)

PC UNDERGROUND

PRAXIS

DirectX 7 — Direct3DX Utility Library ﬁg\_

Schrill und '

. Spielablaufe

bewegen sich flussiger bei geringerem Programmieraufwand. Der Benutzer

Ihres Programms kann multimediale Ereignisse steuern.

CARSTEN DACHSBACHER /
OLIVER KAFERSTEIN

ie Direct3DX Utility Library
Dbietet Funktionen, die viele

Aufgaben des 3D-Programmie-
rers vereinfachen und sogar Uberneh-
men. Diese Hilfsschicht setzt direkt auf
den Direct3D- und DirectDraw-Kom-
ponenten von DirectX 7 auf.

Direct3DX wahlt das 3D-Gerat fir
Setup und Ausgabe. In dlteren Versio-
nen von DirectX mussten Sie Vollbild-
und Fenstermodus unterschiedlich pro-
grammieren.

Die neue DirectX-Technik erleichtert
es lhnen, Bildaufbau und -bewegung zu
codieren. Sie nimmt Ihnen viel Arbeit
ab, wenn Sie Dateien mit den Formaten
bmp, tga und dds laden wollen. Diese
Dateien entstammen von Vektor- und
Matrix-Operationen sowie von Bild-
und Textur-Laderoutinen. DirectX er-
leichtert zudem die schnellen Konvertie-
rungen von Texturen und Farbformaten
unabhéngig von der verwendeten Gra-
fikkarte.

Zunéachst installieren Sie DirectX 7
und das DirectX 7-SDK. Letzteres laden
Sie unter www.microsoft.com im Devel-
oper-Bereich.

Rufen Sie die Direct3DX-Befehle
D3DXlnitialize() und D3DXUninitia-
lize() auf, bevor Sie Direct3DX verwen-
den und Ihr Programm beenden.

Nach der Initialisierung legen Sie ein
D3DXContext-Objekt an. Mit diesem
Schnittstellenobjekt zeichnen Sie auf ei-
nem D3DX-Device. Dieses Objekt re-
préasentiert eine Grafikkarte, die Direct-
Draw und Hardware-beschleunigte 3D-
Grafik unterstiitzt. Einen D3DXCon-
text rufen Sie mit der Funktion

HRESULT D3DXCreateContext(

246 Juni2000 PC Magazin

DWORD devicelndex,

DWORD flags,

HWND hwnd,

DWORD width,

DWORD height,

LPD3DXCONTEXT* ppCtx
)i

auf. Als Parameter verwenden Sie fur de-
vicelndex die Konstante D3DX_DE-
FAULT, die das Gerat mit der besten
Hardware-Beschleunigung  auswéhlt.
Bei flags bestimmen Sie, ob Sie eine Voll-
bild-, Fenster- oder Offscreen- (also im
nicht sichtbaren Bildschirmspeicher)
Ausgabe winschen. Mit der Technik des
Offscreen-Rendering  berechnen  Sie
Spezialeffekte wie Spiegelungen:
* hwnd ist das Handle Ihres Windows-
Fensters,
« width und height bestimmen die Brei-
te und Hohe der Ausgabe, die Sie auch
per D3DX_DEFAULT definieren kon-
nen.
e ppCtx gibt die Adresse eines Zeigers
auf ein D3DXContext-Objekt an.

Der einfachste Aufruf fur eine Voll-
bildausgabe lautet:

ID3DXContext *pD3DX = NULL;

D3DXlnitialize();
D3DXCreateContext (D3DX_DEFAULT,

D3DX_CONTEXT_FULLSCREEN,

my_hwnd, 640, 480, &pD3DX );

| winaz Application

: :

Direct30 LHility
Library

3

DirectDr awDirect 30 Immediate Mode

DirectDraw Direct30 HAL

i

Hardwyare

DAS SCHICHTENMODELL zeigt, wie Direct
3D, DirectDraw und Direct3DX miteinan-
der zusammenhangen.

