
256 Juli 2000 PC Magazin

P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R

Um effektvolle Routinen zu pro-
grammieren, brauchen Sie ne-
ben der Idee die richtigen Da-

ten. Wichtig für eine ansprechende Dar-
stellung sind die Texturen, die Sie den
3D-Objekten zuweisen.

Texturen sind Bilder oder Bitmaps,
die Sie auf Polygone kleben. Texturen
können neben Farbinformationen einen
Alphakanal enthalten. Dieser speichert
für jeden Pixel der Textur (auch Texel
genannt) einen Alphawert. Alphawerte
verwenden Sie für Transparenzeffekte.
Beim hier gewählten Texturformat ver-
fügen Sie für den Alpha-, Rot-, Grün-
und Blauwert über je acht Bits. Die
Farbwerte setzen sich durch additive
Farbmischung zusammen. Ein Alpha-
wert von 255 bedeutet, dass ein Pixel
opak (undurchsichtig) ist, ein Wert von
0 zeigt Transparenz an.

Aus Heft 6/00, (ab S. 246) wissen Sie,
wie man Texturen direkt aus bmp-Da-
teien liest. Um einen Alphakanal für die
Textur anzulegen, laden Sie die Textur in
ein vorgebenes Texturformat. Die Kon-

stante, die dieses Texturformat, bezeich-
net, lautet:

D3DX_SF_A8R8G8B8

Kürzen Sie dieses Format mit
A8R8G8B8 oder ARGB ab. Es sollen je
acht Bits für alle Kanäle und einen Al-
phakanal reserviert werden. Mit folgen-
den Zeilen laden Sie eine ARGB-Textur:

D3DX_SURFACEFORMAT
sf = D3DX_SF_A8R8G8B8;

DWORD flags =
D3DX_TEXTURE_NOMIPMAP;
LPDIRECTDRAWSURFACE7 pTex;

D3DXCreateTextureFromFile
(D3DDevice,&flags,0,0,&sf,NULL,
&pTex,NULL,file,D3DX_FT_POINT);

In der Textur steht außer dem Wert 255
für jeden Texel die Bitmap. Diese Textu-
ren (Surfaces) bleiben im Speicher. Sie
greifen darauf zu, um Inhalte zu ändern.

Dazu fordern Sie die Surface an und
sperren sie für andere Prozesse. Die fol-
genden Routinen behandeln eine
A8R8G8B8-Textur:

surface = ptex;
// Textur von oben ändern

DDSURFACEDESC2 ddsd;
ddsd.dwSize = sizeof(ddsd);
while(surface->Lock

(NULL, &ddsd, 0, NULL) ==
DDERR_WASSTILLDRAWING);

Die Lock-Funktion
füllt beim Aufruf die
DDSURFACEDE-
SC2-Struktur mit den
Informationen über
die Surfaces wie Brei-
te, Höhe, Pitch und
setzt einen Zeiger auf
die Texturdaten. Die
Anzahl der Bytes va-
riiert von der Zahl der
Pixel. Hier interessie-
ren folgende Daten:

DWORD lPitch =
ddsd.lPitch;

BYTE* pBytes =
(BYTE*)ddsd.lpSur-

face;

// feste Werte für A8R8G8B8
DWORD dwAShiftR = 24;
DWORD dwAMask = 0xff000000;

Nun können Sie Texel für Texel das Bild
durchgehen und die Alphawerte ändern:

// enthält neue Alphawerte
unsigned char *pdata;
...
for(DWORD y=0; y<
ddsd.dwHeight; y++)
{

DWORD* pDstData32 =
(DWORD*)pBytes;

for(DWORD x=0; x<
ddsd.dwWidth; x++)

{
DWORD da = (pdata[y *

ddsd.dwWidth + x] <<
dwAShiftR) & dwAMask;

pDstData32[x] &= (DWORD)
(-1 ^ dwAMask);
pDstData32[x] |= (DWORD)(da);

}
pBytes += ddsd.lPitch;

}

Nach allen Änderungen müssen Sie die
Surface wieder freigeben, um damit wei-
ter arbeiten zu können:

surface->Unlock(NULL);

■ Alpha-Blending
Nun liegt Ihnen eine Textur mit Alpha-
werten vor. Den Alphakanal verwenden
Sie hauptsächlich dazu, Objekte trans-
parent erscheinen zu lassen.

