
230 Mai 2000 PC Magazin

P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R

Grafiken in TrueColor-Auflö-
sung enthalten meist viele Infor-
mationen, die das menschliche

Auge kaum oder gar nicht wahrnimmt.
Diese lassen sich durch Quantisierung
beseitigen. Das Ergebnis verdichten Sie
durch statistische Methoden.

Als ein statistisches Verfahren haben
Sie in der letzten Ausgabe die Huffman-
Codierung kennengelernt. Sie weist den
Eingabesymbolen die optimalen Bitco-
des zu. Häufig auftretende Zeichen wer-
den durch kurze Bitcodes ersetzt, selte-
ne Symbole generieren einen längeren
Ausgabecode.

Die Huffman-Codierung ist aller-
dings nur anwendbar, wenn Sie mit Bit-
codes arbeiten. Ein Bitcode besitzt im-
mer eine ganzzahlige Länge. Was aber,
wenn der optimale Code zu einem Ein-
gabesymbol nicht 3 oder 4, sondern 3.7
Bit lang sein müsste?

■ Arithmetische
Datenkompression
Solche Codes können Sie weder berech-
nen noch speichern. Dieses Manko be-
hebt die arithmetische Datenkompressi-
on. Sie arbeitet mit einem Wahrschein-
lichkeitsintervall von 0.0 bis 1.0 . Dabei
ist 0.0 noch im Intervall enthalten, 1.0
hingegen nicht.

Dieses Intervall unterteilen Sie in ein-
zelne Abschnitte, die Sie den Eingabe-
symbolen zuordnen. Je öfter ein Symbol
auftritt, desto größer ist sein Teilinter-
vall (vgl. Tabelle links unten).

Mit diesen Informationen können Sie
den Encoder starten. Die Berechnungen
mit Hilfe der unteren und oberen Inter-
vallgrenzen Low bzw. High sehen in
Pseudocode so aus:

Low=0.0;
High=1.0;
<Für alle Symbole>:
{

HighSymbol=
<obere Intervallgrenze
des Eingabezeichens>;

LowSymbol=
<untere Intervallgrenze
des Eingabezeichens>;

Range=High-Low;
Low=Low+Range*LowSymbol;
High=Low+Range*HighSymbol;

}

Mit unseren Beispielwahrscheinlichkei-
ten und der zu codierenden Eingabe
BCAB ergeben sich die (Zwischen-) Er-
gebnisse aus folgender Tabelle:

Das Ergebnis dieser Kompression ist
die Zahl 0.755, die als letzter Low-Wert
übrig bleibt. Im Decoder prüfen Sie die
Wahrscheinlichkeiten und Intervalle der
Symbole nach. Anhand der Zahl, die er
als Eingabe erhält, identifiziert er das zu
decodierende Zeichen. Er prüft, in wel-
chem Intervall die aktuelle Zahl liegt.

Hat er herausgefunden, um welches
Symbol es sich handelt, vergrößert er die
Zahl bzw. das Intervall. Die Vergröße-
rung ergibt sich durch das Intervall des
identifizierten Symbols:

<Für alle Symbole>:
{

<Identifiziere Symbol durch
Prüfung, in welchem Symbol-
intervall die Zahl liegt>
Range=HighSymbol-LowSymbol;
Number=Number-LowSymbol;
Number=Number/Range;

}

In unserem Beispiel läuft die Decodie-
rung wie in der Tabelle dargestellt:

Zum Entpacken teilen Sie dem Deco-
der mit, wie viele Zeichen Sie erwarten.
Alternativ können Sie ein spezielles Da-
teiende-Symbol (EOF) einführen. Sonst
würde der Decoder beliebig viele Zei-
chen decodieren und ab einer bestimm-
ten Stelle nur Datenmüll hervorbringen.