Die Quellcode-Fragmente in diesem
Artikel vernachléssigen Fehlerabfragen.
Aber bei der DirectX-Programmierung
ist es notwendig, auftretende Fehler
peinlichst genau zu Gberprifen. Das gilt
auch, wenn Sie einen Hardware-Be-
schleuniger verwenden. Stellen Sie fest,
ob dieser unterstitzt wird.

Wenn Sie einen D3DXContext er-
zeugt haben, lassen Sie sich einen Zeiger
auf das darin enthaltene D3D-Ausgabe-
gerat (D3DDevice) geben:

LPDIRECT3DDEVICE7

pD3DDevice = NULL;

pD3DDevice =
pD3DX->GetD3DDevice();

Als néchstes prift Ihr Programm, ob das
D3DDevice die notigen Fahigkeiten hat.
DeviceCaps geben Ihnen Auskunft da-
ruber, was eine 3D-Hardware ausfiihren
kann. DeviceCaps sind Windows-
Strukturen, mit denen Sie die Funktio-
nalitat von Windows-Gerdaten (Treibern
und Hardware) abfragen. Sie erfragen
diese Werte mit der Syntax:
D3DDEVICEDESC7 D3DCaps;
memset(&D3DCaps, 0x00,

sizeof(D3DDEVICEDESC?));
pD3DDevice->GetCaps(&D3DCaps);

Der Befehl liefert Daten als Bits und
Flags zurtick. Um deren Bedeutung her-
auszufinden, nutzen Sie definierte Kon-
stanten. Zum Beispiel gibt die D3DP-
BLENDCAPS_ONE-Konstante Aus-
kunft dartber, ob das Device Alpha-
Blending beherrscht, also transparente
Texturen darstellen kann:

BOOL Caps;
Caps =
(D3DCaps.dpcTriCaps.
dwsSrcBlendCaps &
D3DPBLENDCAPS_ONE) &&
(D3DCaps.dpcTriCaps.
dwDestBlendCaps
& D3DPBLENDCAPS_ONE) &&
(D3DCaps.dpcTriCaps.dwShadeCaps
& D3DPSHADECAPS_ALPHAFLATBLEND);

if(ICaps) return
NICHTUNTERSTUETZT;



Die  DirectX-Dokumentation  be-
schreibt alle Caps-Konstanten.

Setzen Sie den Renderstates (Begriff aus
der DirextX-Welt), welcher das Ausse-
hen der Grafikausgabe festlegt. Dieses
beginnt mit der Hintergrundfarbe, geht
Uber Textur-Mapping-Optionen und
Effekte wie Nebel bis hin zu geome-
trischen Transformationen fiir die 3D-
Daten. Die Hintergrundfarbe setzen Sie
mit
D3DXCOLOR colorClear
(1.0f, 0.0f, 0.0f, 1.0f);

pD3DX->SetClearColor
(g_colorClear);

Die 3D-Daten, die Sie Direct3DX Uiber-
geben wollen, wandeln Sie auf zwei Ar-
ten fur die Bildschirmausgabe um:

« Die sogenannte View-Matrix enthélt
die Information Gber Position und
Blickrichtung des Betrachters.

» Die Projektionsmatrix bildet den drei-
dimensionalen Raum auf dem Bild-
schirm ab. Hierbei helfen Direct3DX-
Matrixroutinen. Diese sind Bestandteil
des Direct3X-Systems.

Definieren Sie eine Perspektiv-Trans-
formation mit einem Kamera6ff-
nungwinkel von 45 Grad:

D3DXMATRIX matProjection;

D3DXMatrixPerspectiveFov

(&matProjection,
D3DXToRadian(45.0f),
3.0f/4.0f, 0.1f, 100.0f);
pD3DDevice->SetTransform

(D3DTRANSFORMSTATE_PROJECTION,
matProjection);

Der Wert 3.0f/4.0f gibt das Héhen-Brei-
ten-Verhdltnis des Monitors an. Die
Werte 0.1f, 100.0f markieren die mini-
male und maximale Distanz des sichtba-
ren Raums.

