2) =
1d(P(NL1und N2)) =
-ld(P(N1) * P(N2)) =
-(1d(P(N1))+ld(P(n2))) =
I(NL)+I(N2)
Wir kénnen also eine Nachricht mit [ld(n)]
Bits kodieren, wenn insgesamt n Nachrich-
ten méglich sind. Durfen die Bitfolgen, mit
denen die Informationen kodiert werden,

verschieden lang

Entropie

|)

sein, kénnen Sie eine
Reihe von Informa-
tionen im Mittel mit
weniger Bits kodie-
ren. Das kommt da-
durch zustande, dal
Sie haufige Nachrich-
ten einfach mit weni-
ger Bits kodieren als

Redundanz =
Entscheidungsgehalt-
Entropie

DIE REDUNDANZ ist der Anteil einer Nachricht, der keine wei-

teren Informationen enthalt.

elementare Entscheidungen notwendig.
Der durch Id abgekurzte Logrithmus dualis
ist dabei der Logarithmus zur Basis 2. Dar-
aus folgt, dass Sie mit "ld(n)' Bits eine spe-
zielle Information aus einer Menge von n
verschiedenen Informationen identifizie-
ren kénnen.
Diese GroRe ist der Entscheidungsgehalt
HO dieser Informationsmenge:

HO(n) = Id(n)
Der Gehalt einer Information ist umso
groRer, je weniger man sie erwartet bezie-
hungsweise je seltener sie eintrifft. Stellen
Sie sich vor, eine Informationsquelle lie-
fert nur Nullen und Einsen. Falls fast immer
eine 0, aber nur selten eine 1 vorkommt, ist
das Auftreten der 1fur Sie weitaus interes-
santer als das Auftreten der 0.
Wenn nun P(N) die Wahrscheinlichkeit ist,
dass die Information N eintrifft, dann ist

254 April 2000 PC Magazin

selten auftretende.
Ein sehr bekanntes
Beispiel, das dieser
Methode folgt, ist
der Morsecode: Im Morse-Alphabet — die
Informationen sind hier die Buchstaben —
ist der Morsecode fur das sehr haufig vor-
kommende ,.e“ ein Punkt. Der Code fur das
seltenere ,y“ besteht hingegen aus vier
Zeichen.

Ein weiterer wichtiger Begriff in der Infor-
mationstheorie ist der mittlere Informati-
onsgehalt oder die Entropie. Treten n
Nachrichten mit den einzelnen Wahr-

BEISPIEL FUR DIE ENTROPIE

Zeichen relative Code

Anzahl Binar-
zeichen

Anhand des Eingabetextes

sir_sid_eastman_easily_teases_sea
_sick_seals

koénnen Sie sich die VVorgehensweise ver-
anschaulichen: Zunachst initialisieren Sie
das Worterbuich wie oben beschrieben
mit den ASCII-Zeichen und belegen den
String | mit einer leeren Zeichenkette.
Dann liest der Encoder das Zeichenss, wel-
ches sich als Einzelzeichen im Worter-
buch befindet. Das nachste Zeichen lautet
i, der String si besitzt allerdings keinen

scheinlichkeiten p(i), i =1, ..., n auf, dann ist
die Entropie einer Informationsquelle Q

HQ = > I(Ni)*p(i) =

= Z ld(@/p())*p(i) =

= & ld(p()*p()
Bei dieser Formel ist vorausgesetzt, dass
die Informationsquelle auch eine Informa-
tion liefert. Dazu mul die Summe aller
Auftrittswahrscheinlichkeiten 1 sein:

p(1)+p(2)+..+p(n) =1
Die Entropie ist maximal, wenn alle ein-
treffenden Informationen gleich wahr-
scheinlich sind, wenn also die gréRte Unsi-
cherheit daruber besteht, welche Informa-
tion der Quelle wir erhalten werden.
Als kleines Beispiel zu diesem eher etwas
trockenen Theorieteil wollen wir Folgen-
des betrachten: Ihre Informationsquelle
liefert Ihnen die Buchstaben a, b, c und d
mit den Wahrscheinlichkeiten 1/2, 1/4,
1/8 und 1/8. Sehen Sie sich dazu die Ta-
belle ,Beispiel fur die Entropie an. Die
Lange der Codes ist hier im Hinblick auf ih-
re Haufigkeiten optimal gewahlt. AuRer-
dem ist kein Code der Anfang eines ande-
ren - dadurch bleiben Sie auch bei beliebi-
ger Aneinanderreihung unterscheidbar,