Hier ist die Textur der Kugel transpa-
rent über dem Hintergrund gezeichnet.
Eine schwebende durchsichtige Kugeln
über Wasser fasziniert den Betrachter.
Dazu müssen Sie die Direct3D Render-
states mit folgenden Schritten anpassen:

// Textur wählen
D3DDevice->SetTexture(0,pTex);
// Alpha Blending aktivieren
D3DDevice->SetRenderState

(D3DRENDERSTATE_
ALPHABLENDENABLE, TRUE);

Mit folgender Zeile erscheinen die Farb-
werte der Kugeln in voller Intensität:

D3DDevice->SetRenderState
(D3DRENDERSTATE_SRCBLEND,

D3DBLEND_ONE);

Texturen mit Alphakanal

Grafikzauber in 3D
Profis programmieren mit Direct3D, um grafisch anspruchsvolle Aufgaben zu
lösen. Wer 3D-Beschleuniger einsetzt, kann sein Publikum mit grafischen
Spielereien verwöhnen.

DIE TEXTUR LIEGT transparent über der Kugel.

PC Magazin Juli 2000 257

P C U N D E R G R O U N D
P R A X I S

Dazu addieren Sie die Farbwerte des
Hintergrunds, die Sie zuvor mit dem
umgekehrten Alphawert der Textur
(255 minus Alphawert) multiplizieren:

D3DDevice->SetRenderState
(D3DRENDERSTATE_DESTBLEND,

D3DBLEND_INVSRCALPHA);

Stellen Sie das Beispiel wie im Bild auf
Seite 256 transparent dar:
• Für das additive Shading genügt es, die
Farbintensitäten zu addieren:

D3DDevice->SetRenderState
(D3DRENDERSTATE_SRCBLEND,

D3DBLEND_ONE);
D3DDevice->SetRenderState

(D3DRENDERSTATE_DESTBLEND,
D3DBLEND_ONE);

• Für herkömmliche transparente Ob-
jekte wie buntes Glas geben Sie ein:

D3DDevice->SetRenderState
(D3DRENDERSTATE_SRCBLEND,

D3DBLEND_SRCALPHA);
D3DDevice->SetRenderState

(D3DRENDERSTATE_DESTBLEND,
D3DBLEND_INVSRCALPHA);

Es gibt noch viele andere Kombinatio-
nen, doch nicht jede Grafikkarte unter-
stützt alle. Werfen Sie deshalb einen
Blick in die Hilfefunktion des DX7-
SDK. Zusätzlich fragen Sie beim Pro-
grammstart ab, welche der Device Caps
(vgl. PC Underground 6/00, S. 246) die
Hardware bedienen kann.

■ Alphatesting
Eine weitere Anwendung für den Al-
phakanal ist das Alphatesting. Dabei
machen Sie vom Alphawert eines Texels
abhängig, ob dieser gezeichnet werden
soll: Entweder soll der Texel vollständig
opak oder transparent erscheinen.

Dazu legen Sie einen Referenzwert
fest, der bestimmt, ob die zu zeichnen-
den Texel einen kleineren, größeren
oder gleichen Alphawert aufweisen
müssen. Normalerweise verwenden Sie

die Alphatest-Funk-
tionalität dazu, um
Ränder von 3D-Ob-
jekten über der Tex-
tur feiner zu zeich-
nen, als dies mit einer
erträglichen Anzahl
von Polygonen
machbar wäre. Wir
wollen zwei Bitmaps
ineinander überblen-
den.

Im Bild unten links
sehen Sie zwei Textu-
ren, die übereinander
gezeichnet werden. Der zweiten Textur
weisen Sie die Alphawerte zu, die Sie in
der Mitte als Graustufenbild sehen.
Dann schalten Sie den Alphatest ein, um
den Alpha-Referenzwert zwischen 0
und 255 zu variieren. Dadurch erhalten
Sie den Effekt, dass sich die zweite Tex-
tur Stück für Stück nach einem nicht
gleich erkennbaren Muster über die ers-
te ergießt. Der Code dazu lautet:

D3DTLVERTEX vQuad[4];
// vQuad: Rechteck-Koordinaten
// für FullScreen füllen
D3DDevice->SetRenderState

(D3DRENDERSTATE_
ALPHABLENDENABLE, FALSE);

D3DDevice->SetRenderState
(D3DRENDERSTATE_
ALPHATESTENABLE, FALSE);

