
246 Juni 2000 PC Magazin

P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R /
O L I V E R K Ä F E R S T E I N

Die Direct3DX Utility Library
bietet Funktionen, die viele
Aufgaben des 3D-Programmie-

rers vereinfachen und sogar überneh-
men. Diese Hilfsschicht setzt direkt auf
den Direct3D- und DirectDraw-Kom-
ponenten von DirectX 7 auf.

Direct3DX wählt das 3D-Gerät für
Setup und Ausgabe. In älteren Versio-
nen von DirectX mussten Sie Vollbild-
und Fenstermodus unterschiedlich pro-
grammieren.

Die neue DirectX-Technik erleichtert
es Ihnen, Bildaufbau und -bewegung zu
codieren. Sie nimmt Ihnen viel Arbeit
ab, wenn Sie Dateien mit den Formaten
bmp, tga und dds laden wollen. Diese
Dateien entstammen von Vektor- und
Matrix-Operationen sowie von Bild-
und Textur-Laderoutinen. DirectX er-
leichtert zudem die schnellen Konvertie-
rungen von Texturen und Farbformaten
unabhängig von der verwendeten Gra-
fikkarte.

Zunächst installieren Sie DirectX 7
und das DirectX 7-SDK. Letzteres laden
Sie unter www.microsoft.com im Devel-
oper-Bereich.

■ Direct3DX initialisieren
Rufen Sie die Direct3DX-Befehle

D3DXInitialize() und D3DXUninitia-
lize() auf, bevor Sie Direct3DX verwen-
den und Ihr Programm beenden.

Nach der Initialisierung legen Sie ein
D3DXContext-Objekt an. Mit diesem
Schnittstellenobjekt zeichnen Sie auf ei-
nem D3DX-Device. Dieses Objekt re-
präsentiert eine Grafikkarte, die Direct-
Draw und Hardware-beschleunigte 3D-
Grafik unterstützt. Einen D3DXCon-
text rufen Sie mit der Funktion

HRESULT D3DXCreateContext(

DWORD deviceIndex,
DWORD flags,
HWND hwnd,
DWORD width,
DWORD height,
LPD3DXCONTEXT* ppCtx

);

auf. Als Parameter verwenden Sie für de-
viceIndex die Konstante D3DX_DE-
FAULT, die das Gerät mit der besten
Hardware-Beschleunigung auswählt.
Bei flags bestimmen Sie, ob Sie eine Voll-
bild-, Fenster- oder Offscreen- (also im
nicht sichtbaren Bildschirmspeicher)
Ausgabe wünschen. Mit der Technik des
Offscreen-Rendering berechnen Sie
Spezialeffekte wie Spiegelungen:
• hwnd ist das Handle Ihres Windows-
Fensters,
• width und height bestimmen die Brei-
te und Höhe der Ausgabe, die Sie auch
per D3DX_DEFAULT definieren kön-
nen.
• ppCtx gibt die Adresse eines Zeigers
auf ein D3DXContext-Objekt an.

Der einfachste Aufruf für eine Voll-
bildausgabe lautet:

ID3DXContext *pD3DX = NULL;
D3DXInitialize();
D3DXCreateContext (D3DX_DEFAULT,

D3DX_CONTEXT_FULLSCREEN,
my_hwnd, 640, 480, &pD3DX);

Die Quellcode-Fragmente in diesem
Artikel vernachlässigen Fehlerabfragen.
Aber bei der DirectX-Programmierung
ist es notwendig, auftretende Fehler
peinlichst genau zu überprüfen. Das gilt
auch, wenn Sie einen Hardware-Be-
schleuniger verwenden. Stellen Sie fest,
ob dieser unterstützt wird.

