
PC Magazin April 2000 253

P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R

Um Multimedia-Daten in ein
handliches Format zu bringen,
müssen sie effektiv kompri-

miert sein. Auch Text- und Grafikdatei-
en können Sie um ein Vielfaches
schrumpfen. In dieser und den folgen-
den Ausgaben lernen Sie Pack-Algorith-
men und die theoretischen Grundlagen

dazu kennen (vgl. die Textbox „Am An-
fang war das Bit“ auf S. 254).

■ RLE-Kompression
Die Lauflängencodierung (Run Length
Encoding, RLE) ist ein intuitives Ver-
fahren. Tritt ein Zeichen Z mehrmals in
Folge in der Eingabe auf, schreiben Sie in
der Ausgabe nur ein einzelnes Zeichen.
Damit Sie wissen, wie oft dieses Zeichen
an dieser Stelle vorkommt, stellen Sie die
Anzahl n voran. Der Wert n heißt auch
die Run Length des Zeichens Z an dieser
Stelle. Als Beispiel behandeln Sie in ei-
nem Buchtext die Kapitelüberschrift

2. Datenkompression

mit der RLE-Methode. Es gibt drei
Möglichkeiten:
• Wenn Sie die doppelte Buchstabenfol-
ge ss durch 2s ersetzen, können Sie das
zur Kompression eingesetzte Zahlzei-
chen 2 nicht von der Kapitelnumerie-
rung unterscheiden und den Original-
text nicht eindeutig wiederherstellen.
Verwenden Sie daher ein nicht benötig-
tes Zeichen wie @ als Escape-Code. Sein
Auftreten im komprimierten Text signa-

lisiert, dass eine Län-
genangabe folgt:
2. Datenkompre@2si-
on

In unserem Beispiel
wird der Originaltext
ein Byte länger. Es
lassen sich aber Bei-
spiele konstruieren,
bei denen eine
Schrumpfung auftritt.
• Anstatt des Escape-
Codes können Sie vor
jedem Zeichen dessen

Run Length vermerken:
121.1
1D1a1t1e1n1k1o1m1p1r1e2s1i1o1n

Dieser Ansatz lohnt sich jedoch nur bei
längeren Zeichenketten, die größere
Blöcke gleicher Zeichen enthalten.
• Die eleganteste Methode: Legen Sie
eine minimale Anzahl von Wiederho-
lungen fest, ab der Sie ein Zeichen erset-
zen. Im folgenden Beispiel beträgt der
Minimalwert drei Zeichen: Nur wenn
das gleiche Zeichen dreimal oder öfter in
Folge auftritt, vermerken Sie nach dem
dritten Zeichen, wie oft es noch wieder-
holt werden soll. So arbeitet auch der Al-
gorithmus im Listing rle.cpp:

abba –> abba
abbbbbba –> abbb3a
abbba -> abbb0a

Das PCX-Dateiformat verdichtet
Schwarzweiß-Grafiken und Bilder mit
einer Palette mit dem RLE-Verfahren.
Benachbarte Pixel gleicher Farbe wie im
Bild links unten werden so platzsparend
zusammengefaßt.

Der Grad der Kompression hängt vor
allem bei Strichzeichnungen wie in der
Abbildung unten stark von der Reihen-
folge der Abtastung ab. Neben einem
horizontalen Durchlauf der Pixel (zei-
lenweise Abtastung) können Sie die Pi-
xel auch vertikal (spaltenweise) oder im
Zickzack-Muster abarbeiten (siehe Ab-
bildung auf S. 254. Sie können die Zeilen
bzw. Spalten in beliebig vertauschter
Reihenfolge behandeln.

■ LZW-Kompression
Das komplexe LZW-Verfahren (be-
nannt nach den Initialien seiner Erfin-
der) führt zu deutlich besseren Ergeb-
nissen als die Lauflängenkodierung.
Dem Verfahren liegt der von Lempel
und Ziv erfundene LZ78-Algorithmus
zugrunde, an dem Welch einige Modifi-
kationen und Optimierungen vorge-
nommen hat.

