
234 September 2000 PC Magazin

P C U N D E R G R O U N D
P R A X I S

C . D A C H S B A C H E R /
O . K Ä F E R S T E I N

Als Programmierer können Sie
optische Reize mit akustischen
Signalen untermalen. Schöpfen

Sie das Arsenal der Audiofunktionen in
DirectX7 aus, um eine Demo, ein Spiel
oder eine Multimedia-Anwendung zu
bereichern. DirectX unterscheidet dabei
zwei Komponenten: DirectSound und
DirectMusic.

Mit der API (Application Program-
ming Interface) DirectSound können Sie
Wave-Daten abspielen und aufnehmen.
DirectSound verschiebt Sound in den
Ausgabepuffer der Soundkarte. Direct-
Sound beschleunigt die Hardware und
lässt sie auf die Sound-Hardware zugrei-
fen. Bei diesem Zugriff bleibt die Kom-
patibilität zu den Gerätetreibern gewahrt.

Die zweite Audiokomponente, Di-
rectMusic, ist der Teil des DirectX-Sys-
tems, der Musik ausgibt. DirectMusic ar-
beitet nicht mit Wave-Daten, sondern
mit auf Nachrichten basierenden Mu-

sikdaten. Dazu gehören MIDI-Dateien
(Musical Instrument Digital Interface),
die die MIDI-Hardware oder ein Soft-
ware-Synthesizer in hörbare Wave-Da-
ten umwandeln muss.

DirectMusic kann nicht nur MIDI-
Dateien abspielen, sondern Musik auch
während der Laufzeit eines Programms
komponieren, zumindest generieren.
Das Verfahren basiert nicht auf einem
Klang variierenden Algorithmus, son-
dern auf Elementen, die ein Musiker
vorgibt. Dabei unterstützt ihn der Di-
rectMusic-Producer, eine weitere Kom-
ponente von DirectX. DirectMusic greift
auf Akkordfolgen, vorgegebene Musik-
stile und Klangmuster zurück, um dyna-
misch auf Ereignisse reagieren zu kön-
nen. Damit beleben Sie ein Computer-
spiel mit einer satten Klangkulisse.

■ Direct Sound
DirectX versucht, mit wenig Rechenzeit
auszukommen. Die Komponente Di-
rectSound nutzt dazu die Sound-Hard-
ware, ohne dass Sie Details der Hard-
ware kennen müssen. Programme, die

Sie mit DirectSound
ausstatten, klingen
schon auf einfachen
Soundkarten gut.
Wenn eine Soundkar-
te mit ihren Treibern
zusätzliche Effekte
bietet, nutzt Direct-
Sound diese ebenfalls.
DirectSound kann so-
gar Effekte ansteuern,
die beim Erscheinen
einer derzeitigen Di-
rectSound-Version
noch nicht bekannt
sind.

Ohne DirectSound
einzusetzen, kann

Windows mit seinen herkömmlichen
Funktionen Wave-Dateien erklingen
lassen. Dazu spielen PlaySound und
WaveOut Sound oder Audiostream ab.

DirectSound sprechen Sie über das
IDirectSound-Interface an. Sound Buf-
fers und 3D-Sound-Effekte können Sie
auch mit den Interfaces IDirectSound-
Buffer, IDirectSound3DBuffer und
IDirectSound3DListener verändern.

Mit dem IDirectSoundNotify-Inter-
face versenden Sie Signale. Hat der
Sound Buffer eine Playback-Position er-
reicht, können Sie automatisch ein Sig-
nal verschicken lassen.

So steuern Sie DirectSound an: Suchen
Sie ein geeignetes Ausgabegerät, oder
verwenden Sie das vom Benutzer ge-
wählte Standardausgabegerät. Wenn Sie
ein spezielles Gerät suchen oder mehre-
re Geräte verwenden wollen, müssen Sie
– wie immer bei DirectX – die Funktion
EnumerationCallback ansteuern:

// Callback Funktion
BOOL CALLBACK DSEnumProc

(LPGUID lpGUID,
LPCTSTR lpszDesc,
LPCTSTR lpszDrvName,
LPVOID lpContext)