zum Beispiel
0101001101111 = abbacd

Waren die Wahrscheinlichkeiten der Zei-
chen im obigen Beispiel gleich verteilt, be-
trige der Informationsgehalt 2 Bit. Eine
Codierung, die die Informationen mit we-
niger als durchschnittlich 2 Bit pro Zeichen
speichern kénnte, existiert nicht.

Als letzten Begriff wollen wir die Redun-
danz definieren. Die Redundanz ist einfach
gesprochen der verschwendete Speicher-
platz, der durch die ineffiziente Codierung

entsteht. Es gilt wie in Abbildung gezeigt:
Redundanz =
Entscheidungsgehalt - Entropie

Entropie pli)*id(p(i))

Haufigkeit p(i)

a 172 0 1 d(/(/2)=1 |(172)*1=1/2
b 174 10 2 1d(4)=2 (174)*2=1/2
c 1/8 10 3 1d(8)=3 (1/8)*3=3/8
d 178 m 3 1d(8)=3 (1/8)*3=3/8
HQ=13/4

Die meisten Kompressionsverfahren ar-
beiten im streaming mode: Sie lesen ein
oder mehrere Byte, behandeln diese und
fahren dann fort, bis die ganzen Daten
verarbeitet sind. Manche Verfahren wie
die Burrows Wheeler Transformation ar-
beiten im block mode. Diese behandeln
groRere Datenblocke separat.

Auch arbeitet die Mehrzahl der Algorith-
men physikalisch. Sie betrachten die Bits
einfach als irgendwelche Daten, ohne de-
ren Bedeutung zu kennen - sie interessiert
es also nicht, ob es sich um Wérter, Pixel
oder Audiodaten handelt. Diese Verfahren
wandeln einfach einen Bit-Stream in einen
kurzeren um. Die einzige Méglichkeit, ei-
nen Sinn aus dem Kodierten herauszufin-
den (und es zu dekodieren), ist die Kennt-

niss uber das Kompressionsverfahren. Ein
weiteres wichtiges Kriterium ist die Un-
terscheidung in verlustfreie und verlust-
behaftete Kompressionsverfahren. Ver-
lustfreie Kompressionsverfahren fuhren
die komprimierten Daten beim Entpacken
wieder exakt in den Urzustand uber. Ver-
lustbehaftete Verfahren finden in der Au-
dio-, Bild- und Videokompression Anwen-
dung. Dabei wird ein gewisser Informati-
onsverlust in Kauf genommen — entwe-
der, weil die Information ohnehin uber-
flussig ist oder ihr Wegfall nur einen sehr
geringen Qualitatsverlust fur den Men-
schen mit sich bringt. Die besten Beispie-
le hierzu sind die im Internet weit ver-
breiteten JPEG-Bilder, MPEG-Videos und
MPEG-3-Audiodateien.

1 Nun stellt der Deco-
4 der die Originaldaten
7 wieder her. Er startet
g wieder mit dem Wor-
F) terbuch, das nur die
113 256 ASCII-Zeichen
6 enthalt. Er liest nach-
.z) einander die Werte

b

JE NACH ART der Grafik erreichen Sie mit horizontaler, verti-
kaler oder Zickzack-Abtastung die optimale Kompression.

Eintrag im Dictionary. Daher schreibt der
Encoder den Index von s (115) an die Aus-
gabe, fligt den String si an der Position 256
dem Worterbuch hinzu und belegt den
String I mit dem Zeicheni.