Wenn Sie einen D3DXContext er-
zeugt haben, lassen Sie sich einen Zeiger
auf das darin enthaltene D3D-Ausgabe-
gerät (D3DDevice) geben:

LPDIRECT3DDEVICE7
pD3DDevice = NULL;

pD3DDevice =
pD3DX->GetD3DDevice();

Als nächstes prüft Ihr Programm, ob das
D3DDevice die nötigen Fähigkeiten hat.
DeviceCaps geben Ihnen Auskunft da-
rüber, was eine 3D-Hardware ausführen
kann. DeviceCaps sind Windows-
Strukturen, mit denen Sie die Funktio-
nalität von Windows-Geräten (Treibern
und Hardware) abfragen. Sie erfragen
diese Werte mit der Syntax:

D3DDEVICEDESC7 D3DCaps;
memset(&D3DCaps, 0x00,

sizeof(D3DDEVICEDESC7));
pD3DDevice->GetCaps(&D3DCaps);

Der Befehl liefert Daten als Bits und
Flags zurück. Um deren Bedeutung her-
auszufinden, nutzen Sie definierte Kon-
stanten. Zum Beispiel gibt die D3DP-
BLENDCAPS_ONE-Konstante Aus-
kunft darüber, ob das Device Alpha-
Blending beherrscht, also transparente
Texturen darstellen kann:

BOOL Caps;
Caps =
(D3DCaps.dpcTriCaps.
dwSrcBlendCaps &

D3DPBLENDCAPS_ONE) &&
(D3DCaps.dpcTriCaps.

dwDestBlendCaps
& D3DPBLENDCAPS_ONE) &&

(D3DCaps.dpcTriCaps.dwShadeCaps
& D3DPSHADECAPS_ALPHAFLATBLEND);

if(!Caps) return
NICHTUNTERSTUETZT;

DAS SCHICHTENMODELL zeigt, wie Direct
3D, DirectDraw und Direct3DX miteinan-
der zusammenhängen.

DirectX 7 – Direct3DX Utility Library

Schrill und bunt
DirectX 7 macht Ihre Demos schneller, schöner und lauter. Spielabläufe
bewegen sich flüssiger bei geringerem Programmieraufwand. Der Benutzer
Ihres Programms kann multimediale Ereignisse steuern.

PC Magazin Juni 2000 247

P C U N D E R G R O U N D
P R A X I S

Die DirectX-Dokumentation be-
schreibt alle Caps-Konstanten.

■ Direct3D initialisieren
Setzen Sie den Renderstates (Begriff aus
der DirextX-Welt), welcher das Ausse-
hen der Grafikausgabe festlegt. Dieses
beginnt mit der Hintergrundfarbe, geht
über Textur-Mapping-Optionen und
Effekte wie Nebel bis hin zu geome-
trischen Transformationen für die 3D-
Daten. Die Hintergrundfarbe setzen Sie
mit

D3DXCOLOR colorClear
(1.0f, 0.0f, 0.0f, 1.0f);

pD3DX->SetClearColor
(g_colorClear);

Die 3D-Daten, die Sie Direct3DX über-
geben wollen, wandeln Sie auf zwei Ar-
ten für die Bildschirmausgabe um:
• Die sogenannte View-Matrix enthält
die Information über Position und
Blickrichtung des Betrachters.
• Die Projektionsmatrix bildet den drei-
dimensionalen Raum auf dem Bild-
schirm ab. Hierbei helfen Direct3DX-
Matrixroutinen. Diese sind Bestandteil
des Direct3X-Systems.

Definieren Sie eine Perspektiv-Trans-
formation mit einem Kameraöff-
nungwinkel von 45 Grad:

D3DXMATRIX matProjection;
D3DXMatrixPerspectiveFov

(&matProjection,
D3DXToRadian(45.0f),

3.0f/4.0f, 0.1f, 100.0f);
pD3DDevice->SetTransform

(D3DTRANSFORMSTATE_PROJECTION,
matProjection);

Der Wert 3.0f/4.0f gibt das Höhen-Brei-
ten-Verhältnis des Monitors an. Die
Werte 0.1f, 100.0f markieren die mini-
male und maximale Distanz des sichtba-
ren Raums.