{
// Wertvorgabe in lpContext

LPGUID lpTemp = NULL;

if (lpGUID != NULL)
{

// Gerät gefunden Info speichern
lpTemp = malloc(sizeof(GUID));
memcpy
(lpTemp, lpGUID, sizeof(GUID));

}

return TRUE;
}

Um mehrere Geräte aufzuzählen, star-
ten Sie mit:

if FAILED(DirectSoundEnumerate
((LPDSENUMCALLBACK)DSEnumProc,

lpContext))
{

// Fehler
}

Nachdem Sie sich für ein DirectSound-
Gerät entschieden haben, initialisieren
Sie es. Die Funktion

HRESULT WINAPI
DirectSoundCreate
(LPCGUID lpcGuid,
LPDIRECTSOUND * ppDS,
LPUNKNOWN pUnkOuter);

erzeugt und initialisiert das IDirect-
Sound-Interface. Wenn Sie statt des Zei-
gers auf einen Globally Unique Identifier
(GUID) einen Nullpointer angeben,
wählen Sie das Standardausgabegerät.
Dieses hat der Benutzer in der System-
steuerung eingetragen. Im zweiten Para-

DirectSound und DirectMedia

Guter Ton
Statten Sie Ihre Programme mit Hilfe der DirectX-
Komponente DirectSound so mit 3D-Klängen aus,
dass sich ein Spieler am PC wie in einer Spiel-
hölle fühlt.

AUF CD
Die Quelltexte sowie die fertig übersetzten

Routinen finden Sie auf unserer Heft-CD im

Verzeichnis Praxis/PC Underground.

MIT DEM BEISPIELPROGRAMM drehen Sie an den Parametern,
um Sound aus allen Richtungen zu hören.

PC Magazin September 2000 235

P C U N D E R G R O U N D
P R A X I S

meter übergeben Sie die Adresse eines
Zeigers auf ein DirectSound-Objekt, das
Sie mit dem Funktionsaufruf erzeugen
wollen. Der dritte Parameter muss 0 sein.

Nach der Initialisierung müssen Sie –
wie stets bei DirectX-Geräten – den Ko-
operationslevel festlegen. Bei Spielen
wollen Sie sicher sein, dass kein anderes
Programm Soundeffekte im Hinter-
grund abspielt. Wählen Sie den DS-
SCL_EXCLUSIVE-Level. Damit kann
nur die Anwendung das Direct-Sound-
Gerät verwenden, die gerade aktiv im
Vordergrund ist. Mit DSSCL_PRIO-
RITY können Sie auch das Soundformat
festlegen.

Damit steht das Grundgerüst für
unser Beispielprogramm. Den Koopera-
tionslevel setzen Sie mit der Funktion

HRESULT SetCooperativeLevel
(HWND hwnd, DSSCL_PRIORITY);

DirectSound legt von Haus aus einen
primären Buffer an, in dem die Sound-
daten aufgehoben und an die Soundkar-
te geschickt werden. Legen Sie dessen
Format fest. Geben Sie folgende Code-
zeilen ein, um auf den Buffer zugreifen
zu können:

LPDIRECTSOUND _ds;

if(FAILED(::DirectSoundCreate
(NULL, &_ds, NULL)))

return false;
if(FAILED(_ds->

SetCooperativeLevel(hwnd,
DSSCL_PRIORITY)))

return false;
if (FAILED(hr = _ds->
CreateSoundBuffer(&dsbd,
&pDSBPrimary, NULL)))return hr;

// Primärer Buffer
WAVEFORMATEX wfx;
ZeroMemory(&wfx, sizeof

(WAVEFORMATEX));
wfx.wFormatTag =

WAVE_FORMAT_PCM;

wfx.nChannels = 2;
wfx.nSamplesPerSec = 22050;
wfx.wBitsPerSample = 16;
wfx.nBlockAlign =

wfx.wBitsPerSample
/8*wfx.nChannels;
wfx.nAvgBytesPerSec =
wfx.nSamplesPerSec *

wfx.nBlockAlign;
if(FAILED(hr = pDSBPrimary->
SetFormat(&wfx)))return hr;

Danach geben Sie den primären Buffer
wieder frei:

SAFE_RELEASE(primary);

Im nächsten Schritt fordern Sie einen
DirectSound-Buffer an, in dem Sie Ihre
Wave-Daten speichern und ausgeben.
Ein solcher sekundärer Sound Buffer

nimmt entweder ei-
nen einzelnen Sound-
effekt auf, oder sein
Inhalt ändert sich lau-
fend. Sie können den
Klang in einer End-
losschleife hören oder
nur einmal abspielen.