So setzt sich der Prozel3 bis zum Ende
fort, die Ausgabe enthdlt dann folgende
Nummern (in Klammern stehen die zu-
gehdrigen Strings, die nicht in der Aus-
gabe enthalten sind):

115(s), 105(j), 114(r), 32(),

256(si), 100(d), 32(), 101(e),

97(a), 115(a), 116(t), 109(m),

97(a), 110(n), 262(_e),

256(si), 108(1), 121(y),

32(), 116(t), 263(ea),

115(s), 101(e), 115(s),

256(_s), 263(ea), 259(_s),

105(i), 99(c), 107(k),

280(_se), 97(a), 108(l),

115(s), eof(end of file).

Das Worterbuch sieht dann ausschnitts-
weise So aus:

0-255 ASCII Codes

256 si
257 ir
258 r_
259 _s
260 sid
261 _
285 _sea
286 al
287 Is

aus den komprimier-
ten Daten und
schreibt die zugehori-
gen Strings an die
Ausgabe. Das Worterbuch baut er dabei
genauso auf wie der Encoder. Man sagt
daher auch, dass Encoder und Decoder
synchronisiert sind bzw. in ,,lockstep*
arbeiten.

Im Detail: Der Decoder liest den er-
sten Wert und benutzt ihn, um einen
String | aus dem Worterbuch zu lesen.
Die Zeichen dieses Strings werden an die
Ausgabe geschrieben. Als ndchstes muR-
te der String 1z ins Wérterbuch einge-
tragen werden. Das Zeichen z des néch-
sten Strings ist nun eigentlich noch un-
bekannt. Aber Sie wissen ja, dass es sich
dabei nur um das erste Zeichen des néch-
sten Strings handeln kann.

Ein Index, den Sie in den Output-

Stream des Encoders schreiben, bean-
sprucht bei einer WorterbuchgrofRe von
maximal 4096 Strings 12 Bit. Ist das
Worterbuch voll, kbnnen Sie mit einer
von drei Varianten fortfahren:
 Sie kdnnen einfach den <esten oder
den am langsten nicht mehr benutzten
String mit dem aktuellen String Uber-
schreiben.
e Oder Sie vergroRern das Worterbuch
nachtraglich. Fir Encoder und Decoder
mussen Sie immer die gleiche Strategie
verfolgen.

PC UNDERGROUND
PRAXIS

« Eine andere Methode ist, einfach keine
neuen Strings mehr zuzulassen. Wenn
Sie Strings nie entfernen, kdnnen Sie das
Worterbuch als verkettete Liste spei-
chern und dadurch sehr viel Speicher-
platz sparen. Das Worterbuch wirden
Sie dann so definieren:

struct dictionary

int parent, character;
} dict[4096];

Dabei ist parent der Index des alten
Strings und character der Code (0-255)
des letzten ASCII-Zeichens.

Die Wahl der Ersetzungsstrategie ist
sehr entscheidend fur die erzielten Kom-
pressionsraten bei LZW-Algorithmen.
Aber auch die Grolze des Worterbuchs
spielt eine grofRe Rolle. Die optimale
Grofe hierfur hangt von den Eingangs-
daten ab.

Die Huffman-Codierung arbeitet nicht
mit einem Worterbuch, sondern mit der
Wabhrscheinlichkeit der Eingabezeichen.
Sie ordnet allen Eingabezeichen Bit-
codes unterschiedlicher Lange zu. Diese
Huffman-Codes sind um so kirzer, je
héufiger das Zeichen auftritt.

Zur Darstellung dient der Huffman-
Baum: ein Bindrbaum, dessen Blatter
den Eingabezeichen entsprechen und
mit ihren Wahrscheinlichkeiten be-
schriftet sind. Die weiteren Knoten des
Baums sind mit der Summe der Wahr-
scheinlichkeiten der Knoten der
néchsthdheren Ebene markiert. Die
Kanten bezeichnen wir mit den binaren
Werten 0 oder 1.

Angenommen, Sie haben die Menge
der Eingabezeichen x(1),...,x(n) mit den
Wahrscheinlichkeiten p(1),...,p(n). So
bauen Sie den Baum auf:

« Suchen Sie die zwei Zeichen x(i) und
X(j) mit den kleinsten Wahrscheinlich-
keiten.