Unter anderem der Dateipacker gzip
aus der Unix-Welt sowie verschiedene
Bildformate wie Graphics Interchange
Format (GIF) und Tagged Image File
Format (TIFF) verwenden das LZW-
Verfahren. Inzwischen hat die Firma
Unisys das Patentrecht an diesem Algo-
rithmus: Eine kommerzielle Nutzung ist
nur mit ihrer Erlaubnis gestattet.

Die Kompression beruht auf einem
Dictionary (Wörterbuch). Dieses baut
der Algorithmus während des Kompri-
miervorgangs selbständig auf. Um spä-
ter wieder an die Originaldaten heran-
zukommen, brauchen Sie dieses Dictio-
nary nicht mit zu speichern. q

Effiziente Datenkompression in C

Digitaler
Schraubstock
Viele Informationen in wenig Daten unterbringen,

so lautet die Devise beim Übertragen und Spei-
chern. Wir machen Sie mit speziellen Kompri-

mierverfahren und Pack-Algorithmen vertraut.

BEIM ABTASTEN großer Flächen gleicher Farbe interessiert bei

der RLE-Kompression nur deren Beginn und Länge.

DIE PIXEL schräger Linienzüge kann das

RLE-Verfahren bei zeilen- oder spalten-

weiser Abtastung nicht zusammenfassen.

254 April 2000 PC Magazin

P C U N D E R G R O U N D
P R A X I S

Das Wörterbuch besteht aus einer Li-
ste von Strings unterschiedlicher Länge.
Es umfaßt zu Beginn des Kompressi-
onsvorgangs in den ersten 256 Einträgen
(0 bis 255) alle ASCII-Zeichen, also nur
ein Zeichen lange Strings.

Der Encoder liest ein Zeichen nach
dem anderen ein und reiht sie in einem
String aneinander. Dann durchsucht er
das Wörterbuch nach dieser Zeichenket-
te. Findet er sie nicht, bricht er diesen
Prozess ab. Wenn der bisherige String I

noch im Wörterbuch verzeichnet ist,
lässt das nächste Zeichen z die Zeichen-
kette auf Iz wachsen.

Besitzt diese keinen Eintrag im Dic-
tionary, führt der Encoder folgende
Schritte durch:
• Er schreibt den Index des Strings I im
Wörterbuch in die Ausgabe.
• Er fügt den String Iz dem Wörterbuch
hinzu.
• Er überschreibt den bisherigen String
I mit dem Zeichen z.

Anhand des Eingabetextes
sir_sid_eastman_easily_teases_sea
_sick_seals

können Sie sich die Vorgehensweise ver-
anschaulichen: Zunächst initialisieren Sie
das Wörterbuich wie oben beschrieben
mit den ASCII-Zeichen und belegen den
String I mit einer leeren Zeichenkette.
Dann liest der Encoder das Zeichen s, wel-
ches sich als Einzelzeichen im Wörter-
buch befindet. Das nächste Zeichen lautet
i, der String si besitzt allerdings keinen

Informatiker messen den Informationsge-

halt einer Nachricht in Bit. Das entspricht

der Informationsmenge, die eine Antwort

auf eine Ja-/Nein-Frage enthält. Die Ant-

wort „ja“ könnte man durch den Wert 1, die

Antwort „nein“ durch eine 0 darstellen.

Eine der wichtigsten Fragen der Informati-

onstheorie ist, wie viele Entscheidungen –

oder binäre Fragestellungen – notwendig

sind, um eine Information aus einer Viel-

zahl von Nachrichten auszuwählen. Eine

elementare Entscheidung besteht dabei

natürlich aus einem Bit.

Kann die Informationsquelle n Informatio-

nen liefern, sind mindestens

⁄
ld(n)

ø
(also

das Ergebnis der Logarithmus-Funktion auf

die nächsthöhere ganze Zahl aufgerundet)

elementare Entscheidungen notwendig.