Mit Buffers können
Sie Daten auch stück-
weise einlesen (strea-
men). Das erledigt un-
ser Beispielcode, der
eine MP3-Datei über
DirectMedia in Di-
rectSound umleitet.
Die Sounds von meh-
reren sekundären
Sound Buffers kön-
nen Sie mischen, in-

dem Sie mehrere gleichzeitig abspielen.
Sie können je nach Rechenzeit beliebig
viele Soundeffekte gleichzeitig abspielen.
Die Latenzzeit von DirectSound beginnt
mit dem Zeitpunkt, zu dem das Abspie-
len startet, und endet, wenn Sie etwas
hören (etwa 20 Millisekunden). Die Ver-
zögerung ist so kurz, dass Sie in einem
Spiel einen Soundeffekt starten und
gleichzeitig die zugehörige Animation
auf dem Bildschirm beginnen können.
Sie wird nur größer (bis etwa 100 oder
150 Millisekunden), wenn DirectSound
spezielle Hardware-Features mit Soft-
ware-Routinen emulieren muss.

Zu diesem Zweck füllen Sie die DS-
BUFFERDSC-Struktur mit Informa-
tionen über den gewünschten Direct-
Sound-Buffer aus und lassen sich ei-
nen Buffer erzeugen. Als Resultat erhal-
ten Sie einen Zeiger auf das IDirect-
SoundBuffer-Interface, mit dem Sie den
Buffer modifizieren und abspielen kön-
nen:

PCMWAVEFORMAT pcmwf;
DSBUFFERDESC dsbdesc;

HRESULT hr;
// Wave Format Struktur
memset(&pcmwf, 0, sizeof

(PCMWAVEFORMAT));
pcmwf.wf.wFormatTag =

WAVE_FORMAT_PCM;
pcmwf.wf.nChannels = 2;
pcmwf.wf.nSamplesPerSec = 22050;
pcmwf.wf.nBlockAlign = 4;
pcmwf.wf.nAvgBytesPerSec =

pcmwf.wf.nSamplesPerSec
* pcmwf.wf.nBlockAlign;

pcmwf.wBitsPerSample = 16;
// DSBUFFERDESC Struktur füllen
memset
(&dsbdesc, 0, sizeof(DSBUFFERDE-
SC));
dsbdesc.dwSize =
sizeof(DSBUFFERDESC);
//Default: Pan,Volume,Frequency
dsbdesc.dwFlags=DSBCAPS_CTRLPAN
| DSBCAPS_CTRLVOLUME |
DSBCAPS_CTRLFREQUENCY;
// 3 Sekunden langer Buffer
dsbdesc.dwBufferBytes =
3 * pcmwf.wf.nAvgBytesPerSec;
dsbdesc.lpwfxFormat =
(LPWAVEFORMATEX)&pcmwf;
// und Buffer erzeugen
hr = _ds->lpVtbl->
CreateSoundBuffer(lpDirectSound,

&dsbdesc, _dsbuf, NULL);
if SUCCEEDED(hr)
{ // Interface ist *_dsbuf

return TRUE; }
else { // Fehler !

*_dsbuf= NULL; return FALSE;}

Nun haben Sie alle Strukturen angelegt
und ausgefüllt (allokiert), um Sounds
abzuspielen. Sie sind damit in der Lage,
die Wave-Daten in den sekundären Buf-
fer zu schreiben. Um auf den Buffer zu-
zugreifen und anderen Tasks den Zugriff
zu verweigern, wenden Sie einen Lock-
Befehl auf den Buffer an:

VOID *mem1, *mem2;
DWORD sz1, sz2;
if(FAILED(_dsbuf->Lock

(0,0,&mem1, &sz1, &mem2,
&sz2, DSBLOCK_ENTIREBUFFER)))

return false;

Diese Zeilen greifen ab der aktuellen Zei-
gerposition auf den Buffer zu. Als Rück-
gabe bekommen Sie zwei Zeiger (mem1
und mem2) und zu jedem die Anzahl der
Bytes über die Größe des korrespondie-
renden Speicherbereichs.

