5-E]

PC UNDERGROUND

PRAXIS

Effiziente Datenkompression in C

Verlust

Der Sonnenuntergang auf Ihren Urlaubsfotos verliert auch durch kleine Farb-
anderungen nicht an Qualitat — dafur

CARSTEN DACHSBACHER

rafiken in TrueColor-Auflo-
G sung enthalten meist viele Infor-

mationen, die das menschliche
Auge kaum oder gar nicht wahrnimmt.
Diese lassen sich durch Quantisierung
beseitigen. Das Ergebnis verdichten Sie
durch statistische Methoden.

Als ein statistisches Verfahren haben
Sie in der letzten Ausgabe die Huffman-
Codierung kennengelernt. Sie weist den
Eingabesymbolen die optimalen Bitco-
des zu. Haufig auftretende Zeichen wer-
den durch kurze Bitcodes ersetzt, selte-
ne Symbole generieren einen l&ngeren
Ausgabecode.

Die Huffman-Codierung ist aller-
dings nur anwendbar, wenn Sie mit Bit-
codes arbeiten. Ein Bitcode besitzt im-
mer eine ganzzahlige Lange. Was aber,
wenn der optimale Code zu einem Ein-
gabesymbol nicht 3 oder 4, sondern 3.7
Bit lang sein musste?

Solche Codes kénnen Sie weder berech-
nen noch speichern. Dieses Manko be-
hebt die arithmetische Datenkompressi-
on. Sie arbeitet mit einem Wahrschein-
lichkeitsintervall von 0.0 bis 1.0 . Dabei
ist 0.0 noch im Intervall enthalten, 1.0
hingegen nicht.

Symbol Wahrscheinlichkeit Intervall

A 50% [0.0,0.5)
B 30% [05,0.8)
C 20% [0.8,1.0)

230 Mai2000 PC Magazin

Dieses Intervall unterteilen Sie in ein-
zelne Abschnitte, die Sie den Eingabe-
symbolen zuordnen. Je 6fter ein Symbol
auftritt, desto groRer ist sein Teilinter-
vall (vgl. Tabelle links unten).

Mit diesen Informationen kdnnen Sie
den Encoder starten. Die Berechnungen
mit Hilfe der unteren und oberen Inter-
vallgrenzen Low bzw. High sehen in
Pseudocode so aus:

Low=0.0;

High=1.0;
<Fir alle Symbole>:

HighSymbol=

<obere Intervallgrenze

des Eingabezeichens>;
LowSymbol=

<untere Intervallgrenze

des Eingabezeichens>;
Range=High-Low;
Low=Low+Range*LowSymbol;
High=Low+Range*HighSymbol;

}

Mit unseren Beispielwahrscheinlichkei-
ten und der zu codierenden Eingabe
BCAB ergeben sich die (Zwischen-) Er-
gebnisse aus folgender Tabelle:

Symbol Range Low High

Start — 0 1

B 1 0.5 0.8

@ 03 0.74 0.8

A 0.06 0.74 0.77
B 0.03 0.755 0.764

Das Ergebnis dieser Kompression ist
die Zahl 0.755, die als letzter Low-Wert
Ubrig bleibt. Im Decoder priifen Sie die
Wahrscheinlichkeiten und Intervalle der
Symbole nach. Anhand der Zahl, die er
als Eingabe erhélt, identifiziert er das zu
decodierende Zeichen. Er pruft, in wel-
chem Intervall die aktuelle Zahl liegt.