Der durch ld abgekürzte Logrithmus dualis

ist dabei der Logarithmus zur Basis 2. Dar-

aus folgt, dass Sie mit

⁄
ld(n)

ø
Bits eine spe-

zielle Information aus einer Menge von n

verschiedenen Informationen identifizie-

ren können.

Diese Größe ist der Entscheidungsgehalt
Η0 dieser Informationsmenge:

Η0(n) = ld(n)

Der Gehalt einer Information ist umso

größer, je weniger man sie erwartet bezie-

hungsweise je seltener sie eintrifft. Stellen

Sie sich vor, eine Informationsquelle lie-

fert nur Nullen und Einsen. Falls fast immer

eine 0, aber nur selten eine 1 vorkommt, ist

das Auftreten der 1 für Sie weitaus interes-

santer als das Auftreten der 0.

Wenn nun P(N) die Wahrscheinlichkeit ist,

dass die Information N eintrifft, dann ist

I(N) = -ld(P(N))

als Ihr Informationsgehalt definiert. Diese

Festlegung ist vernünftig:

1. I(N) ist umso kleiner, je größer P(N) ist, al-

so je öfter die Information N auftritt.

2. Wenn das Eintreffen zweier Informatio-

nen N1 und N2 statistisch gesehen unab-

hängig ist, dann addiert sich Ihr Informati-

onsgehalt:

I(N1 und N2) =
= -ld(P(N1 und N2)) =
= -ld(P(N1) * P(N2)) =
= -(ld(P(N1))+ld(P(n2))) =
= I(N1)+I(N2)

Wir können also eine Nachricht mit [ld(n)]

Bits kodieren, wenn insgesamt n Nachrich-

ten möglich sind. Dürfen die Bitfolgen, mit

denen die Informationen kodiert werden,

verschieden lang

sein, können Sie eine

Reihe von Informa-

tionen im Mittel mit

weniger Bits kodie-

ren. Das kommt da-

durch zustande, daß

Sie häufige Nachrich-

ten einfach mit weni-

ger Bits kodieren als

selten auftretende.

Ein sehr bekanntes

Beispiel, das dieser

Methode folgt, ist

der Morsecode: Im Morse-Alphabet – die

Informationen sind hier die Buchstaben –

ist der Morsecode für das sehr häufig vor-

kommende „e“ ein Punkt. Der Code für das

seltenere „y“ besteht hingegen aus vier

Zeichen.

Ein weiterer wichtiger Begriff in der Infor-

mationstheorie ist der mittlere Informati-

onsgehalt oder die Entropie. Treten n

Nachrichten mit den einzelnen Wahr-

scheinlichkeiten p(i), i = 1, ..., n auf, dann ist

die Entropie einer Informationsquelle Q

HQ = Σ
i

I(Ni)*p(i) =
= Σ

i
ld(1/p(i))*p(i) =

= Σ
i

ld(p(i))*p(i)

Bei dieser Formel ist vorausgesetzt, dass

die Informationsquelle auch eine Informa-

tion liefert. Dazu muß die Summe aller

Auftrittswahrscheinlichkeiten 1 sein:

p(1)+p(2)+...+p(n) = 1

Die Entropie ist maximal, wenn alle ein-

treffenden Informationen gleich wahr-

scheinlich sind, wenn also die größte Unsi-

cherheit darüber besteht, welche Informa-

tion der Quelle wir erhalten werden.