// erstes Mal zeichnen
D3DDevice->SetTexture

(0,textur1);
D3DDevice->DrawPrimitive

(D3DPT_TRIANGLEFAN,
D3DFVF_TLVERTEX, vQuad, 4, 0);

// Alpha Test anschalten
D3DDevice->SetRenderState

(D3DRENDERSTATE_ALPHATESTENABLE,
TRUE);
D3DDevice->SetRenderState

(D3DRENDERSTATE_ALPHAFUNC,
D3DCMP_GREATER);

D3DDevice->SetRenderState
(D3DRENDERSTATE_ALPHAREF,

AlphaRef);

//mit zweiter Textur zeichnen
D3DDevice->SetTexture
(0, textur2);
D3DDevice->DrawPrimitive
(D3DPT_TRIANGLEFAN,
D3DFVF_TLVERTEX, vQuad, 4, 0);

Damit sind die wichtigsten Prinzipien des
Alpha-Blending umrissen. Um interes-
sante Effekte zu erzielen, verändern Sie
Parameter und Texturen. Die Mittel dazu
gibt Ihnen das Programm an die Hand.

■ Multitexturing
Weitere schöne Effekte erzielen Sie da-
durch, dass Sie nicht nur eine einzige
Textur verwenden, sondern einem Ob-
jekt mehrere zuordnen. Das ließe sich
zwar alles auf einer Textur darstellen,

doch verwenden Sie lieber mehrere Tex-
turen.

Keine 3D-Beschleunigerkarte verfügt
über unbegrenzten Texturspeicher.
Wenn Sie Texturen im Hauptspeicher
halten, bremst das Verfahren trotz rela-
tiv schnellem Datentransport über den
PCI- oder AGP-Bus immer noch den
Bildaufbau aus.

Stellen Sie sich ein Objekt vor, das ei-
ne Textur wie eine Steinmauer mitbrin-
gen soll. Nun wollen Sie Lichteffekte auf
diese Mauer fallen lassen, wozu Sie eine
sogenannte Lightmap verwenden. Die
Lightmap ist eine viel kleinere Textur,
die sich aber auch über die gesamte Mau-
er erstreckt und nur Helligkeitsinfoma-
tionen enthält. Diese Textur ist kleiner,
weil sie dynamisch berechnet werden
soll. Erst beide Texturen zusammen er-
geben den erwünschten Effekt. Das Pro-
gramm MFCTEX lässt Sie mehrere Tex-
turen gleichzeitig kombinieren. Sie kön-
nen sich sogar den Quellcode für die ent-
sprechende Einstellung ausgeben lassen.
Wenn Sie mehrere Texturen verwenden,
heißt dieses Verfahren Multitexturing.

Spiegeln Sie Effekte: Wenn Sie ein
Objekt schon mit eigener Textur verse-
hen haben, brauchen Sie dazu eine zwei-
te Textur. Wenn Sie Texturen spiegeln
wollen, nennt sich dieser Vorgang Envi-
ronment Mapping, weil die Umgebung
auf der Texture-Map zu sehen ist.

Für diese Effekte müssen Sie Ihrem
3D-Objekt zwei Sätze von Texturkoor-
dinaten zuweisen. Zuerst legen Sie einen
Vertex-Buffer wie folgt an:

D3DVERTEXBUFFERDESC vbdesc;
vbdesc.dwSize = sizeof(vbdesc);
vbdesc.dwCaps = 0;
vbdesc.dwFVF = D3DFVF_XYZ |
D3DFVF_NORMAL | D3DFVF_TEX2;
vbdesc.dwNumVertices = 20000;

D3D7->CreateVertexBuffer
(&vbdesc,
(IDirect3DVertexBuffer7**)

&pVertexBuffer, 0); q

IN ZWEI ÜBEREINANDER gezeichneten
Texturen erhalten Sie mit Alphawerten
das Graustufenbild.

MIT DEM PROGRAMM MFCTEX kombinieren Sie mehrere Tex-
turen gleichzeitig.

258 Juli 2000 PC Magazin

P C U N D E R G R O U N D
P R A X I S

Dabei verwenden Sie ein Format für die
Vertices (Eckpunkte), das Sie noch defi-
nieren müssen.

typedef struct
{

// Koordinaten
D3DVALUE dvX, dvY, dvZ;
// Normale
D3DVALUE dvNX, dvNY, dvNZ;
// Texturkoordinaten
D3DVALUE

dvTU, dvTV, dvTU2, dvTV2;
}D3DVERTEX2;

Folgendermaßen spiegeln Sie Effekte
über eine Environment Map: Sie berech-
nen eine Textur mit einem zweiten Satz
von Texturkoordinaten abhängig von
der Position des Betrachters und der
Objektrotation für jedes Bild neu. Den
Vertex-Buffer können Sie nicht von Di-

rect3D per Optimize(...) optimieren, da
Sie sonst nicht mehr auf dessen Inhalt
zugreifen dürfen.