So faszinierend es klingt, eine ganze
Datei durch eine einzige Zahl darzustel-
len und zu speichern: Mit wachsendem
Informationsgehalt einer Nachricht
nimmt beim Kompressionsergebnis die
Anzahl der Stellen hinterm Komma zu.
Das erhöht den Speicherplatzbedarf. Ei-
ne komplexe Abhandlung über den Sinn
des Universums können Sie nicht durch
eine einfache Zahl repräsentieren.

Heutige Prozessoren stellen Ihnen
keine Fließkomma-Zahlen mit einer Ge-

Effiziente Datenkompression in C

Gewinnbringender
Verlust
Der Sonnenuntergang auf Ihren Urlaubsfotos verliert auch durch kleine Farb-
änderungen nicht an Qualität – dafür gewinnen Sie Speicherplatz.

SYMBOLINTERVALLE

Symbol Wahrscheinlichkeit Intervall
A 50% [0.0, 0.5)
B 30% [0.5, 0.8)
C 20% [0.8, 1.0)

CODIERUNG

Symbol Range Low High
Start — 0 1
B 1 0.5 0.8
C 0.3 0.74 0.8
A 0.06 0.74 0.77
B 0.03 0.755 0.764

DECODIERUNG

Zahl Zeichen Range Neue Zahl
0.755 B [0.5, 0.8) 0.3 0.85
0.85 C [0.8, 1.0) 0.2 0.25
0.25 A [0.0, 0.5) 0.5 0.5
0.5 B [0.5, 0.8) 0.3 ...

PC Magazin Mai 2000 231

P C U N D E R G R O U N D
P R A X I S

nauigkeit zur Verfügung, die für die
Kompression größerer Dateien ausrei-
chen würde. Schließlich könnte jede
Rundung bei den Berechnungen das Er-
gebnis verfälschen. Deshalb vertrauen in
Ihren Algorithmen ganz auf Integerzah-
len. Dazu skalieren Sie das Intervall [0.0,
1.0] auf die Größe einer 16-Bit-Zahl, al-
so auf [0, 65536]. Da Sie mit ganzen Zah-
len arbeiten, entspricht dies dem Inter-
vall [0, 65535].

Damit ergeben sich in unserem Bei-
spiel die in der folgenden Tabelle darge-
stellten Teilintervalle:

Durch die Skalierung der Wahr-
scheinlichkeitsintervalle stellen Sie si-
cher, dass Sie als Ergebnis nur 16-Bit-
Zahlen erhalten. Beim Rechnen mit den
beliebig langen Zahlen, die bei der Kom-
pression entstehen können, wenden Sie
einen Trick an: Sie behalten jeweils nur
16 Bit einer Zahl im Speicher, die restli-
chen schieben Sie bei Bedarf nach:

Im temporären Speicher:
1001 1110 0110 0111
Bits zum Nachschieben:
1100 0011 1010 0101 ...

Sie rechnen beim Ein- und Auspacken
mit jeweils einem Low- und einem
High-Wert. Stimmen beim Codieren
einmal das höchstwertige Bit (Most Sig-
nificant Bit, MSB) des Low- und des
High-Wertes überein, ändert sich dieser
Wert nicht mehr. Sie können ihn in die
Ausgabedatei schreiben und haben so-
mit wieder ein Bit mehr Platz für die
weitere Berechnung.

Analog zu gleich bleibenden Bits der
Low- und High-Werte beginnen die
Folgeintervalle in unserem Ein-
führungsbeispiel von [0.74, 0.77] in allen
folgenden Schritten mit 0.7.... Der Un-
terschied ist, dass wir uns hier im Dezi-
malsystem befinden, bei dem eine Ziffer
eine Stelle darstellt – bei der Bitrechnung
ist jeweils ein Bit eine Stelle.

Tritt ein sogenannter „Underflow“
auf, wird der Abstand von High und
Low so klein, dass Sie Ihn nicht mehr mit
16 Bit darstellen können. Beispielsweise
liegen die beiden Werte

Low=0.399997;
High=0.4000001;

näher beisammen als der kleinste mit 16
Bit darstellbare Abstand von 1.0/
65536.0.