Für eine View-Matrix verwenden Sie
eine affine Abbildung: eine Drehung
und eine anschließende Verschiebung
(Translation) im Raum. Direct3DX de-
finiert Drehungen durch Quaternionen.
Dabei wird eine Drehung nicht durch
die Rotationswinkel um die Koordina-
tenachsen oder eine Rotationsmatrix be-
schrieben, sondern durch eine Achse,
um die gedreht wird, und einen Dreh-
winkel. Da sich Quaternionen im Ge-
gensatz zu Rotationsmatrizen interpo-
lieren lassen, eignen sich erstere besser
für Animationen.

Ein Quaternion können Sie sich auto-
matisch aus Rotationswinkeln anlegen
lassen. Für eine Drehung um die Achsen
X, Y, Z mit den Winkeln aX, aY und aZ
schreiben Sie so:

D3DXQUATERNION qR;
D3DXQuaternionRotation
➥YawPitchRoll(&qR, aY, aX, aZ);

Diese Reihenfolge stammt von dem eng-
lischen Begriffs-Tripel Yaw, Pitch, Roll.
Damit stellen Sie die View-Matrix auf:

D3DXVECTOR3 Verschiebung
(0.0f, 0.0f, 0.0f);

float Skalierung = 1.25f;
D3DXMatrixAffineTransformation
(&matView, Skalierung, NULL,

&qR, &Verschiebung);
D3DXMatrixInverse

(&matView, NULL, &matView);
pD3DDevice->SetTransform

(D3DTRANSFORMSTATE_VIEW,
matView);

Übergeben Sie die Transformations-
Matrizen mit

pD3DDevice->SetTransform
(D3DTRANSFORMSTATE_???, NULL);

Ob Sie Polygone von vorne, hinten oder
von beiden Seiten sehen wollen, und wie
Sie die Polygone schattieren wollen, be-
stimmen folgende Zeilen:

// Polygone nur von vorne
pD3DDevice->SetRenderState
(D3DRENDERSTATE_CULLMODE,

D3DCULL_CCW);
// Flatshading(Schatten/Polygon)
pD3DDevice->SetRenderState

(D3DRENDERSTATE_SHADEMODE,
D3DSHADE_FLAT);

All diese Zustände (States) erklärt die
DirectX-7-SDK-Hilfe.

Moderne 3D-Beschleuniger führen
Ihnen zudem ein Texture Mapping vor,
das eine Besonderheit aufweist: Multi-
Texturing. Dabei legen sich mehrere

Texturen übereinander auf ein 3D-
Objekt und verknüpfen diese durch
spezielle Operationen wie Überblen-
den oder Farb-Addition. Das legt der
Befehl

IDirect3DDevice7::
SetTextureStageStage(...)

fest. Der erste Parameter gibt die Textur-
Stage (Tiefe) an, deren Werte von 0 bis 7
reichen.

Die Optionen für die Textur-Stages
unterteilen sich in Farb-, Alpha- und
Textur-States mit zahlreichen Optio-
nen. Für 24 Textur-Stage-States sind bis
zu 24 weitere Werte zulässig.

Das folgende Beispiel verpasst Ihrem
3D-Objekt eine Textur ohne Extras. Die
Textur wird nur beim Vergrößern und
Verkleinern gefiltert

pD3DDevice->SetTextureStageState
(0, D3DTSS_MINFILTER,

D3DTFN_LINEAR);
pD3DDevice->SetTextureStageState

(0, D3DTSS_MAGFILTER,
D3DTFG_LINEAR);

pD3DDevice->SetTex-
tureStageState

(0, D3DTSS_MIPFIL-
TER,

D3DTFP_POINT);
pD3DDevice->SetTex-
tureStageState

(0, D3DTSS_COLOROP,
D3DTOP_MODULATE);

pD3DDevice->SetTex-
tureStageState

(0, D3DTSS_ALPHAOP,
D3DTOP_SELEC-

TARG1);