Fur eine View-Matrix verwenden Sie
eine affine Abbildung: eine Drehung
und eine anschlieBende Verschiebung
(Translation) im Raum. Direct3DX de-
finiert Drehungen durch Quaternionen.
Dabei wird eine Drehung nicht durch
die Rotationswinkel um die Koordina-
tenachsen oder eine Rotationsmatrix be-
schrieben, sondern durch eine Achse,
um die gedreht wird, und einen Dreh-
winkel. Da sich Quaternionen im Ge-
gensatz zu Rotationsmatrizen interpo-
lieren lassen, eignen sich erstere besser
fur Animationen.

Ein Quaternion kdnnen Sie sich auto-
matisch aus Rotationswinkeln anlegen
lassen. Fur eine Drehung um die Achsen
X,Y, Z mitden Winkeln aX, a¥Y und aZ
schreiben Sie so:

D3DXQUATERNION gR;
D3DXQuaternionRotation
O YawPitchRoll(&gR, aY, aX, az);

Diese Reihenfolge stammt von dem eng-
lischen Begriffs-Tripel Yaw, Pitch, Roll.
Damit stellen Sie die View-Matrix auf:

D3DXVECTORS Verschiebung
(0.0f, 0.0f, 0.0f);
float Skalierung = 1.25f;
D3DXMatrixAffineTransformation
(&matView, Skalierung, NULL,
&qR, &Verschiebung);
D3DXMatrixInverse
(&matView, NULL, &matView);
pD3DDevice->SetTransform
(D3DTRANSFORMSTATE_VIEW,
matView);

Ubergeben Sie die Transformations-
Matrizen mit

pD3DDevice->SetTransform
(D3DTRANSFORMSTATE_???, NULL);

Ob Sie Polygone von vorne, hinten oder
von beiden Seiten sehen wollen, und wie
Sie die Polygone schattieren wollen, be-
stimmen folgende Zeilen:

/I Polygone nur von vorne

pD3DDevice->SetRenderState

(D3DRENDERSTATE_CULLMODE,
D3DCULL_CCW);

/I Flatshading(Schatten/Polygon)

pD3DDevice->SetRenderState
(D3DRENDERSTATE_SHADEMODE,

D3DSHADE_FLAT);

All diese Zustdnde (States) erklart die
DirectX-7-SDK-Hilfe.

Moderne 3D-Beschleuniger fiihren
Ihnen zudem ein Texture Mapping vor,
das eine Besonderheit aufweist: Multi-
Texturing. Dabei legen sich mehrere

MD2-DATEIEN in bewegter Animation, die Sie dazu noch selber
steuern, bezaubern nicht nur Kinder, sondern auch Erwachsene.

PC UNDERGROUND
PRAXIS

Unter folgenden URLs finden Sie wei-
tere Informationen zu MD2-Dateien
und Texturen:
http://home.earthlink.net/
~benhroop/tutbuild.html
www.ozemail.com.au/~darma/
ghelp/hgmods.html

Beschreibungen von vielen Dateifor-
maten finden Sie unter www.wotsit.
com

Texturen Ubereinander auf ein 3D-
Objekt und verknipfen diese durch
spezielle Operationen wie Uberblen-
den oder Farb-Addition. Das legt der
Befehl

IDirect3DDevice7::

SetTextureStageStage(...)
fest. Der erste Parameter gibt die Textur-
Stage (Tiefe) an, deren Werte von 0 bis 7
reichen.

Die Optionen fur die Textur-Stages
unterteilen sich in Farb-, Alpha- und
Textur-States mit zahlreichen Optio-
nen. FUr 24 Textur-Stage-States sind bis
zu 24 weitere Werte zuldssig.

Das folgende Beispiel verpasst lhrem
3D-Objekt eine Textur ohne Extras. Die
Textur wird nur beim Vergréern und
Verkleinern gefiltert

pD3DDevice->SetTextureStageState

(0, D3DTSS_MINFILTER,
D3DTFN_LINEAR);
pD3DDevice->SetTextureStageState
(0, D3DTSS_MAGFILTER,

D3DTFG_LINEARY);
pD3DDevice->SetTex-
tureStageState

(0, D3DTSS_MIPFIL-
TER,

D3DTFP_POINT);
pD3DDevice->SetTex-
tureStageState

(0, D3DTSS_COLOROP,

D3DTOP_MODULATE);
pD3DDevice->SetTex-
tureStageState

(0, D3DTSS_ALPHAOP,

D3DTOP_SELEC-

TARGL);