Ist der Abstand zu klein und unter-
scheiden sich das jeweils höchstwertige
Bit von Low und High, ist eine Spezial-
behandlung nötig. Sonst würde der tem-
poräre 16-Bit-Wert überlaufen. In die-
sem Fall schieben Sie alle Bits in Low
und High um eine Stelle nach links, las-
sen aber die höchstwertigen Bits stehen.
Das dadurch weggefallene zweithöchst-
wertige Bit merken Sie sich und geben es
dann mit aus, wenn wieder einmal die
Most Significant Bits übereinstimmen.

Zuletzt müssen Sie Auftrittswahr-
scheinlichkeiten der einzelnen Eingabe-
symbole und damit die Intervallgrenzen
bestimmen. Wenn Sie alle Auftrittshäu-
figkeiten der Symbole in den zu kom-
primierenden Daten zählen und diese
unverändert lassen, haben Sie ein soge-
nanntes statisches Order-0-Modell.
Wenn Sie zu Beginn der Komprimie-
rung jedoch noch nicht alle Eingabe-
symbole kennen oder das Auftreten der
Symbole innerhalb eines Datenstroms
starken Schwankungen unterliegt, emp-
fiehlt sich eine andere Vorgehensweise.

Im adaptiven Modell, das Sie bei der
arithmetischen Datenkompression rela-
tiv einfach implementieren, aktualisie-
ren Sie ständig die Auftrittswahrschein-
lichkeiten und somit die Intervalle. Der
Algorithmus passt sich so besser an ver-
änderte Symbolhäufigkeiten in verschie-
denen Teilen des Datenblocks an, eine
verbesserte Kompressionsrate ist die
Folge.

Dazu verwenden Sie zwei Arrays, in
denen Sie die statistischen Daten spei-
chern:

int
//Häufigkeit der Symbole
SymbolFrequenz[MAXSYM+1],
//Kumulierte Häufigkeiten
SymbolKumuliert[MAXSYM+1];

//Tabellen zur Umwandlung
//von Zeichen in Intervalle
int SymbolToIntervall[MAXSYM],

IntervallToSymbol[MAXSYM+1];

Den arithmetischen Packer und das Mo-
dell initialisieren Sie für die Kompressi-
on wie folgt:

//Encoder
low=0;
high=0x20000;
value=0;
UnderflowBits=0;
//nChars ist Anzahl der
//Eingabesymbole
SymbolKumuliert[nChars]=0;
for (sym=nChars; sym>=1;

sym–)
{

ch=sym-1;
SymbolToIntervall[ch]=sym;
IntervallToSymbol[sym]=ch;
SymbolFrequenz[sym]=1;
SymbolKumuliert[sym-1]=

SymbolKumuliert[sym]+
SymbolFrequenz[sym];

}
SymbolFrequenz[0]=0;

Es fehlt noch eine Funktion, die die
Wahrscheinlichkeiten anpasst, wenn
neue Symbole hinzukommen. Erhöhen
Sie den Eintrag SymbolFrequenz[] des
hinzugekommenen Symbols.

Dann erhöhen Sie die kumulierten
Häufigkeiten aller folgenden Zeichen:

i=symbol;
SymbolFrequenz[i]++;
while (–i>=0)

SymbolKumuliert[i]++;

Da Sie mit fixen Zahlenbereichen arbei-
ten, dürfen die kumulierten Wahr-
scheinlichkeiten nicht zu groß werden.
Ist dies der Fall, skalieren Sie einfach al-
le Häufigkeiten – Sie können Sie zum
Beispiel halbieren:

if (SymbolKumuliert[0]>=
0x3fff)

{
c=0;
for (i=nChars; i>0; i--)
{

SymbolKumuliert[i]=c;
c+=(SymbolFrequenz[i]=

(SymbolFrequenz[i]+1)>1);
}
SymbolKumuliert[0]=c;

}

Nach dem Codieren aller Daten müssen
Sie den Encoder noch „flushen“, also al-
le in den 16 Bit gepufferten Bits sowie die
Underflow-Bits ausgeben:

UnderflowBits++;
if (low<0x8000) Output(0);
else Output(1);
//Puffer flushen
putcode(0,8);

Die noch fehlende Ausgabefunktion
schreibt das angegebene Bit - in unserem
Fall immer das höchstwertige – sowie
die angesammelten Underflow-Bits:

Output(int bit)
{

putcode(bit,1);
for (; UnderflowBits>0;

UnderflowBits–)
putcode(!bit,1);

}

Jetzt können Sie einen arithmetischen
En- und Decoder implementieren. Auf
der Heft-CD im Bonus-Verzeichnis fin-
den Sie den arithmetischen Datenkom-
primierer lzari.c von Haruhiko Okumu-
ra. Da er wie viele andere patentiert ist,
ist eine kommerzielle Nutzung nicht oh-
ne weiteres möglich. Es existieren q

INTEGERINTERVALLE

Symbol Wahrschein- Intervall Hex-
lichkeit Code

A 50% [0, 32768) 0x0000

B 30% [32768, 52429) 0x8000

C 20% [52429, 65536) 0xcccd

0xffff

232 Mai 2000 PC Magazin

P C U N D E R G R O U N D
P R A X I S

aber patentfreie Modifikationen: soge-
nannte Range-Encoder.

■ Bildkompression à la JPEG
Statistische Packer kommen meist als
letzte Stufe einer Reihe hintereinander
geschalteter Kompressionsalgorithmen
zum Einsatz. Wir zeigen Ihnen Verfah-
ren der ersten Stufen, mit denen Sie Bil-
der verlustbehaftet komprimieren. Die
dabei verwendeten Algorithmen ähneln
denen der JPEG-Kompression, teilwei-
se sind sie sogar identisch. Farbinforma-
tionen in einem TrueColor-Bild werden
für jedes Pixel durch einen Wert für Rot,
Grün und Blau (RGB) dargestellt. Es
genügen drei Komponenten, um jede
vom Menschen wahrnehmbare Farbe
darzustellen. Dabei muss es sich nicht
um Rot, Grün und Blau handeln.

Ein anderes Farbmodell ist das YIQ-
Modell, das beim US-Farbfernsehen
NTSC zum Einsatz kommt. Das Y steht
für die Luminanz (Helligkeit). Schwarz-
weiß-Fernseher stellen lediglich diese Y-
Komponente dar. Die Farbinformation
(Chrominanz) ist in den beiden anderen
Komponenten gespeichert. Das Bild un-
ten zeigt, wie ein Farbbild in diese drei
Komponenten zerlegt wird.

Auf Helligkeitsänderungen reagiert
das menschliche Auge sensibler als auf
Farbänderungen oder Änderungen der
Sättigung. Deshalb brauchen Sie für die
Chrominanzwerte nicht so viel Spei-
cherplatz zu investieren wie für die Hel-
ligkeitsinformationen. Diesen Vorteil
macht sich auch das amerikanische Fern-
sehen bei der YIQ-Übertragung zunut-
ze. Dabei wird die Y-Komponenten mit
einer Bandbreite von 4 MHz, I mit 1,5
MHz und Q mit 0,6 MHz übertragen.

Zum Umrechnen von RGB nach YIQ
verwenden Sie die Formel

[Y] [0.299 0.587 0.114] [R]
[I]=[0.596 -0.275 -0.321] [G]
[Q] [0.212 -0.523 0.311] [B]

Dies ist eine Matrix-Vektor-Multiplika-
tion. Sie erhalten die RGB-Werte aus
den YIQ-Werten, indem Sie diese mit
der inversen Matrix multiplizieren:

[R] [1 0.956 0.621] [Y]
[G]=[1 -0.272 -0.647] [I]
[B] [1 -1.105 1.702] [Q]

Der Grünwert trägt den größten Teil zur
Helligkeit bei: 58.7 Prozent. Neben dem
YIQ-Verfahren gibt es eine ähnliche
Umrechnung von RGB in Luminanz
und Chrominanz, die speziell für JPEG
und MPEG gedacht ist:

y=77/256*r+150/256*g+
29/256*b;

i=-44/256*r-87/256*g+
131/256*b;

q=131/256*r-110/
256*g-

21/256*b;

r=y+1.371*q;
g=y-0.698*q-0.336*i;
b=y+1.732*i;

Suchen Sie sich von den beiden obigen
Umrechnungen eine aus. In den Quell-
texten zum Artikel haben wir für Sie bei-
de Möglichkeiten implementiert.