Da Sie nicht immer al-
le acht Stages verwen-
den (was die meisten
3D-Grafikkarten oh-
nehin nicht können),
schalten Sie einige
Stages ab. Um alle
Stages ab dem Wert 1
zu deaktivieren,
schreiben Sie:

pD3DDevice->SetTex-
tureStageState

(1, D3DTSS_COLOROP,
3DTOP_DISABLE);

pD3DDevice->SetTex-
tureStageState q

Unter folgenden URLs finden Sie wei-
tere Informationen zu MD2-Dateien
und Texturen:
http://home.earthlink.net/
~benhroop/tutbuild.html
www.ozemail.com.au/~darma/
qhelp/hqmods.html
Beschreibungen von vielen Dateifor-
maten finden Sie unter www.wotsit.
com

LINKS ZU MD2-MODELS

MD2-DATEIEN in bewegter Animation, die Sie dazu noch selber
steuern, bezaubern nicht nur Kinder, sondern auch Erwachsene.

248 Juni 2000 PC Magazin

P C U N D E R G R O U N D
P R A X I S

(1, D3DTSS_ALPHAOP,
D3DTOP_DISABLE);

Die dazugehörige Textur, laden Sie ein-
fach aus einer bmp-Datei:

LPDIRECTDRAWSURFACE7 ppTex;
D3DX_SURFACEFORMAT sf =

D3DX_SF_UNKNOWN;
D3DXCreateTextureFromFile

(pD3DDevice, 0, 0, 0, &sf,NULL,
&ppTex, NULL, „texture.bmp“,

D3DX_FT_LINEAR);

Wenn Sie diesen Setup-Code eingege-
ben haben, können Sie sofort mit dem
Zeichnen loslegen. Bei früheren Direct-
X-Versionen mussten Sie zuerst ein Di-
rect3D-Device zum Zeichnen suchen
und dabei die Texturen in ein Format
bringen, das Ihnen der 3D-Beschleuni-
ger vorgab. Jetzt nimmt Ihnen Di-
rect3DX diese Arbeit ab.

■ Rendering mit Direct3D
Zum Zeichnen eines Bildes beginnen Sie
in Direct3D mit der Syntax:

pD3DDevice->BeginScene()

Im nächsten Schritt löschen Sie Bild-
schirm und Z-Buffer:

pD3DX->Clear(D3DCLEAR_TARGET
| D3DCLEAR_ZBUFFER);

Der Z-Buffer speichert für jeden Bild-
schirmpixel die Entfernung zum Be-
trachter. Daher sehen Sie Polygone kor-
rekt im Vordergrund, die sich näher am
Standpunkt des Betrachters befinden.
Den Z-Buffer aktivieren Sie folgender-
maßen:

pD3DDevice->SetRenderState
(D3DRENDERSTATE_ZWRITEENABLE,
TRUE);

Dann selektieren Sie die vorher geladene
Textur, wobei der erste Parameter die
Textur-Stage und der zweite den Zeiger
auf die Textur bezeichnet:

pD3DDevice->SetTexture(0,ppTex);

Nun schicken Sie Direct3D die Polygo-
ne, die Ihre 3D-Grafikkarte zeichnen
soll. Es gibt verschiedene Varianten:
• Die erste schickt die vorliegenden Da-
ten unverändert mit folgendem Befehl
an Direct3D

pD3DDevice->DrawPrimitive(...)

Dieser Funktion teilen Sie mit, was zu
zeichnen ist: zum Beispiel Punkte, Lini-
en, Dreiecke oder Dreiecksstreifen. Da-
zu geben Sie an, wie Ihre Vertex-Daten
(Daten der 3D-Punkte) vorliegen. Wol-
len Sie zwei Dreiecke zeichnen, ohne
sich um Texturen und Beleuchtung zu
kümmern, schreiben Sie:

D3DLVERTEX data[6];
// Koordinaten setzen
for (i = 0; i < 6; i++) {
data[i].x = ...;
data[i].y = ...;

data[i].z = ...;
}
pD3DDevice->DrawPrimitive

(D3DPT_TRIANGLELIST,
D3DFVF_LVERTEX,
(LPVOID)&data, 6, 0);

Die Vertex-Daten, die Sie dabei überge-
ben, werden mit den vorgegebenen Ma-
trizen transformiert, projiziert und
schließlich dargestellt. Um 3D-Objekte
schneller auszugeben, verwenden Sie

DrawIndexedPrimitive(...)