Da Sie nichtimmer al-
le acht Stages verwen-
den (was die meisten
3D-Grafikkarten oh-
nehin nicht kénnen),
schalten Sie einige
Stages ab. Um alle
Stages ab dem Wert 1
zZu deaktivieren,
schreiben Sie:
pD3DDevice->SetTex-
tureStageState
(1, D3DTSS_COLOROP,
3DTOP_DISABLE);

pD3DDevice->SetTex-
tureStageState

PC Magazin Juni 2000 247

5)-6



5-E]

PC UNDERGROUND
PRAXIS

(1, D3DTSS_ALPHAOP,
D3DTOP_DISABLE);

Die dazugehorige Textur, laden Sie ein-
fach aus einer bmp-Datei:
LPDIRECTDRAWSURFACE?7 ppTex;
D3DX_SURFACEFORMAT sf =
D3DX_SF_UNKNOWN;
D3DXCreateTextureFromFile
(pD3DDevice, 0, 0, 0, &sf,NULL,
&ppTex, NULL, ,texture.bmp®,
D3DX_FT_LINEAR);

Wenn Sie diesen Setup-Code eingege-
ben haben, kdnnen Sie sofort mit dem
Zeichnen loslegen. Bei friiheren Direct-
X-Versionen mussten Sie zuerst ein Di-
rect3D-Device zum Zeichnen suchen
und dabei die Texturen in ein Format
bringen, das Ihnen der 3D-Beschleuni-
ger vorgab. Jetzt nimmt lhnen Di-
rect3DX diese Arbeit ab.

Zum Zeichnen eines Bildes beginnen Sie
in Direct3D mit der Syntax:
pD3DDevice->BeginScene()
Im néchsten Schritt 16schen Sie Bild-
schirm und Z-Buffer:
pD3DX->Clear(D3DCLEAR_TARGET
| D3DCLEAR_ZBUFFER);
Der Z-Buffer speichert fur jeden Bild-
schirmpixel die Entfernung zum Be-
trachter. Daher sehen Sie Polygone kor-
rekt im Vordergrund, die sich ndher am
Standpunkt des Betrachters befinden.
Den Z-Buffer aktivieren Sie folgender-
mafen:

pD3DDevice->SetRenderState
(D3DRENDERSTATE_ZWRITEENABLE,
TRUE);

Dann selektieren Sie die vorher geladene
Textur, wobei der erste Parameter die
Textur-Stage und der zweite den Zeiger
auf die Textur bezeichnet:
pD3DDevice->SetTexture(0,ppTex);
Nun schicken Sie Direct3D die Polygo-
ne, die lhre 3D-Grafikkarte zeichnen
soll. Es gibt verschiedene Varianten:
« Die erste schickt die vorliegenden Da-
ten unverdndert mit folgendem Befehl
an Direct3D
pD3DDevice->DrawPrimitive(...)
Dieser Funktion teilen Sie mit, was zu
zeichnen ist: zum Beispiel Punkte, Lini-
en, Dreiecke oder Dreiecksstreifen. Da-
zu geben Sie an, wie lhre Vertex-Daten
(Daten der 3D-Punkte) vorliegen. Wol-
len Sie zwei Dreiecke zeichnen, ohne
sich um Texturen und Beleuchtung zu
kiimmern, schreiben Sie:

D3DLVERTEX data[ 6 |;
/I Koordinaten setzen
for (i=0;i<6;i++){
data[i]x=..;
data[ily=..;

248 Juni2000 PC Magazin

» Mit Direct3D programmieren Sie einfach
und Hardware-unabhangig 3D-Grafiken in
zwei verschiedenen Modi:

— zum einen mit dem Retained Mode-In-
terface, einer High-Level Schnittstelle mit
abstrakter Sichtweise,

— und mit dem Low-Level Immediate Mo-
de, der die gesamte Rendering-Pipeline
kontrolliert.

e Direct3D umfasst seit der Version 7 mit
der Direct3DX-Utility-Library eine zusatz-
liche Schicht. Diese ubernimmt die wie-
derkehrenden Aufgaben des Immediate
Mode.