Nach dem Umrechnen der Bilddaten
behandeln Sie zu-
nächst jeden der drei
YIQ-Kanäle separat.
Die folgenden Be-
schreibungen bezie-
hen sich jeweils nur
auf einen dieser
Kanäle: Zunächst zer-
teilen Sie das Bild in
8x8 Pixel große
Blöcke, welche Sie
dann der Reihe nach
behandeln.

Auf jeden der
Blöcke wenden Sie
die Diskrete Cosinus-
Transformation
(DCT) an. Die für Sie

wichtige Formel für einen 8x8-Pixel-
Block lautet:

Dabei sind C[i][j] die Transformati-
onskoeffizienten, P[x][y] die Pixelwerte
des 8x8-Blocks (die Intensität des Pixels

im aktuellen Farbkanal) und G[i][j] die
transformierten Daten.

Sie können Sich die Pixel als Punkte
im dreidimensionalen Raum vorstellen,
deren x- und y-Koordinate durch ihre
Position im Bild und ihre z-Koordinate
durch den entsprechenden Intensitäts-
wert gegeben ist. Die 8x8 Pixel sind dann
Punkte auf einer Fläche.

Als Ergebnis erhalten Sie ein quadra-
tisches Array mit 8x8 Realzahlen, die die
Koeffizienten von überlagerten zweidi-
mensionalen Sinusfunktionen darstel-
len. Diese würden Sie benötigen, um die
Oberfläche zu rekonstruieren. Für eine
eher flache Oberfläche sind die meisten
G[i][j]-Werte gleich Null. Bei stark os-
zillierenden Flächen sind hingegen viele
Werte ungleich Null.

Der linke obere Abschnitt von G[i][j]
beschreibt die Beiträge niederfrequenter
Sinusfunktionen zur Oberfläche. Die
Werte in der rechten unteren Hälfte sind
das Resultat höherfrequenter Funktio-
nen. Diese Interpretation deutet die
DCT als „harmonischen Analysator“.
Die dazu inverse DCT (IDTC) können
Sie als „harmonischen Synthesizer“ be-
trachten.

Der erste Wert g[0][0] ist der Koeffi-
zient der Sinusfunktion, die mit einer
Frequenz von Null schwingt. Daher ist
g[0][0] die Basishelligkeit des analysier-
ten 8x8-Blocks. Dieser Wert heißt auch
DC-Koeffizient. Da ein Bild innerhalb
eines 8x8-Blocks normalerweise keine
starken Veränderungen aufweist, sind
die anderen 63 Werte (die AC-Koeffizi-
enten) im Verhältnis deutlich kleiner
(siehe Bild rechts oben).

Ein 8x8-Block könnte so aussehen:
136 131 135 139 135 138 139 145
139 146 132 146 135 133 138 134
148 145 140 144 148 132 134 149
149 145 142 132 137 137 139 143
149 140 132 139 150 146 145 130
141 137 144 145 131 133 134 149
132 143 146 146 133 146 144 135
139 165 143 144 132 134 135 143

DAS YIQ-VERFAHREN teilt Bildinformationen in Luminanz- und
Chrominanzwerte.

DIE PIXEL innerhalb eines 8x8-Blocks un-
terscheiden sich meist nicht sehr stark.