Dieser Befehl verwendet eine Liste mit
Vertices und definiert die Dreiecke mit
jeweils drei Indizes dieser Liste. Diese
Form der Daten heißt Shared Vertex-
Struktur. Der Vorteil ist, dass fast immer
weniger Daten transportiert werden
müssen. Bei größeren 3D-Objekten gilt:

DrawPrimitiveDraw
➥IndexedPrimitive
Anzahl Dreieckenn
Anzahl Verticesn*3n/2

• Noch effizienter verschicken Sie die
Polygon-Daten mit dem Vertex-Buffer.
Sie definieren, wie Ihre Daten aussehen,
packen diese in ein Paket und übergeben
es Direct3D. Die Technik dahinter orga-
nisiert und erledigt den Rest. Einen Ver-
tex-Buffer legen Sie während der Initia-
lisierungsphase an.

Beschreiben Sie darin zuerst die Ver-
tex-Daten. Füllen Sie einen Vertex-Buf-
fer mit noch untransformierten Vertices,
Textur-Koordinaten und einem Farb-
wert pro Vertex, mit dem Sie dann Drei-
ecke zeichnen. Die Struktur dieser Be-
schreibung füllen Sie folgendermaßen:

D3DVERTEXBUFFERDESC vbdesc;
vbdesc.dwSize = sizeof(vbdesc);

vbdesc.dwCaps = 0;
vbdesc.dwFVF = D3DFVF_XYZ |

D3DFVF_DIFFUSE | D3DFVF_TEX1 |

D3DFVF_TEXCOORDSIZE2(0);
vbdesc.dwNumVertices = nVertices;

Dabei müssen Sie die maximale Anzahl
der Vertices, die Sie in diesem Buffer
speichern wollen, vorher wissen. Der
Eintrag dwFVF bedeutet flexible vertex
format. Damit legen Sie einen Vertex-
Buffer nach dieser Beschreibung an:

LPDIRECT3DVERTEXBUFFER7
pvbVertices;

pD3D->CreateVertexBuffer
(&vbdesc, &pvbVertices, 0);

Als erste Sicherheitsmaßnahme beantra-
gen Sie den Zugriff auf den Vertex-Buf-
fer. Damit gewährleisten Sie, dass Sie
keine Daten überschreiben, die eventu-
ell noch gar nicht verarbeitet wurden. Sie
müssen den Vertex-Buffer deshalb also
gegen andere Zugriffe wie zum Beispiel
von Grafikkartentreibern sperren.
Gleichzeitig erhalten Sie einen Zeiger
auf den Speicher, in dem die Vertex-Da-
ten stehen.

Während des Zeichnens füllen Sie den
Buffer zwischen BeginScene() und End-
Scene() mit Ihren Vertex-Daten.

Die Struktur des Buffers definieren Sie
so, dass sie Ihrem Vertex-Format ent-
spricht. Dies haben Sie mit dem Vertex-
Buffer angegeben:

typedef struct MY_VERTEX
{ D3DXVECTOR3 pos;

D3DCOLOR color;
D3DXVECTOR2 texcoord;

} MY_VERTEX;

MY_VERTEX *pVertices;
pvbVertices->Lock(DDLOCK_WAIT
| DDLOCK_WRITEONLY,

(void **) &pVertices, NULL);

Greifen Sie auf den Speicher so zu, dass
Sie Ihre Vertex-Daten schreiben kön-
nen. Achten Sie darauf, dass Sie nicht
mehr Daten schreiben, als der Vertex-
Buffer aufnimmt. Dafür haben Sie eine