* Mit DirectDraw greifen Sie direkt auf
den Grafikkartenspeicher zu, wobei Sie

data[i]z=..;
pD3DDevice->DrawPrimitive

(D3DPT_TRIANGLELIST,
D3DFVF_LVERTEX,
(LPVOID)&data, 6,0);

Die Vertex-Daten, die Sie dabei iberge-
ben, werden mit den vorgegebenen Ma-
trizen transformiert, projiziert und
schlieRlich dargestellt. Um 3D-Objekte
schneller auszugeben, verwenden Sie

DrawlndexedPrimitive(...)
Dieser Befehl verwendet eine Liste mit
Vertices und definiert die Dreiecke mit
jeweils drei Indizes dieser Liste. Diese
Form der Daten heifl3t Shared Vertex-
Struktur. Der Vorteil ist, dass fast immer
weniger Daten transportiert werden
mussen. Bei groRReren 3D-Objekten gilt:

DrawPrimitiveDraw

O IndexedPrimitive

Anzahl Dreieckenn
Anzahl Verticesn*3n/2

* Noch effizienter verschicken Sie die
Polygon-Daten mit dem Vertex-Buffer.
Sie definieren, wie lhre Daten aussehen,
packen diese in ein Paket und ibergeben
es Direct3D. Die Technik dahinter orga-
nisiert und erledigt den Rest. Einen Ver-
tex-Buffer legen Sie wahrend der Initia-
lisierungsphase an.

Beschreiben Sie darin zuerst die Ver-
tex-Daten. Fillen Sie einen Vertex-Buf-
fer mit noch untransformierten Vertices,
Textur-Koordinaten und einem Farb-
wert pro Vertex, mit dem Sie dann Drei-
ecke zeichnen. Die Struktur dieser Be-
schreibung flllen Sie folgendermalien:

D3DVERTEXBUFFERDESC vhdesc;
vbdesc.dwSize = sizeof(vbdesc);

vbdesc.dwCaps = 0;
vbdesc.dwFVF = D3DFVF_XYZ |
D3DFVF_DIFFUSE | D3DFVF_TEX1 |

zusatzliche Bitmaps im Hintergrund hal-
ten.

* DirectInput steuert Eingabe- und Force-
Feedback-Gerate aller Art an.

» DirectMusic spielt als Komplettsystem
Musik und Soundeffekte ab.

* Mit DirectPlay programmieren Sie Spie-
le fur das Netz per Modem-, LAN- oder
WAN-Ubertragung.

» Die DirectSetup-API installiert Kompo-
nenten in einem Windows-DirectX-Sys-
tem.

« DirectSound gibt Wave-Sounds wieder
und unterstutzt dabei Hardware- and
Software-Mixing der Klangdaten mitsamt
einer 3D-Positionierung und vielem mehr.

D3DFVF_TEXCOORDSIZE2(0);
vbdesc.dwNumVertices = nVertices;

Dabei missen Sie die maximale Anzahl
der Vertices, die Sie in diesem Buffer
speichern wollen, vorher wissen. Der
Eintrag dwFVF bedeutet flexible vertex
format. Damit legen Sie einen Vertex-
Buffer nach dieser Beschreibung an:
LPDIRECT3DVERTEXBUFFER?
pvbVertices;

pD3D->CreateVertexBuffer
(&vbdesc, &pvbVertices, 0);

Als erste SicherheitsmalRnahme beantra-
gen Sie den Zugriff auf den Vertex-Buf-
fer. Damit gewahrleisten Sie, dass Sie
keine Daten Uberschreiben, die eventu-
ell noch gar nicht verarbeitet wurden. Sie
mussen den Vertex-Buffer deshalb also
gegen andere Zugriffe wie zum Beispiel
von  Grafikkartentreibern  sperren.
Gleichzeitig erhalten Sie einen Zeiger
auf den Speicher, in dem die Vertex-Da-
ten stehen.

Wihrend des Zeichnens fiillen Sie den
Buffer zwischen BeginScene() und End-
Scene() mit lhren Vertex-Daten.