G i j C i j P x y

x i y j

mit C i j C i C j

und C i sqrt falls i

C i sonst

yx

[][] = ∗ [][]∗ [][]∗

+()()()∗ +()()()
[][] = []∗ []
[] = () =

[] =

==
∑∑1 4

2 1 16 2 1 16

1 2 0

1

0

7

0

7

/

cos / cos /

/ ,

π π

q

234 Mai 2000 PC Magazin

P C U N D E R G R O U N D
P R A X I S

Das Resultat der DCT ist:
1118 6 5 -6 7 4 -1 -5

-2 0 4 5 7 -5 -7 2
-10 -7 -5 -12 -2 6 2 -7

-4 -8 -33 3 -4 6 2 -3
-3 -4 4 11 0 0 4 6

3 -4 3 -6 -7 -2 7 2
0 -2 6 -11 15 -3 8 4
7 -3 -10 12 0 -1 -4 3

Diese Interpretation der DCT hilft da-
bei, die Bildinformationen, deren Fehlen
dem Betrachter nicht oder kaum auffal-
len wird, zu reduzieren. Dazu verrin-
gern Sie die Größe bzw. die Genauigkeit
der 64 Zahlen – vor allem derjenigen in
der unteren rechten Hälfte.

Die Bildinformationen reduzieren Sie
mit einer Quantisierungsmatrix Q. Die-
se Matrix enthält einen Faktor für jeden
der 64 G[i][j]-Werte. Sie teilen nun ein-
fach jeden Wert G[i][j] durch Q[i][j]. Da
Sie mit ganzzahligen Werten rechnen,
entstehen dadurch noch mehr Werte
gleich Null, die Sie eventuell nicht mehr
speichern müssen. Die 64 Einträge der
Quantisierungsmatrix stellen den Da-
tenverlust dar, den Sie beim Kompri-
mieren in Kauf nehmen. Eine geschickte
Wahl der Koeffizienten von Q ist also
für die spätere Bildqualität entschei-
dend. Eine mögliche Matrix wäre

static int
quantization_matrix[64]=

{
16,11,10,16,24,40,51,61,
12,12,14,19,26,58,60,55,
14,13,16,24,40,57,69,56,
14,17,22,29,51,87,80,62,
18,22,37,56,68,109,103,77,
24,35,55,64,81,104,113,92,
49,64,78,87,103,121,120,101,
72,92,95,98,112,100,103,99,

};

Nach einer Quantisierung könnte das
obige Resultat einer DCT so aussehen:

1118 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0

-2 0 0 -1 0 0 0 0
0 0 -3 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Es bleibt eine ganze Reihe Nullen übrig.
Das sind redundante Daten, die Sie mit
einer geeigneten Codierung speichern
müssen.

Dazu sortieren Sie den Block zunächst
um, indem Sie die Felder im Zick-Zack-
Verfahren von links oben nach rechts
unten durchlaufen:

static int zigzag_table [64]=
{

0,1,8,16,9,2,3,10,17,24,32,
25,18,11,4,5,12,19,26,33,
40,48,41,34,27,20,13,6,7,
14,21,28,35,42,49,56,57,50,

43,36,29,22,15,23,30,37,44,
51,58,59,52,45,38,31,39,46,
53,60,61,54,47,55,62,63

};

for (i=0; i<64; i++)
block_neu[i]=

block[zigzag_table[i]];

Dadurch erreichen Sie, dass die Koeffi-
zienten der Frequenz in aufsteigender
Reihenfolge im eindimensionalen
block_neu-Array stehen. Suchen Sie den
letzten Wert in block_neu, der ungleich
Null ist. Speichern Sie bis dahin alle
Werte, und hängen Sie ein spezielles
Symbol an. Dieses dient als Markierung
und zeigt beim Decodieren an, dass für
den Block nicht mehr Koeffizienten ge-
speichert sind:

for (j=63; j!=-1; j–)
if (block[j]) break;

for (i=0; i<=j; i++)
<Schreibe block[i]>;

<Schreibe BlockendeMarkierung>;

Die Ausgabedaten der Quantisierung
können Sie dem bereits vorgestellten
arithmetischen Encoder übergeben, der
sich um die statistische Kompression
kümmert. Dazu muss er die Anzahl der
verschiedenen Symbole kennen. Um das
herauszufinden, puffern Sie die Werte,
die Sie nach der Quantisierung und der
Zick-Zack-Transformierung erhalten,
erst einmal im Hauptspeicher. Sobald
Sie wissen, mit wie vielen Symbolen Sie
es zu tun haben, übergeben Sie alle Da-
ten an den Encoder.