Im Gegensatz zur Bewegung der Ka-
mera (vgl. Heft 6/00, S. 246) kehren Sie
jetzt die Transformationen um, um die
Texturkoordinaten zu berechnen. Sie
können eine Hälfte des dreidimensiona-
len Raums in einer Textur halten. Der
Blickwinkel geht hierbei vom spiegeln-
den Objekt aus, wobei Sie ein recht ver-
zerrtes Bild erhalten. Die dazugehörigen
Texturkoordinaten berechnen Sie wie
folgt.

//Kamera- und Objektbewegung

D3DXMATRIX amatWorld,
amatView, matWV;
D3DDevice->GetTransform
(D3DTRANSFORMSTATE_VIEW,

amatView);
D3DDevice->GetTransform

(D3DTRANSFORMSTATE_WORLD,
amatWorld);

D3DXMatrixMultiply (&matWV,
&amatWorld, &amatView);
//Normalen drehen
//und Texturkoordinaten

// für jede Normale (nx,ny,nz)

dvTU2 = 0.5f * (1.0f +
(nx*matWV.m[0][0]+ny*

matWV.m[1][0]
+ nz*matWV.m[2][0]));

dvTV2 =0.5f *(1.0f-(nx*matWV.m
[0][1] + ny*matWV.m[1][1] +
nz*matWV.m[2][1]));

Im Bild unten sehen Sie einen ver-
schlungenen Knoten (Torusknoten) mit
einer Environment Map. Das Bild ent-
hält nur eine Lichtquelle. Mit zwei Tex-
turen erzielen Sie schon einfache Be-
leuchtungseffekte. Die Beleuchtung ist
eine Nachahmung der Phong-Beleuch-
tung, die über Environment Maps nur
von den neuesten 3D-Beschleunigern
unterstützt wird.

■ Marching-Cubes-
Algorithmus
Jetzt starten Sie unser Beispielprogramm
und beobachten, wie sich die sichtbaren
Kugeln bewegen und miteinander ver-
schmelzen. Diese 3D-Objekte berech-
net der Marching-Cubes-Algorithmus.
Ihn haben William E. Lorensen und
Harvey E. Cline entwickelt, um
Flächeninformationen aus einem dreidi-
mensionalem Feld zu berechnen. Die
Fläche (Isofläche genannt) taucht überall
dort auf, wo innerhalb des Felds ein
Wert vorliegt. Marching-Cubes-Algo-
rithmus wird vorwiegend bei der medi-
zinischen Datenverarbeitung, geologi-
schen Scans und zur Visualisierung von
Äquipotentialflächen elektrischer Fel-
der und Ladungen verwendet.

Die Eingabedaten enthalten einen Re-
ferenz-float-Wert, auf dem die Isofläche
liegen soll. Es wird untersucht, ob ein
Punkt im Eingabefeld innerhalb oder
außerhalb der Isofläche liegt, also sein

Wert kleiner oder größer als der Refe-
renzwert ist.

Der Marching-Cubes-Algorithmus
unterteilt den betrachteten Raum in klei-
ne Würfel. Überprüfen Sie für die Eck-
punkte jedes Würfels, ob sie innerhalb
oder außerhalb der Isofläche liegen.
Dann ersetzen Sie den Würfel durch ei-
ne Reihe von Polygonen. Alle so gene-

rierten Polygone stellen angenähert die
Isofläche dar.

Im Bild oben sehen Sie ein Gitter mit
einem eingezeichneten Kreis, den Linien
annähernd darstellen sollen. Berechnen
Sie für alle Eckpunkte die Gitterquadra-
te, welche grüne Punkte symbolisieren.
Diese liegen innerhalb oder außerhalb
des Kreises. Fügen Sie Start- und Eck-

punkte für die Linien ein, die dem Sche-
ma entsprechen.