Hat er herausgefunden, um welches
Symbol es sich handelt, vergroRert er die
Zahl bzw. das Intervall. Die VergroRe-
rung ergibt sich durch das Intervall des
identifizierten Symbols:

<Fur alle Symbole>:

<ldentifiziere Symbol durch
Priifung, in welchem Symbol-
intervall die Zahl liegt>
Range=HighSymbol-LowSymbol;
Number=Number-LowSymbol;
Number=Number/Range;

}

In unserem Beispiel lauft die Decodie-
rung wie in der Tabelle dargestellt:

Zahl Zeichen Range Neue Zahl
0.755 B[05,0.8) 03 0.85
085 C[08,10) 02 0.25
025 A[0.0,05) 05 0.5

05 B[0508) 03

Zum Entpacken teilen Sie dem Deco-
der mit, wie viele Zeichen Sie erwarten.
Alternativ kdnnen Sie ein spezielles Da-
teiende-Symbol (EOF) einflihren. Sonst
wirde der Decoder beliebig viele Zei-
chen decodieren und ab einer bestimm-
ten Stelle nur Datenmdill hervorbringen.

So faszinierend es klingt, eine ganze
Datei durch eine einzige Zahl darzustel-
len und zu speichern: Mit wachsendem
Informationsgehalt einer Nachricht
nimmt beim Kompressionsergebnis die
Anzahl der Stellen hinterm Komma zu.
Das erhoht den Speicherplatzbedarf. Ei-
ne komplexe Abhandlung tber den Sinn
des Universums konnen Sie nicht durch
eine einfache Zahl repréasentieren.

Heutige Prozessoren stellen lhnen
keine FlieBkomma-Zahlen mit einer Ge-

nauigkeit zur Verfugung, die fur die
Kompression groRerer Dateien ausrei-
chen wiirde. SchlieBlich kdnnte jede
Rundung bei den Berechnungen das Er-
gebnis verfélschen. Deshalb vertrauen in
Ihren Algorithmen ganz auf Integerzah-
len. Dazu skalieren Sie das Intervall [0.0,
1.0] auf die GroRe einer 16-Bit-Zahl, al-
so auf [0, 65536]. Da Sie mit ganzen Zah-
len arbeiten, entspricht dies dem Inter-
vall [0, 65535].

Damit ergeben sich in unserem Bei-
spiel die in der folgenden Tabelle darge-
stellten Teilintervalle:

Symbol Wahrschein- Intervall Hex-
lichkeit Code
A 50% [0,32768) 0x0000
B 30% [32768,52429) 0x8000
C 20% [52429, 65536) Oxcccd

Oxffff

Durch die Skalierung der Wahr-
scheinlichkeitsintervalle stellen Sie si-
cher, dass Sie als Ergebnis nur 16-Bit-
Zahlen erhalten. Beim Rechnen mit den
beliebig langen Zahlen, die bei der Kom-
pression entstehen kénnen, wenden Sie
einen Trick an: Sie behalten jeweils nur
16 Bit einer Zahl im Speicher, die restli-
chen schieben Sie bei Bedarf nach:

Im temporéren Speicher:

1001 1110 0110 0111

Bits zum Nachschieben:
1100 0011 1010 0101 ...

Sie rechnen beim Ein- und Auspacken
mit jeweils einem Low- und einem
High-Wert. Stimmen beim Codieren
einmal das héchstwertige Bit (Most Sig-
nificant Bit, MSB) des Low- und des
High-Wertes Uberein, &ndert sich dieser
Wert nicht mehr. Sie kdnnen ihn in die
Ausgabedatei schreiben und haben so-
mit wieder ein Bit mehr Platz fur die
weitere Berechnung.

Analog zu gleich bleibenden Bits der
Low- und High-Werte beginnen die
Folgeintervalle in unserem Ein-
fuhrungsbeispiel von [0.74, 0.77] in allen
folgenden Schritten mit 0.7.... Der Un-
terschied ist, dass wir uns hier im Dezi-
malsystem befinden, bei dem eine Ziffer
eine Stelle darstellt— bei der Bitrechnung
ist jeweils ein Bit eine Stelle.

Tritt ein sogenannter ,,Underflow*
auf, wird der Abstand von High und
Low so klein, dass Sie Thn nicht mehr mit
16 Bit darstellen kdnnen. Beispielsweise
liegen die beiden Werte

Low=0.399997,
High=0.4000001,

néher beisammen als der kleinste mit 16
Bit darstellbare Abstand von 1.0/
65536.0.