• Mit Direct3D programmieren Sie einfach
und Hardware-unabhängig 3D-Grafiken in
zwei verschiedenen Modi:
— zum einen mit dem Retained Mode-In-
terface, einer High-Level Schnittstelle mit
abstrakter Sichtweise,
— und mit dem Low-Level Immediate Mo-
de, der die gesamte Rendering-Pipeline
kontrolliert.
• Direct3D umfasst seit der Version 7 mit
der Direct3DX-Utility-Library eine zusätz-
liche Schicht. Diese übernimmt die wie-
derkehrenden Aufgaben des Immediate
Mode.
• Mit DirectDraw greifen Sie direkt auf
den Grafikkartenspeicher zu, wobei Sie

zusätzliche Bitmaps im Hintergrund hal-
ten.
• DirectInput steuert Eingabe- und Force-
Feedback-Geräte aller Art an.
• DirectMusic spielt als Komplettsystem
Musik und Soundeffekte ab.
• Mit DirectPlay programmieren Sie Spie-
le für das Netz per Modem-, LAN- oder
WAN-Übertragung.
• Die DirectSetup-API installiert Kompo-
nenten in einem Windows-DirectX-Sys-
tem.
• DirectSound gibt Wave-Sounds wieder
und unterstützt dabei Hardware- and
Software-Mixing der Klangdaten mitsamt
einer 3D-Positionierung und vielem mehr.

KOMPONENTEN VON DIRECTX 7

PC Magazin Juni 2000 249

P C U N D E R G R O U N D
P R A X I S

maximale Anzahl von Vertices angege-
ben. Füllen Sie den Vertex-Buffer so:

for (i = 0; i < 6; i++) {
pVertices->pos.x = ...;
pVertices->pos.y = ...;
pVertices->pos.z = ...;
pVertices->color =

D3DCOLOR(1.0f, 0.0f, 1.0f);
pVertices->texcoord =

D3DXVECTOR2(0.0f, 1.0f);
pVertices++;

}

Ein Unlock-Befehl gibt den Vertex-Buf-
fer wieder frei:

pvbVertices->Unlock();

Verschicken Sie den Inhalt des Vertex-
Buffers zum Zeichnen an Direct3D:

pD3DDevice->DrawPrimitiveVB
(D3DPT_TRIANGLELIST,

pvbVertices, 0, 6, 0);

Ein weiterer Vorteil der Vertex-Buffer:
Wenn Sie Direct3D die Transformatio-
nen übernehmen lassen und ein nicht
animiertes 3D-Objekt (nur Vertices) im
dreidimensionalen Raum übergeben,
können Sie einen Vertex-Buffer einma-
lig anlegen und immer wiederverwen-
den. Sie können das Objekt aber noch
frei mit Matrizen bewegen und drehen.
Direct3D passt häufig verwendete Ver-
tex-Buffer automatisch und optimiert
für das verwendete Direct3D-Device an.
Dazu dient die Funktion

pvbVertices->Optimize
(pD3DDevice, 0);

Wenn Sie Ihre Vertex-Daten auf Per-
formance optimieren, sollten Sie Ver-
tex-Buffer mit dem DrawIndexed-
VB(...)-Befehl verwenden. Alle Poly-
gon-Daten lassen sich in indizierte Poly-
gonnetze umwandeln. Unser Artikel
bietet dazu mit poly2ver.cpp den Pseu-
docode. Als Feinarbeit übergeben Sie die
Polygonnetze nicht lose, sondern in so-
genannten Triangle-Strips oder Tri-
angle-Fans.

Der Vorteil der Übergabe von Tri-
angle-Strips oder Triangle-Fans: Der
3D-Beschleuniger hat es mit weniger
unterschiedlichen Kanten zu tun. Er
kann bei Triangle-Lists nicht erkennen,
dass sich zwei Dreiecke eine Kante tei-
len, wenn sie die gleichen Indizes ver-
wenden. Bei Triangle-Strips/Fans ist das

per Definition gege-
ben. Weniger Kanten
teilen sich Polygone,
die nicht vollständig
auf dem Bildschirm
liegen, bei denen also
ein Teil abgeschnitten
(geclipped) wird.
Dann braucht der
3D-Beschleuniger ei-

ne Kante nur einmal zu clippen.
Wenn Sie alles mit oder ohne Vertex-

Buffer gezeichnet haben, beenden Sie
den Vorgang mit

pD3DDevice->EndScene();

und stellen das Bild dar:
pD3DX->UpdateFrame(0);