Da Sie eine Quantisierung durchge-
führt haben, können Sie die Originalda-
ten nicht mehr exakt rekonstruieren.
Aber je nach Quantisierungsmatrix er-
halten Sie eine relativ gute Näherung da-
von.

Dazu lesen Sie alle Daten, die Sie von
einem Block gespeichert haben. Den
Rest des Blocks füllen Sie mit Nullen
auf. Anschließend bringen Sie alle Wer-
te wieder in die richtige Reihenfolge, die
Sie durch die Zick-Zack-Transformati-
on durcheinandergebracht haben.

Nun müssen Sie die Quantisierung
rückgängig machen. Dieser Vorgang
heißt Normalisierung. Dabei multipli-
zieren Sie die gelesenen Werte mit dem
entsprechenden Eintrag der Quantisie-
rungsmatrix Q. Achten Sie darauf, dass
Sie dieselbe Matrix wie beim Quantisie-
ren verwenden. Sie erhalten die Fre-
quenzkoeffizienten, die Ihnen eine DCT
geliefert hat. Darauf setzen Sie die IDCT
an, um wieder die Pixeldaten zu bekom-
men:

Speziell die IDCT können Sie durch
mathematische Umformungen so ge-

stalten, dass sie leichter zu berechnen ist.
Den Code finden Sie auf der Heft-CD.
Durch die IDCT kennen Sie die Pixelin-

tensitäten, die denen des Originalbildes
– je nach Quantisierung – mehr oder we-
niger gleichen. Was bei einer übertriebe-
nen Quantisierung passiert, sehen Sie im
Bild am rechten Rand.

Verfahren Sie
mit jedem der
YIQ-Kanäle
wie beschrie-
ben, und kom-
primieren Sie
diese separat.
Den I- und den
Q-Kanal
(Chrominanz-
Werte) können
Sie stärker

quantisieren. Bei der JPEG-Kompressi-
on wird die Auflösung dieser Kanäle so-
gar halbiert oder geviertelt. Dadurch er-
reichen Sie höhere Kompressionsraten
und sind fast an der Leistungsfähigkeit
von JPEG angelangt s P E I

ZU STARKE
Quantisierung

erzeugt die vom
JPEG-Verfahren

bekannten
Block-Artefakte.

P x y C i j G i j

x i y j

mit C i j C i C j

und C i sqrt falls i

C i sonst

ji

[][] = ∗ [][]∗ [][]∗

+()()()∗ +()()()
[][] = []∗ []
[] = () =

[] =

==
∑∑1 4

2 1 16 2 1 16

1 2 0

1

0

7

0

7

/

cos / cos /

/ ,

π π

Die Quelltexte sowie die fertig übersetzten Pack-

programme finden Sie auf unserer Heft-CD im Ver-

zeichnis Praxis/PC-Underground und auf unserer

Website unter
www.pc-
magazin.de/magazin/extras.htm

Klicken Sie unter Online Extras im Menü Praxis auf

das entsprechende Download-Feld.

WWeeiitteerrffüühhrreennddee LLiitteerraattuurr::

Salomon, David: Data Compression — The Comple-

te Reference, Springer Verlag 1997, ISBN 0-387-

98280-9, etwa 80 Mark

Nelson, Mark / Gailly, Jean-Loup: The Data Com-

pression Book, M&T Books 1996, ISBN 1-55851-434-1,

etwa 75 Mark

Foley, van Dam, Feiner, Hughes, Phillips: Grundla-

gen der Computergrafik, Addison Wesley 1994,

ISBN 3-89319-647-1, etwa 100 Mark