Die Struktur des Buffers definieren Sie
so, dass sie lhrem Vertex-Format ent-
spricht. Dies haben Sie mit dem Vertex-
Buffer angegeben:

typedef struct MY_VERTEX

{ D3DXVECTORS pos;
D3DCOLOR color;
D3DXVECTOR?2 texcoord;

} MY_VERTEX;

MY_VERTEX *pVertices;

pvbVertices->Lock(DDLOCK_WAIT

| DDLOCK_WRITEONLY,

(void **) &pVertices, NULL);

Greifen Sie auf den Speicher so zu, dass
Sie lhre Vertex-Daten schreiben koén-
nen. Achten Sie darauf, dass Sie nicht
mehr Daten schreiben, als der Vertex-
Buffer aufnimmt. Daflir haben Sie eine



: 5

1

B ! 3

4] 2 5

D3DPT_TRIANGLELIST D3I0OPT_TRIANGLESTRIP

D3DPT_TRIANGLEFAN

per Definition gege-
ben. Weniger Kanten
teilen sich Polygone,
die nicht vollstandig
auf dem Bildschirm
liegen, bei denen also
ein Teil abgeschnitten

FEINARBEIT: So ubergeben Sie die Polygonnetze.

maximale Anzahl von Vertices angege-
ben. Fullen Sie den Vertex-Buffer so:
for (i=0;i<6;i++){
pVertices->pos.x = ...;
pVertices->pos.y = ...;
pVertices->pos.z = ...;
pVertices->color =
D3DCOLOR(1.0f, 0.0f, 1.0f);
pVertices->texcoord =
D3DXVECTOR2(0.0f, 1.0f);
pVertices++;
}

Ein Unlock-Befehl gibt den Vertex-Buf-
fer wieder frei:
pvbVertices->Unlock();
Verschicken Sie den Inhalt des Vertex-
Buffers zum Zeichnen an Direct3D:
pD3DDevice->DrawPrimitiveVB
(D3DPT_TRIANGLELIST,
pvbVertices, 0, 6,0 );
Ein weiterer Vorteil der Vertex-Buffer:
Wenn Sie Direct3D die Transformatio-
nen tbernehmen lassen und ein nicht
animiertes 3D-Objekt (nur Vertices) im
dreidimensionalen Raum Ubergeben,
konnen Sie einen Vertex-Buffer einma-
lig anlegen und immer wiederverwen-
den. Sie kdnnen das Objekt aber noch
frei mit Matrizen bewegen und drehen.
Direct3D passt haufig verwendete Ver-
tex-Buffer automatisch und optimiert
fir das verwendete Direct3D-Device an.
Dazu dient die Funktion
pvbVertices->Optimize
( pD3DDevice, 0);

Wenn Sie lhre Vertex-Daten auf Per-
formance optimieren, sollten Sie Ver-
tex-Buffer mit dem Drawlndexed-
VB(...)-Befehl verwenden. Alle Poly-
gon-Daten lassen sich in indizierte Poly-
gonnetze umwandeln. Unser Artikel
bietet dazu mit poly2ver.cpp den Pseu-
docode. Als Feinarbeit Gbergeben Sie die
Polygonnetze nicht lose, sondern in so-
genannten Triangle-Strips oder Tri-
angle-Fans.

Der Vorteil der Ubergabe von Tri-
angle-Strips oder Triangle-Fans: Der
3D-Beschleuniger hat es mit weniger
unterschiedlichen Kanten zu tun. Er
kann bei Triangle-Lists nicht erkennen,
dass sich zwei Dreiecke eine Kante tei-
len, wenn sie die gleichen Indizes ver-
wenden. Bei Triangle-Strips/Fans ist das

(geclipped) wird.
Dann braucht der
3D-Beschleuniger ei-
ne Kante nur einmal zu clippen.