Ist der Abstand zu klein und unter-
scheiden sich das jeweils hochstwertige
Bit von Low und High, ist eine Spezial-
behandlung nétig. Sonst wiirde der tem-
porére 16-Bit-Wert Uberlaufen. In die-
sem Fall schieben Sie alle Bits in Low
und High um eine Stelle nach links, las-
sen aber die hdchstwertigen Bits stehen.
Das dadurch weggefallene zweithdchst-
wertige Bit merken Sie sich und geben es
dann mit aus, wenn wieder einmal die
Most Significant Bits Ubereinstimmen.

Zuletzt mussen Sie Auftrittswahr-
scheinlichkeiten der einzelnen Eingabe-
symbole und damit die Intervallgrenzen
bestimmen. Wenn Sie alle Auftrittshdu-
figkeiten der Symbole in den zu kom-
primierenden Daten z&hlen und diese
unverdndert lassen, haben Sie ein soge-
nanntes statisches Order-0-Modell.
Wenn Sie zu Beginn der Komprimie-
rung jedoch noch nicht alle Eingabe-
symbole kennen oder das Auftreten der
Symbole innerhalb eines Datenstroms
starken Schwankungen unterliegt, emp-
fiehlt sich eine andere Vorgehensweise.

Im adaptiven Modell, das Sie bei der
arithmetischen Datenkompression rela-
tiv einfach implementieren, aktualisie-
ren Sie stdndig die Auftrittswahrschein-
lichkeiten und somit die Intervalle. Der
Algorithmus passt sich so besser an ver-
anderte Symbolhaufigkeiten in verschie-
denen Teilen des Datenblocks an, eine
verbesserte Kompressionsrate ist die
Folge.

Dazu verwenden Sie zwei Arrays, in
denen Sie die statistischen Daten spei-
chern:

int

/IHaufigkeit der Symbole
SymbolFrequenz[MAXSYM+1],
/IKumulierte Haufigkeiten
SymbolKumuliertfMAXSYM+1];

/[Tabellen zur Umwandlung

Ilvon Zeichen in Intervalle

int SymbolTolInterval[MAXSYM],
IntervallToSymbol[MAXSYM+1];

Den arithmetischen Packer und das Mo-
dell initialisieren Sie fur die Kompressi-
on wie folgt:

/[Encoder

low=0;

high=0x20000;

value=0;

UnderflowBits=0;

/InChars ist Anzahl der
/[Eingabesymbole
SymbolKumuliertinChars]=0;
for (sym=nChars; sym>=1,

PC UNDERGROUND
PRAXIS

sym-)

ch=sym-1,;
SymbolTolntervall[ch]=sym;
IntervallToSymbol[sym]=ch;
SymbolFrequenz[sym]=1;
SymbolKumuliert[sym-1]=
SymbolKumuliert[sym]+
SymbolFrequenz[sym];

}
SymbolFrequenz[0]=0;

Es fehlt noch eine Funktion, die die
Wahrscheinlichkeiten anpasst, wenn
neue Symbole hinzukommen. Erhdhen
Sie den Eintrag SymbolFrequenz[] des
hinzugekommenen Symbols.
Dann erhodhen Sie die kumulierten
Haufigkeiten aller folgenden Zeichen:
i=symbol;
SymbolFrequenz]il++;
while (-i>=0)
SymbolKumuliert[i]++;
Da Sie mit fixen Zahlenbereichen arbei-
ten, dirfen die kumulierten Wahr-
scheinlichkeiten nicht zu gro3 werden.
Ist dies der Fall, skalieren Sie einfach al-
le Haufigkeiten — Sie kénnen Sie zum
Beispiel halbieren:
if (SymbolKumuliert[0]>=
0x3fff)
{
c=0;
for (i=nChars; i>0; i--)
SymbolKumuliert[i]=c;

c+=(SymbolFrequenz]il=
(SymbolFrequenz]ij+1)>1);