Als kleines Beispiel zu diesem eher etwas

trockenen Theorieteil wollen wir Folgen-

des betrachten: Ihre Informationsquelle

liefert Ihnen die Buchstaben a, b, c und d

mit den Wahrscheinlichkeiten 1/2, 1/4,

1/8 und 1/8. Sehen Sie sich dazu die Ta-

belle „Beispiel für die Entropie“ an. Die

Länge der Codes ist hier im Hinblick auf ih-

re Häufigkeiten optimal gewählt. Außer-

dem ist kein Code der Anfang eines ande-

ren - dadurch bleiben Sie auch bei beliebi-

ger Aneinanderreihung unterscheidbar,

zum Beispiel

0101001101111 = abbacd

Wären die Wahrscheinlichkeiten der Zei-

chen im obigen Beispiel gleich verteilt, be-

trüge der Informationsgehalt 2 Bit. Eine

Codierung, die die Informationen mit we-

niger als durchschnittlich 2 Bit pro Zeichen

speichern könnte, existiert nicht.

Als letzten Begriff wollen wir die Redun-
danz definieren. Die Redundanz ist einfach

gesprochen der verschwendete Speicher-

platz, der durch die ineffiziente Codierung

entsteht. Es gilt wie in Abbildung gezeigt:

Redundanz =
Entscheidungsgehalt - Entropie

AM ANFANG WAR DAS BIT

BEISPIEL FÜR DIE ENTROPIE
Zeichen relative Code Anzahl Binär- Entropie p(i)*ld(p(i))

Häufigkeit p(i) zeichen
a 1/2 0 1 ld(1/(1/2))=1 (1/2) * 1 = 1/2

b 1/4 10 2 ld(4)=2 (1/4) * 2 = 1/2

c 1/8 110 3 ld(8)=3 (1/8) * 3 = 3/8

d 1/8 111 3 ld(8)=3 (1/8) * 3 = 3/8

ΗQ = 1 3/4

DIE REDUNDANZ ist der Anteil einer Nachricht, der keine wei-

teren Informationen enthält.

Entropie

Redundanz =

Entscheidungsgehalt-

Entropie

1

}

PC Magazin April 2000 255

P C U N D E R G R O U N D
P R A X I S

Eintrag im Dictionary. Daher schreibt der
Encoder den Index von s (115) an die Aus-
gabe, fügt den String si an der Position 256
dem Wörterbuch hinzu und belegt den
String I mit dem Zeichen i.

So setzt sich der Prozeß bis zum Ende
fort, die Ausgabe enthält dann folgende
Nummern (in Klammern stehen die zu-
gehörigen Strings, die nicht in der Aus-
gabe enthalten sind):

115(s), 105(i), 114(r), 32(_),
256(si), 100(d), 32(_), 101(e),
97(a), 115(a), 116(t), 109(m),
97(a), 110(n), 262(_e),
256(si), 108(l), 121(y),
32(_), 116(t), 263(ea),
115(s), 101(e), 115(s),
256(_s), 263(ea), 259(_s),
105(i), 99(c), 107(k),
280(_se), 97(a), 108(l),
115(s), eof(end of file).

Das Wörterbuch sieht dann ausschnitts-
weise so aus:

0-255 ASCII Codes
256 si
257 ir
258 r_
259 _s
260 sid
261 d_
...
285 _sea
286 al
287 ls

Nun stellt der Deco-
der die Originaldaten
wieder her. Er startet
wieder mit dem Wör-
terbuch, das nur die
256 ASCII-Zeichen
enthält. Er liest nach-
einander die Werte
aus den komprimier-
ten Daten und
schreibt die zugehöri-
gen Strings an die

Ausgabe. Das Wörterbuch baut er dabei
genauso auf wie der Encoder. Man sagt
daher auch, dass Encoder und Decoder
synchronisiert sind bzw. in „lockstep“
arbeiten.

Im Detail: Der Decoder liest den er-
sten Wert und benutzt ihn, um einen
String I aus dem Wörterbuch zu lesen.
Die Zeichen dieses Strings werden an die
Ausgabe geschrieben. Als nächstes müß-
te der String Iz ins Wörterbuch einge-
tragen werden. Das Zeichen z des näch-
sten Strings ist nun eigentlich noch un-
bekannt. Aber Sie wissen ja, dass es sich
dabei nur um das erste Zeichen des näch-
sten Strings handeln kann.