Wenn Sie alles mit oder ohne Vertex-
Buffer gezeichnet haben, beenden Sie
den VVorgang mit

pD3DDevice->EndScene();
und stellen das Bild dar:

pD3DX->UpdateFrame(0);

Der Vergleich &lterer Direct3D-Versio-
nen mit Direct3DX zeigt, dass sich Di-
rect3D OpenGL mit seiner GL UTtility-
Library (GLUT) annéhert, was das
Handling der Transformationen und
Texturen angeht. AuBer den bereits er-
wéhnten Features erlaubt lhnen Di-
rect3DX wie GLUT, mit einem Matrix-
Stack zu arbeiten und einfache geome-
trische Primitive wie Kugel, Kegel oder
Torus, zu zeichnen.

Auf einem Matrix-Stack kénnen Sie
Matrizen mit
Push- und Pop-

-

PC UNDERGROUND
PRAXIS

gen Sie mit dem 1D3DXSimpleShade-
Interface von Direct3DX. Die Funktio-
nen dieses Interfaces liefern lhnen die
Daten in Form eines Vertex-Buffers mit
den Vertices und Texture-Mapping-Ko-
ordinaten und einer Indexliste flr die
Polygone.

Das Beispielprogramm liest MD2-Da-
teien ein, welche Vertex-, Textur- und
Animationsdaten speichern, und stellt
diese dar. In der Datei MD2model.cpp
(auf der Heft-CD) finden Sie die Routi-
nen, um MD2-Dateien zu lesen und die
darin enthaltenen Daten fur die Ausga-
be mit Direct3D aufzubereiten. app.cpp
initialisiert und steuert dabei den Ablauf
des Beispielprogrammes. ET

Die Quelltexte sowie die fertig tibersetzten Pack-
programme finden Sie auf unserer Heft-CD 1im
Verzeichnis Praxis/PC-Underground und auf unse-
rer Website unter www.pc-magazin.de/magazin/
extras.htm

Klicken Sie unter Online Extras im Ment Praxis auf
das entsprechende Download-Feld.

5)-6

Operationen spei-

= /] Polygon- in Shared- Vert ex- Pol ygon

chern. Matrix- = /] poly2ver.cpp
Operationen ver- z ;ypedef struct
andern nur die VERTEX a, b, ¢

oberste Matrix auf
dem Stack. Ma-
trix-Stacks  sind

DO WN

} TR ANGLE;

= /] Shared Vertex Daten
= VERTEXVer t exLi st [ MAXV] ;
10:

intnVertices;

vor allem prak- 11 i nt TrLangI eLi Ist[NAXT][S];
; I 12: i nt nl dxTri ;
tisch, wenn Sie mit SR
einem hierar- 14: /] Sucht Vertex in VertexList
. 15: // und liefert dessen |ndex.
chisch aufgebau- 16z // Kein Vertex vorhanden? Ei nfugen!
ten, animierten i; i{nt I ndexCF ( VERTEX v )
3D-Objekt arbei- 19: for (int i =0; i < nVertices; i+
ten 20:
' 3 21: if ( Equal ( v, VertexList[ i ] )
Das funktio- 22: return i;
. . - . 233
niert dhnlich wie 24: VertexList[ nVertices ] = v;
bei dem Bewe- 25z  nVertices +
26: return nVertices - 1;
gungsablauf von 27: )
A _ _ 28:
Korper Ober 29: voi dConvert 2| dx
arm-Unterarm- 30: ( TRIANGLE *src, int nTriangles )
H 31 {
Hand. Wenn sich 32. nvertices = 0;
der Korper be- 33: ?I dxTri angl e (:) nTri angl es; :
34: int i =0; i <nTri G
Wegt, bewegen = {or (int i i nTriangl es; i ++ )
sich alle drei ande- gg Trilang' eg?t[ i[]_[ ?] )=
R 3 ndex src[ i ].a
ren Teile auch. Be- 38: TriangleList[ i ][ 1] =
i _ 39: IndexCf( src[ i ].b)
Wegt sich _der Un 40: TriangleList[ i ][ 2] =
terarm, iIst nur 41:  IndexCf( src[ i ].c)
; _ 42: }
noch die Hand be Pt
troffen. . —
. poly2ver.cpp wandelt ein Polygon- in ein Shared-Vertex-Polygon-
Geometrische Netz um.
Primitive erzeu-

PC Magazin Juni 2000 249