}
SymbolKumuliert[0]=c;
}

Nach dem Codieren aller Daten miissen
Sie den Encoder noch ,,flushen®, also al-
le in den 16 Bit gepufferten Bits sowie die
Underflow-Bits ausgeben:

UnderflowBits++;

if (low<0x8000) Output(0);

else Output(1);

[IPuffer flushen

putcode(0,8);
Die noch fehlende Ausgabefunktion
schreibt das angegebene Bit - in unserem
Fall immer das hochstwertige — sowie

die angesammelten Underflow-Bits:
Output(int bit)
{

putcode(bit,1);

for (; UnderflowBits>0;
UnderflowBits—)
putcode('bit,1);

Jetzt kdnnen Sie einen arithmetischen
En- und Decoder implementieren. Auf
der Heft-CD im Bonus-Verzeichnis fin-
den Sie den arithmetischen Datenkom-
primierer Izari.c von Haruhiko Okumu-
ra. Da er wie viele andere patentiert ist,
isteine kommerzielle Nutzung nicht oh-
ne weiteres moglich. Es existieren ©

PC Magazin Mai 2000 231

5)-6

PC UNDERGROUND
PRAXIS

aber patentfreie Modifikationen: soge-
nannte Range-Encoder.

Statistische Packer kommen meist als
letzte Stufe einer Reihe hintereinander
geschalteter Kompressionsalgorithmen
zum Einsatz. Wir zeigen lhnen Verfah-
ren der ersten Stufen, mit denen Sie Bil-
der verlustbehaftet komprimieren. Die
dabei verwendeten Algorithmen dhneln
denen der JPEG-Kompression, teilwei-
se sind sie sogar identisch. Farbinforma-
tionen in einem TrueColor-Bild werden
fiir jedes Pixel durch einen Wert fur Rot,
Griin und Blau (RGB) dargestellt. Es
geniigen drei Komponenten, um jede
vom Menschen wahrnehmbare Farbe
darzustellen. Dabei muss es sich nicht
um Rot, Griin und Blau handeln.

Ein anderes Farbmodell ist das Y1Q-
Modell, das beim US-Farbfernsehen
NTSC zum Einsatz kommt. Das Y steht
fur die Luminanz (Helligkeit). Schwarz-
weil3-Fernseher stellen lediglich diese Y-
Komponente dar. Die Farbinformation
(Chrominanz) ist in den beiden anderen
Komponenten gespeichert. Das Bild un-
ten zeigt, wie ein Farbbild in diese drei
Komponenten zerlegt wird.

[Y][0.299 0.587 0.114] [R]
[11[0.596 -0.275 -0.321] [G]
[Q][0.212 -0.523 0.311] [B]

Dies ist eine Matrix-Vektor-Multiplika-
tion. Sie erhalten die RGB-Werte aus
den YIQ-Werten, indem Sie diese mit
der inversen Matrix multiplizieren:

[R][1 0.956 0.621][Y]

[GI=[1 -0.272 -0.647] [1]

[B][1-1.105 1.702][Q]
Der Grinwert trdgt den groRten Teil zur
Helligkeit bei: 58.7 Prozent. Neben dem
YI1Q-Verfahren gibt es eine &hnliche
Umrechnung von RGB in Luminanz
und Chrominanz, die speziell fur JPEG
und MPEG gedacht ist:

Y=77/25641+150/256+g+
20/256%b;
i=-44/256*1-87/256%g+
131/256*b;
q=131/256*-110/
256%g-
21/256%;

r=y+1.371*q;

g=y-0.698*9-0.336;

b=y+1.732%;
Suchen Sie sich von den beiden obigen
Umrechnungen eine aus. In den Quell-
texten zum Artikel haben wir fur Sie bei-
de Mdglichkeiten implementiert.