Ein Index, den Sie in den Output-
Stream des Encoders schreiben, bean-
sprucht bei einer Wörterbuchgröße von
maximal 4096 Strings 12 Bit. Ist das
Wörterbuch voll, können Sie mit einer
von drei Varianten fortfahren:
• Sie können einfach den ältesten oder
den am längsten nicht mehr benutzten
String mit dem aktuellen String über-
schreiben.
• Oder Sie vergrößern das Wörterbuch
nachträglich. Für Encoder und Decoder
müssen Sie immer die gleiche Strategie
verfolgen.

• Eine andere Methode ist, einfach keine
neuen Strings mehr zuzulassen. Wenn
Sie Strings nie entfernen, können Sie das
Wörterbuch als verkettete Liste spei-
chern und dadurch sehr viel Speicher-
platz sparen. Das Wörterbuch würden
Sie dann so definieren:

struct dictionary
{

int parent, character;
} dict[4096];

Dabei ist parent der Index des alten
Strings und character der Code (0-255)
des letzten ASCII-Zeichens.

Die Wahl der Ersetzungsstrategie ist
sehr entscheidend für die erzielten Kom-
pressionsraten bei LZW-Algorithmen.
Aber auch die Größe des Wörterbuchs
spielt eine große Rolle. Die optimale
Größe hierfür hängt von den Eingangs-
daten ab.

■ Huffman-Codierung
Die Huffman-Codierung arbeitet nicht
mit einem Wörterbuch, sondern mit der
Wahrscheinlichkeit der Eingabezeichen.
Sie ordnet allen Eingabezeichen Bit-
codes unterschiedlicher Länge zu. Diese
Huffman-Codes sind um so kürzer, je
häufiger das Zeichen auftritt.

Zur Darstellung dient der Huffman-
Baum: ein Binärbaum, dessen Blätter
den Eingabezeichen entsprechen und
mit ihren Wahrscheinlichkeiten be-
schriftet sind. Die weiteren Knoten des
Baums sind mit der Summe der Wahr-
scheinlichkeiten der Knoten der
nächsthöheren Ebene markiert. Die
Kanten bezeichnen wir mit den binären
Werten 0 oder 1.

Angenommen, Sie haben die Menge
der Eingabezeichen x(1),...,x(n) mit den
Wahrscheinlichkeiten p(1),...,p(n). So
bauen Sie den Baum auf:
• Suchen Sie die zwei Zeichen x(i) und
x(j) mit den kleinsten Wahrscheinlich-
keiten.
• Bilden Sie einen neuen Knoten K(ij),
und ordnen Sie ihm die Wahrscheinlich-
keit

p(K(ij)) = p(i) + p(j)

zu. Verbinden Sie K(ij) mit x(i) und x(j),
und beschriften Sie die Kanten mit den
Werten 0 und 1.
• Entfernen Sie x(i) und x(j) aus der
Menge der Zeichen, und fügen Sie statt-
dessen K(ij) hinzu.
• Ist noch mehr als ein Element in der
Menge der Eingabezeichen enthalten,
gehen Sie wieder zu Schritt 1.
• Machen Sie den letzten hinzugefügten
Knoten zur Wurzel des Baums. q

Die meisten Kompressionsverfahren ar-

beiten im streaming mode: Sie lesen ein

oder mehrere Byte, behandeln diese und

fahren dann fort, bis die ganzen Daten

verarbeitet sind. Manche Verfahren wie

die Burrows Wheeler Transformation ar-

beiten im block mode. Diese behandeln

größere Datenblöcke separat.