Wenn Sie die Punkte zu einem Lini-
enzug verbinden, sehen Sie ungefähr den
Kreisrand. Diese Vorgehensweise über-
tragen Sie auf die dritte Dimension. Da
ein Würfel acht Ecken hat, und jede der

Ecken entweder in-
nerhalb oder außer-
halb liegen kann,
müssen Sie maximal
2^8 = 256

Fallunterscheidungen
berechnen. Gehen Sie
zunächst von 15 Ba-
sisfällen aus, die das
folgende Bild ver-
deutlicht. Alle ande-
ren Kombinationen
erhalten Sie durch
Drehung, Spiegelung
und Vertauschen von
inneren und äußeren
Perspektiven.

Um die Isofläche
einfacher berechnen

DER BLICKWINKEL GEHT vom spiegelnden
Objekt aus, wobei Sie ein recht verzerrtes
Bild erhalten.

DIESER TORUSKNOTEN mit nur einer Lichtquelle ahmt die
Phong-Beleuchtung nach.

IM ZWEIDIMENSIONALEN Raum lässt sich
die Isofläche besser verdeutlichen.

DIE ZUERST BERECHNETEN Eckpunkte der
Gitterquadrate symbolisieren grüne Punk-
te.

PC Magazin Juli 2000 259

P C U N D E R G R O U N D
P R A X I S

zu können, speichern Sie alle Fälle in Ta-
bellen. Sie finden die Tabelle im Quell-
code unseres Beispielprogramms auf der
Heft-CD.

Die Tabelle in unserem Beispielpro-
gramm liefert für jeden der 256 Fälle ei-
ne Liste mit Polygonkanten. Die Dar-
stellung kann zwischen null und vier
Dreiecke für einen Würfel erfordern. Ei-
ne zweite Tabelle dient dazu, die Eck-

punkte für die Kanten zu finden. Die
Qualität der Darstellung verbessern Sie,
indem Sie die Eckpunkte der Polygone
verschieben. Im zweidimensionalen Bei-
spiel verändern Sie Start-/Endpunkte
der Linien.

Sie legen fest, ob Eckpunkte innerhalb
oder außerhalb der Körper oder Flächen
liegen. Es ist damit nicht gewährleistet,
dass der Referenzwert genau zwischen
den Gitterpunkten liegt. Setzen Sie den
Eckpunkt also nicht ganz genau in der
Mitte an.

Einfacher, aber dennoch gut ist es, den
Verlauf der float-Werte zwischen zwei
Gitterpunkten als linear anzunehmen.
Dann können Sie durch eine einfache
Quotientenbildung eine bessere Positi-
on für den Eckpunkt berechnen.

Abschließend stellen Sie dem Pro-
gramm die Eingabedaten zur Verfü-
gung. Dabei handelt es sich um ein drei-
dimensionales Array von float-Werten.
Anfangs setzen Sie jeden Eintrag auf den
Wert 0. Übergeben Sie alle Einträge mit
den Koordinaten x, y, z, deren Werte Sie
nach weiteren Vorlagen ändern. Für ei-
ne punktförmige elektrische Ladung
verwenden Sie folgende Formel:

// Position der Ladung:
// tx1, ty1, tz1

Feld[z][y][x] =
1.0f / ((x-tx1)*(x-tx1) +
(y+ty1)*(y+ty1) +
(z-tz1)*(z-tz1));

Das Beispielprogramm stellt vier dieser
Ladungen dar. Sie können nicht nur Ku-
geln darstellen, sondern alle mathemati-

schen impliziten Flächen wie einen
Torus oder Kegel (implizit beschreibt
Formen, welche mathematische Funk-
tionen darstellen können). Experimen-
tieren Sie mit den Einstellungen und
Renderstates. s E T

Die Quelltexte sowie die fertig übersetzten Routi-
nen finden Sie auf unserer Heft-CD im Verzeichnis
Praxis/PC Underground und auf unserer Website
unter www.pc-magazin.de/magazin/extras.htm.
Klicken Sie unter Online Extras im Menü Praxis auf
das entsprechende Download-Feld.

Literatur:
William E. Lorensen and Harvey E. Cline: Marching
Cubes — A High Resolution 3D Surface Construc-
tion Algorithm, Computer Graphics (Proceedings of
SIGGRAPH ‘87), Vol. 21, No. 4, pp. 163-169. www.exa
flop.org

DIESE 15 BASISFÄLLE zeigen den Marching-
Cubes-Algorithmus.

BEI LINEAR ANGENOMMENEM Verlauf der
float-Werte zwischen zwei Gitterpunkten
lassen sich Eckpunkte leichter berechnen.