Nach dem Umrechnen der Bilddaten

behandeln Sie zu-

nachst jeden der drei
Y1Q-Kanéle separat.
Die folgenden Be-
schreibungen bezie-
hen sich jeweils nur
auf einen dieser
Kanéle: Zunéchst zer-
teilen Sie das Bild in
8x8 Pixel groRe
Blocke, welche Sie
dann der Reihe nach
behandeln.

Auf jeden der

DAS YIQ-VERFAHREN teilt Bildinformationen in Luminanz- und

Chrominanzwerte.

Auf Helligkeitsanderungen reagiert
das menschliche Auge sensibler als auf
Farbanderungen oder Anderungen der
Séttigung. Deshalb brauchen Sie fur die
Chrominanzwerte nicht so viel Spei-
cherplatz zu investieren wie fur die Hel-
ligkeitsinformationen. Diesen Vorteil
macht sich auch das amerikanische Fern-
sehen bei der Y1Q-Ubertragung zunut-
ze. Dabei wird die Y-Komponenten mit
einer Bandbreite von 4 MHz, | mit 1,5
MHZz und Q mit 0,6 MHz Ubertragen.

Zum Umrechnenvon RGB nach YIQ
verwenden Sie die Formel

232 Mai 2000 PC Magazin

Blocke wenden Sie
die Diskrete Cosinus-
Transformation
(DCT) an. Die fur Sie
wichtige Formel fir einen 8x8-Pixel-
Block lautet:

Dabei sind CJi][j] die Transformati-
onskoeffizienten, P[x][y] die Pixelwerte
des 8x8-Blocks (die Intensitét des Pixels

olil=verefjoy 3 Adb)e
cos(((Zx + 1)in)/ 16) Dcos(((Zy +1)jn)/ 16)
mit [=<}
und C[i| =1/sart(2), fallsi=0
C[i] =1 sonst

DIE PIXEL innerhalb eines 8x8-Blocks un-
terscheiden sich meist nicht sehr stark.

im aktuellen Farbkanal) und G[i][j] die
transformierten Daten.

Sie kénnen Sich die Pixel als Punkte
im dreidimensionalen Raum vorstellen,
deren x- und y-Koordinate durch ihre
Position im Bild und ihre z-Koordinate
durch den entsprechenden Intensitats-
wert gegeben ist. Die 8x8 Pixel sind dann
Punkte auf einer Flache.

Als Ergebnis erhalten Sie ein quadra-
tisches Array mit 8x8 Realzahlen, die die
Koeffizienten von Uberlagerten zweidi-
mensionalen Sinusfunktionen darstel-
len. Diese wiirden Sie benétigen, um die
Oberflache zu rekonstruieren. Fir eine
eher flache Oberflache sind die meisten
Glil[j]-Werte gleich Null. Bei stark os-
zillierenden Flachen sind hingegen viele
Werte ungleich Null.

Der linke obere Abschnitt von G[i][j]
beschreibt die Beitrége niederfrequenter
Sinusfunktionen zur Oberflache. Die
Werte in der rechten unteren Halfte sind
das Resultat héherfrequenter Funktio-
nen. Diese Interpretation deutet die
DCT als ,,harmonischen Analysator.
Die dazu inverse DCT (IDTC) kénnen
Sie als ,,harmonischen Synthesizer be-
trachten.

Der erste Wert g[0][0] ist der Koeffi-
zient der Sinusfunktion, die mit einer
Frequenz von Null schwingt. Daher ist
g[0][0] die Basishelligkeit des analysier-
ten 8x8-Blocks. Dieser Wert heif3t auch
DC-Koeffizient. Da ein Bild innerhalb
eines 8x8-Blocks normalerweise keine
starken Veranderungen aufweist, sind
die anderen 63 Werte (die AC-Koeffizi-
enten) im Verhdltnis deutlich kleiner
(siehe Bild rechts oben).