Auch arbeitet die Mehrzahl der Algorith-

men physikalisch. Sie betrachten die Bits

einfach als irgendwelche Daten, ohne de-

ren Bedeutung zu kennen - sie interessiert

es also nicht, ob es sich um Wörter, Pixel

oder Audiodaten handelt. Diese Verfahren

wandeln einfach einen Bit-Stream in einen

kürzeren um. Die einzige Möglichkeit, ei-

nen Sinn aus dem Kodierten herauszufin-

den (und es zu dekodieren), ist die Kennt-

niss über das Kompressionsverfahren. Ein

weiteres wichtiges Kriterium ist die Un-

terscheidung in verlustfreie und verlust-
behaftete Kompressionsverfahren. Ver-

lustfreie Kompressionsverfahren führen

die komprimierten Daten beim Entpacken

wieder exakt in den Urzustand über. Ver-

lustbehaftete Verfahren finden in der Au-

dio-, Bild- und Videokompression Anwen-

dung. Dabei wird ein gewisser Informati-

onsverlust in Kauf genommen – entwe-

der, weil die Information ohnehin über-

flüssig ist oder ihr Wegfall nur einen sehr

geringen Qualitätsverlust für den Men-

schen mit sich bringt. Die besten Beispie-

le hierzu sind die im Internet weit ver-

breiteten JPEG-Bilder, MPEG-Videos und

MPEG-3-Audiodateien.

BEGRIFFE ZUR DATENKOMPRESSION

JE NACH ART der Grafik erreichen Sie mit horizontaler, verti-

kaler oder Zickzack-Abtastung die optimale Kompression.

1
4
7
2
5
8
3
6
9
10

256 April 2000 PC Magazin

P C U N D E R G R O U N D
P R A X I S

Die Skizze oben verdeutlicht die Vor-
gehensweise für einen Text mit den Zei-
chen A (p(A) = 0,2), B (p(B) = 0,1), E (p(E)
= 0,2) und R (p(R) = 0,5). Bauen Sie den
Baum von den Blättern bis zur Wurzel
auf. Die Bitfolgen für die Zeichen erhal-
ten Sie, indem Sie die Baumäste von der
Wurzel bis zu einem Blatt hinab verfol-
gen und sich dabei die Bits merken:

A 000
B 001
E 01
R 1

Dadurch, dass kein Code der Anfang ei-
nes anderen Codes ist, können Sie co-
dierte Wörter wie

EBER 01001011
RABE 100000101

eindeutig decodieren. Dazu muss der
Encoder die Bitcodes oder den Baum
zuvor gespeichert haben.

Wenn Sie komprimierte Daten deco-
dieren wollen, gehen Sie wie folgt vor:
Sie starten bei der Wurzel des Baums als
aktueller Knoten. Dann lesen Sie ein Bit.
Hat es den Wert 0, gehen Sie zum Kno-
ten an der linken Kante Ihres aktuellen
Knotens. Beim Wert 1 gehen Sie an der
rechten Kante entlang.

Diesen Vorgang wiederholen Sie so
lange, bis Sie an einem Blatt des Baums
angelangt sind. Dann geben Sie das ent-
sprechende Zeichen aus und springen
zurück zur Wurzel. In C-Code könnte
das so aussehen:

//towrite enthält Anzahl
//der Outputbytes
while (towrite>0)
{

//Bit lesen
int bit = getcode(1);

if (bit == 0) actnode =
tree[actnode].left;

else actnode =
tree[actnode].right;

if (actnode < 256)
{

//Blatt gefunden!
putc(actnode, g);
towrite–;
actnode = nodes-1;

}
}

Statt alle Zeichenwahrscheinlichkeiten
zu Beginn abzuzählen, können Sie sie
ständig während der Codierung anpas-
sen (Adaptives Huffman Coding). Vor-
teil: Der Encoder passt sich immer den
aktuell auftretenden Wahrscheinlichkei-
ten an und erzielt dadurch bessere Kom-
pressionsraten. Voraussetzung: Die An-
passung muss schnell erfolgen und die
Wahrscheinlichkeiten dürfen sich nicht
zu schnell ändern.