Der Vergleich älterer Direct3D-Versio-
nen mit Direct3DX zeigt, dass sich Di-
rect3D OpenGL mit seiner GLUtility-
Library (GLUT) annähert, was das
Handling der Transformationen und
Texturen angeht. Außer den bereits er-
wähnten Features erlaubt Ihnen Di-
rect3DX wie GLUT, mit einem Matrix-
Stack zu arbeiten und einfache geome-
trische Primitive wie Kugel, Kegel oder
Torus, zu zeichnen.

Auf einem Matrix-Stack können Sie
Matrizen mit
Push- und Pop-
Operationen spei-
chern. Matrix-
Operationen ver-
ändern nur die
oberste Matrix auf
dem Stack. Ma-
trix-Stacks sind
vor allem prak-
tisch, wenn Sie mit
einem hierar-
chisch aufgebau-
ten, animierten
3D-Objekt arbei-
ten.

Das funktio-
niert ähnlich wie
bei dem Bewe-
gungsablauf von
Körper-Ober-
arm-Unterarm-
Hand. Wenn sich
der Körper be-
wegt, bewegen
sich alle drei ande-
ren Teile auch. Be-
wegt sich der Un-
terarm, ist nur
noch die Hand be-
troffen.

Geometrische
Primitive erzeu-

gen Sie mit dem ID3DXSimpleShade-
Interface von Direct3DX. Die Funktio-
nen dieses Interfaces liefern Ihnen die
Daten in Form eines Vertex-Buffers mit
den Vertices und Texture-Mapping-Ko-
ordinaten und einer Indexliste für die
Polygone.

■ Beispielprogramm:
Direct3D
Das Beispielprogramm liest MD2-Da-
teien ein, welche Vertex-, Textur- und
Animationsdaten speichern, und stellt
diese dar. In der Datei MD2model.cpp
(auf der Heft-CD) finden Sie die Routi-
nen, um MD2-Dateien zu lesen und die
darin enthaltenen Daten für die Ausga-
be mit Direct3D aufzubereiten. app.cpp
initialisiert und steuert dabei den Ablauf
des Beispielprogramms. s E T

Die Quelltexte sowie die fertig übersetzten Pack-

programme finden Sie auf unserer Heft-CD 1 im

Verzeichnis Praxis/PC-Underground und auf unse-

rer Website unter www.pc-magazin.de/magazin/

extras.htm

Klicken Sie unter Online Extras im Menü Praxis auf

das entsprechende Download-Feld.

poly2ver.cpp

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:

// poly2ver. cpp
// Polygon- in Shared-Vertex-Polygon
typedef struct
{
VERTEX a, b, c;

}TRIANGLE;

// Shared Vertex Daten
VERTEXVertexList[MAXV];
intnVertices;
intTriangleList[MAXT][3];
intnIdxTriangle;
. . .
// Sucht Vertex in VertexList
// und liefert dessen Index.
// Kein Vertex vorhanden? EinfÅgen!
int IndexOf(VERTEX v)
{
for (int i = 0; i < nVertices; i++)
{
if (Equal(v, VertexList[i])

return i;
}
VertexList[nVertices] = v;
nVertices ++;
return nVertices - 1;

}

voidConvert2Idx
(TRIANGLE *src, int nTriangles)
{
nVertices = 0;
nIdxTriangle = nTriangles;
for (int i =0; i < nTriangles;i++)
{
TriangleList[i][0] =

IndexOf(src[i]. a);
TriangleList[i][1] =

IndexOf(src[i]. b);
TriangleList[i][2] =

IndexOf(src[i]. c);
}
}

poly2ver.cpp wandelt ein Polygon- in ein Shared-Vertex-Polygon-
Netz um.

1

FEINARBEIT: So übergeben Sie die Polygonnetze.