Ein 8x8-Block kdnnte so aussehen:
136 131 135 139 135 138 139 145
139 146 132 146 135 133 138 134
148 145 140 144 148 132 134 149
149 145 142 132 137 137 139 143
149 140 132 139 150 146 145 130
141 137 144 145 131 133 134 149
132 143 146 146 133 146 144 135
139 165 143 144 132 134 135 143

PC UNDERGROUND
PRAXIS

Das Resultat der DCT ist:
1118 6 56 7 4-1 5

~B N
[SR RARN

Diese Interpretation der DCT hilft da-
bei, die Bildinformationen, deren Fehlen
dem Betrachter nicht oder kaum auffal-
len wird, zu reduzieren. Dazu verrin-
gern Sie die GroRe bzw. die Genauigkeit
der 64 Zahlen — vor allem derjenigen in
der unteren rechten Halfte.

Die Bildinformationen reduzieren Sie
mit einer Quantisierungsmatrix Q. Die-
se Matrix enthélt einen Faktor fur jeden
der 64 G[i][j]-Werte. Sie teilen nun ein-
fach jeden Wert G[i][j] durch QIi][j]. Da
Sie mit ganzzahligen Werten rechnen,
entstehen dadurch noch mehr Werte
gleich Null, die Sie eventuell nicht mehr
speichern missen. Die 64 Eintrage der
Quantisierungsmatrix stellen den Da-
tenverlust dar, den Sie beim Kompri-
mieren in Kauf nehmen. Eine geschickte
Wahl der Koeffizienten von Q ist also
fur die spétere Bildqualitdt entschei-
dend. Eine mdgliche Matrix wére

static int
quantization_matrix[64]=

{
16,11,10,16,24,40,51,61,
12,12,14,19,26,58,60,55,
14,13,16,24,40,57,69,56,
14,17,22,29,51,87,80,62,
18,22,37,56,68,109,103,77,
24,35,55,64,81,104,113,92,
49,64,78,87,103,121,120,101,
72,92,95,98,112,100,103,99,

k

Nach einer Quantisierung konnte das
obige Resultat einer DCT so aussehen:
11182000000

0000O0O0O0O0
200-10000
00-300000
0000O0O0O0O
00000000
0000O0O0O0O0
0000O0O0O0O

Es bleibt eine ganze Reihe Nullen tbrig.
Das sind redundante Daten, die Sie mit
einer geeigneten Codierung speichern
mussen.

Dazu sortieren Sie den Block zunéchst
um, indem Sie die Felder im Zick-Zack-
Verfahren von links oben nach rechts
unten durchlaufen:

static int zigzag_table [64]=

{
0,1,8,16,9,2,3,10,17,24,32,
25,18,11,4,5,12,19,26,33,
40,48,41,34,27,20,13,6,7,
14,21,28,35,42,49,56,57,50,

234 Mai 2000 PC Magazin

43,36,29,22,15,23,30,37,44,
51,58,59,52,45,38,31,39,46,
53,60,61,54,47,55,62,63
kh
for (i=0; i<64; i++)
block_neufi]=
block|zigzag_table[i]];
Dadurch erreichen Sie, dass die Koeffi-
zienten der Frequenz in aufsteigender
Reihenfolge im eindimensionalen
block_neu-Array stehen. Suchen Sie den
letzten Wert in block_neu, der ungleich
Null ist. Speichern Sie bis dahin alle
Werte, und hédngen Sie ein spezielles
Symbol an. Dieses dient als Markierung
und zeigt beim Decodieren an, dass fur
den Block nicht mehr Koeffizienten ge-
speichert sind:
for (j=63; j'=-1; j-)
if (block[j]) break;
for (i=0; i<=j; i++)
<Schreibe block]i]>;
<Schreibe BlockendeMarkierung>;

Die Ausgabedaten der Quantisierung
kénnen Sie dem bereits vorgestellten
arithmetischen Encoder tUbergeben, der
sich um die statistische Kompression
kimmert. Dazu muss er die Anzahl der
verschiedenen Symbole kennen. Um das
herauszufinden, puffern Sie die Werte,
die Sie nach der Quantisierung und der
Zick-Zack-Transformierung erhalten,
erst einmal im Hauptspeicher. Sobald
Sie wissen, mit wie vielen Symbolen Sie
es zu tun haben, Ubergeben Sie alle Da-
ten an den Encoder.