« Bilden Sie einen neuen Knoten K(ij),
und ordnen Sie ihm die Wahrscheinlich-
keit

P(K(i) = p() + p()
zu. Verbinden Sie K(ij) mitx(i) und x(j),
und beschriften Sie die Kanten mit den
Werten O und 1.

« Entfernen Sie x(i) und x(j) aus der
Menge der Zeichen, und fugen Sie statt-
dessen K(ij) hinzu.

e Ist noch mehr als ein Element in der
Menge der Eingabezeichen enthalten,
gehen Sie wieder zu Schritt 1.

* Machen Sie den letzten hinzugefuigten
Knoten zur Wurzel des Baums. [>]

PC Magazin April 2000 255

5)-6

PC UNDERGROUND
PRAXIS

1. Schritt: Neuer Knoten K(1) mit A und B als
Nachfolger

2. Schritt: Neuer Knoten K(2) mit K(1) und E
als Nachfolger

3. Schritt: Neuer Knoten K(3) als Baumwurzel
mit K(2) und R als Nachfelger

K(3) [1,0]

K(1) [0,3]

7N

A2 B[0.1]

EIN HUFFMAN-BAUM verrat lhnen den
optimalen Code fur die in lhrer Nachricht
auftretende Buchstabenhaufigkeit.

Die Skizze oben verdeutlicht die Vor-
gehensweise fur einen Text mit den Zei-
chenA(p(A)=0,2), B (p(B)=0,1), E (p(E)
=0,2) und R (p(R) = 0,5). Bauen Sie den
Baum von den Blattern bis zur Wurzel
auf. Die Bitfolgen fiir die Zeichen erhal-
ten Sie, indem Sie die Baumaste von der
Wurzel bis zu einem Blatt hinab verfol-
gen und sich dabei die Bits merken:

A 000

B 001

E 01
R 1

Dadurch, dass kein Code der Anfang ei-
nes anderen Codes ist, kdnnen Sie co-
dierte Worter wie

EBER 01001011

RABE 100000101
eindeutig decodieren. Dazu muss der
Encoder die Bitcodes oder den Baum
zuvor gespeichert haben.

Wenn Sie komprimierte Daten deco-
dieren wollen, gehen Sie wie folgt vor:
Sie starten bei der Wurzel des Baums als
aktueller Knoten. Dann lesen Sie ein Bit.
Hat es den Wert 0, gehen Sie zum Kno-
ten an der linken Kante Ihres aktuellen
Knotens. Beim Wert 1 gehen Sie an der
rechten Kante entlang.

Diesen Vorgang wiederholen Sie so
lange, bis Sie an einem Blatt des Baums
angelangt sind. Dann geben Sie das ent-
sprechende Zeichen aus und springen
zurtick zur Wurzel. In C-Code kénnte
das so aussehen:

/Itowrite enthalt Anzahl

//der Outputbytes
while (towrite>0)

/[Bit lesen
int bit = getcode(1);

256 April 2000 PC Magazin

if (bit == 0) actnode =
tree[actnode].left;

else actnode =
tree[actnode].right;

if (actnode < 256)
{

/[Blatt gefunden!
putc_(actnode, 9);
towrite—;

) actnode = nodes-1;

}

Statt alle Zeichenwahrscheinlichkeiten
zu Beginn abzuzéhlen, kdnnen Sie sie
stdndig wéhrend der Codierung anpas-
sen (Adaptives Huffman Coding). Vor-
teil: Der Encoder passt sich immer den
aktuell auftretenden Wahrscheinlichkei-
ten an und erzielt dadurch bessere Kom-
pressionsraten. Voraussetzung: Die An-
passung muss schnell erfolgen und die
Wahrscheinlichkeiten dirfen sich nicht
zu schnell &ndern.

In der Praxis finden Sie bei einem
Packprogramm meist nicht nur einen
Algorithmus, sondern fast immer eine
Kombination aus einem Dictionary-
Packer und einem statistischen Encoder
wie beim Huffman-Algorithmus. Zum
Beispiel kdnnen die Indizes, die beim
LZW-Verfahren als Ausgabe entstehen,
als Eingabezeichen fir einen Huffman-
Packer dienen. Dadurch erzielen Sie
deutlich bessere Kompressionsraten als
bei der Anwendung nur eines Verfah-
rens.