In der Praxis finden Sie bei einem
Packprogramm meist nicht nur einen
Algorithmus, sondern fast immer eine
Kombination aus einem Dictionary-
Packer und einem statistischen Encoder
wie beim Huffman-Algorithmus. Zum
Beispiel können die Indizes, die beim
LZW-Verfahren als Ausgabe entstehen,
als Eingabezeichen für einen Huffman-
Packer dienen. Dadurch erzielen Sie
deutlich bessere Kompressionsraten als
bei der Anwendung nur eines Verfah-
rens.

Um ungewollten Datenverlusten vor-
zubeugen, entwickeln Sie zu jedem
Packer immer sofort auch den zugehöri-
gen Entpacker. Danach sollten Sie beide
einem ausgiebigen Test unterziehen:
Was nützt die kleinste Datei, wenn darin
nicht mehr alle nötigen Informationen
zum Entpacken enthalten sind?

Der LZW-Packer aus dieser Ausgabe
gibt Ihnen viel Raum für eigene Experi-
mente. In der nächsten Ausgabe stellen
wir Ihnen ausgefeilte Algorithmen für
Spezialanwendungen vor. s P E I

EEmmppffeehhlleennsswweerrttee LLiitteerraattuurr::
Salomon, David: Data Compression – The Com-
plete Reference, Springer Verlag 1997,
etwa 80 Mark, ISBN 0-387-98280-9
Nelson, Mark / Gailly, Jean-Loup: The Data Com-
pression Book, M&T Books 1996, etwa 75 Mark,
ISBN 1-55851-434-1

Die Quelltexte sowie die fertig übersetzten Pack-
programme finden Sie auf unserer Heft-CD im Ver-
zeichnis Praxis/PC Underground und im Internet-
Angebot des PC Magazin unter

www.pc-magazin.de/magazin/
➥extras.htm

Klicken Sie unter Online Extras im Menü Praxis auf
das entsprechende Download-Feld.

rle.cpp

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:

#include <stdlib. h>
#include <stdio. h>
#define MINRLE 3

FILE *in,*out;

void main(int argc,char **argv)
{
int c,z,count,i;
if (argc! =4)
{
printf("\nRLE-Encoder/Decoder ");
printf("Beispielprogramm\n");
printf("(w)(c)2000 by Carsten ");
printf("Dachsbacher\n");
printf("\nSyntax: rle (e/d) ");
printf("infile outfile");
exit(1);

}
argv++;
if ((*argv)[0]==' e')
{
// Input und Output Streams
argv ++;
in = fopen(*argv++,"rb");
out = fopen(*argv,"wb");
c=getc(in);
while (c! =EOF)
{
// NÑchstes Zeichen lesen
// und Count erhîhen
count=0;

while (((z=getc(in))==c) &&
(z! =EOF) &&
(count<(255+MINRLE)))

{
count++;

}
count++;
if (count<MINRLE)
{
for (i=0; i<count; i++)
putc(c,out);

} else
{
count-=MINRLE;
for (i=0; i<MINRLE; i++)
putc(c,out);

putc(count,out);
}

c=z;
}
fclose(in);
fclose(out);

} else
if ((*argv)[0]==' d')
{
// Input und Output Streams
argv++;
in=fopen(*argv++,"rb");
out=fopen(*argv,"wb");

c=256; // unbenutzter code

// NÑchstes Zeichen lesen
// und Count erhîhen
count=0;
while ((z=getc(in))! =EOF)
{
putc(z,out);
if (z! =c)
count=0;

count++;
if (count==MINRLE)
{
int wiederholungen=getc(in);
for (int i=0;
i<wiederholungen; i++)
putc(z,out);

count=0;
}
c=z;

}
fclose(in);
fclose(out);

}
}

Dieses Programm packt und entpackt Da-
ten durch Lauflängen-Codierung.

EIN HUFFMAN-BAUM verrät Ihnen den

optimalen Code für die in Ihrer Nachricht

auftretende Buchstabenhäufigkeit.