Da Sie eine Quantisierung durchge-
fuhrt haben, kdnnen Sie die Originalda-
ten nicht mehr exakt rekonstruieren.
Aber je nach Quantisierungsmatrix er-
halten Sie eine relativ gute Naherung da-
von.

Dazu lesen Sie alle Daten, die Sie von
einem Block gespeichert haben. Den
Rest des Blocks fullen Sie mit Nullen
auf. Anschlief’end bringen Sie alle Wer-
te wieder in die richtige Reihenfolge, die
Sie durch die Zick-Zack-Transformati-
on durcheinandergebracht haben.

Nun mussen Sie die Quantisierung
rickgangig machen. Dieser Vorgang
heiBt Normalisierung. Dabei multipli-
zieren Sie die gelesenen Werte mit dem
entsprechenden Eintrag der Quantisie-
rungsmatrix Q. Achten Sie darauf, dass
Sie dieselbe Matrix wie beim Quantisie-
ren verwenden. Sie erhalten die Fre-
guenzkoeffizienten, die Ihneneine DCT
geliefert hat. Darauf setzen Sie die IDCT
an, um wieder die Pixeldaten zu bekom-
men:

Speziell die IDCT kénnen Sie durch
mathematische Umformungen so ge-

stalten, dass sie leichter zu berechnen ist.
Den Code finden Sie auf der Heft-CD.
Durch die IDCT kennen Sie die Pixelin-

=403 5 cliflcelf]e
cos(((Zx +1)in)/ 16) Dcos(((Zy + 1)jn)/ 16)
it ~cfoci]
und C[i] = l/sqrt(Z), fallsi=0
C[i] =1 sonst

tensitaten, die denen des Originalbildes
—je nach Quantisierung — mehr oder we-
niger gleichen. Was bei einer tbertriebe-
nen Quantisierung passiert, sehen Sie im
Bild am rechten Rand.

Verfahren Sie
mit jedem der
Y1Q-Kanéle
wie beschrie-
ben, und kom-
primieren Sie
diese separat.
Den I- und den
Q-Kanal
(Chrominanz-
Werte) kdnnen
Sie starker

ZU STARKE
Quantisierung
erzeugt die vom
JPEG-Verfahren
bekannten
Block-Artefakte.

guantisieren. Bei der JPEG-Kompressi-
on wird die Auflésung dieser Kanéle so-
gar halbiert oder geviertelt. Dadurch er-
reichen Sie héhere Kompressionsraten
und sind fast an der Leistungsfahigkeit
von JPEG angelangt PEI

Die Quelltexte sowie die fertig ibersetzten Pack-
programme finden Sie auf unserer Heft-CD im Ver-
zeichnis Praxis/PC-Underground und auf unserer
Website unter

WWW.pc-

magazin.de/magazin/extras.htm
Klicken Sie unter Online Extras im Mend Praxis auf
das entsprechende Download-Feld.

Weiterfihrende Literatur:

Salomon, David: Data Compression — The Comple-
te Reference, Springer Verlag 1997, ISBN 0-387-
98280-9, etwa 80 Mark

Nelson, Mark / Gailly, Jean-Loup: The Data Com-
pression Book, M&T Books 1996, ISBN 1-55851-434-1,
etwa 75 Mark

Foley, van Dam, Feiner, Hughes, Phillips: Grundla-
gen der Computergrafik, Addison Wesley 1994,
ISBN 3-89319-647-1, etwa 100 Mark