Um ungewollten Datenverlusten vor-
zubeugen, entwickeln Sie zu jedem
Packer immer sofort auch den zugehdri-
gen Entpacker. Danach sollten Sie beide
einem ausgiebigen Test unterziehen:
Was niitzt die kleinste Datei, wenn darin
nicht mehr alle nétigen Informationen
zum Entpacken enthalten sind?

Der LZW-Packer aus dieser Ausgabe
gibt Ihnen viel Raum fiir eigene Experi-
mente. In der nachsten Ausgabe stellen
wir lhnen ausgefeilte Algorithmen fiir
Spezialanwendungen vor. PEI

Empfehlenswerte Literatur:

Salomon, David: Data Compression — The Com-
plete Reference, Springer Verlag 1997,

etwa 80 Mark, ISBN 0-387-98280-9

Nelson, Mark / Gailly, Jean-Loup: The Data Com-
pression Book, M&T Books 1996, etwa 75 Mark,
ISBN 1-55851-434-1

Die Quelltexte sowie die fertig ibersetzten Pack-
programme finden Sie auf unserer Heft-CD im Ver-
zeichnis Praxis/PC Underground und im Internet-

Angebot des PC Magazin unter
www.pc-magazin.de/magazin/
O extras.htm

Klicken Sie unter Online Extras im Menu Praxis auf
das entsprechende Download-Feld.

1: #include <stdlib. h>
2z #include <stdio. h>
3: #define MNRLE 3

5: FILE *in, *out;

6:
7

8: {

9z
10z
11;
12:
133
14:
15:
16:
17:
18:
19z
20:
21:
22:
23;
24:
25;
26:
27:
28:
29;
30z
31z
32:
33:
34:
353
36:
37z
38:
39:
40:
41;
42:
43:
44:
45:
46:
47;
48:
49:
50:
il
52:
533
54:
553
56:
57:
58:
59z
60z
61z
62:
63:
64:
65:
663
67:
68:
69:
70z
71z
72:
73z
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:

89: }

: void main(int argc,char **argv)

int ¢,z count,i;
if (argc!=4)
{

printf("\nRLE- Encoder/ Decoder
printf("Beispiel programmn");
printf("(w)(c)2000 by Carsten
printf("Dachsbacher\n");
printf(“\nSyntax: rle (e/d) ");
printf("infile outfile");
exit(1);

ar gv++;
if ((*argv)[0]=="¢")
{

/1 Input und Qutput Streans
argv ++;

in = fopen(*argv++, "rb");
out = fopen(*argv, "wh");

c=getc(in);
whi | e (c! =EOF)
{

/1 Nachstes Zeichen |esen
/1 und Count erhschen
count =0;

while (((z=getc(in))==c) &&
(z! =ECF) &&
(count <(255+M NRLE)))

count ++;

}

count ++;
if (count<M NRLE)

for (i=0; i<count; i++)
putc(c, out);
} else
{
count - =M NRLE;
for (i=0; i<M NRLE, i++)

putc(c,out);
put c(count, out);

}
c=z;
}

fclose(in);
fclose(out);

} else
if ((*argv)[0]=="d")
{

/1 1nput und CQutput Streans
ar gv++;

i n=f open(*ar gv++, "rb");

out =f open(*argv, "wb");
¢=256; // unbenutzter code
/'l Nachstes Zeichen | esen
/1 und Count erhshen
count =0;

while ((z=getc(in))!=ECF)

putc(z,out);

if (z!=c)
count =0;

count ++;

if (count==M NRLE)

{
int w eder hol ungen=get c(i n)
for (int i=0;

i <wi eder hol ungen;
putc(z,out);
count =0;
}

c=z;

i ++)

fclose(in);
fcl ose(out);

Dieses Programm packt und entpackt Da-
ten durch Lauflingen-Codierung.

")
")