Warum bekommen Sie zwei Speicher-
bereiche bei diesem einen Buffer? Wenn
Sie den Buffer loopen, also endlos ab-
spielen, springt er jedesmal zum Anfang
zurück. DirectSound erledigt das für Sie:
Sie bekommen einen ersten Speicherbe-
reich für den Teil des Sounds, der von
der aktuellen Position bis zum Buffer-
ende reicht, und einen eventuellen zwei-
ten, der vom Anfang des Buffers bis zur
aktuellen Position geht.

In den Speicher können Sie mit dem
Format (8, 16 oder 32 Bit) hineinschrei-
ben, das Sie für den Buffer festgelegt ha-
ben. Danach geben Sie den Buffer wie-
der frei: q

DIESE ARCHITEKTUR verbindet die Soundhardware mit einer
Win32-Applikation.

236 September 2000 PC Magazin

P C U N D E R G R O U N D
P R A X I S

_dsbuf->Unlock
(mem1, sz1, mem2, sz2);

Nun können Sie den Buffer abspielen.
Dazu verwenden die Interfaces die Me-
thode ::Play():

HRESULT IDirectSoundBuffer::Play(
DWORD dwReserved1,
DWORD dwPriority,
DWORD dwFlags

);

Der vorgegebene erste Parameter muss 0
sein, der zweite gibt die Prioriät an, wie
Sie den Soundeffekt abspielen wollen.
Dabei ist 0 die niedrigste und 0xffffffff
die höchste Priorität. Sie ist wichtig für
den Direct-Sound-Voice-Manager, der
bei hoher Systemauslastung Sounds
höchster Priorität bevorzugt.

Die Flags wählen Sie in der Hilfe-
funktion des DirectX-SDK. Mit DSB-
PLAY_LOOPING lassen Sie Klänge
aus dem Buffer endlos abspielen. Ande-
re Flags verwenden Sie, um 3D-Sounds
anzusteuern.

Mit DirectSound entlocken Sie Spie-
len, Demos und Multimedia-Anwen-
dungen die richtigen Töne. Für einfa-
chere Applikationen reichen Play
Sound- und WaveOut-Befehle.

■ 3D-Sound mit
DirectSound
Wer eine entsprechende Soundkarte mit
Verstärker und Lautsprechern besitzt,
kann mit DirectSound Klänge im Raum
frei positionieren: Der 3D-Sound plat-
ziert den Hörer (Listener) und die
Sound-Effekte (Sound-Buffer) beliebig
in den Raum. Für den Hörer können Sie
weitere Eigenschaften, wie die Stärke des
Dopplereffektes, festlegen. Für die
Schallquellen können Sie die Abstrahl-
richtung bestimmen.

Wenn Sie 3D-Sound verwenden wol-
len, legen Sie dies mit dem Format des
primären Buffers mit DSBCAPS_
CTRL3D fest:

ZeroMemory (&dsbdesc,
sizeof(DSBUFFERDESC));
dsbdesc.dwSize =

sizeof(DSBUFFERDESC);
dsbdesc.dwFlags=DSBCAPS_CTRL3D |

DSBCAPS_PRIMARYBUFFER;
if(FAILED(hr = _ds->
CreateSoundBuffer(
&dsbdesc, &pDSBPrimary, NULL)))

return hr;

Greifen Sie auf das Interface zu, mit dem
Sie die Attribute für den Hörer festlegen.
Dazu rufen Sie die QueryInterface-Me-
thode vom Objekt des primären Buffers
auf:

// Listener
LPDIRECTSOUND3DLISTENER

pDSListener = NULL;
if(FAILED (hr=pDSBPrimary->
QueryInterface(
IID_IDirectSound3DListener,
(VOID**)&pDSListener)))

return hr;

Das Listener-Interface stellt Ihnen die
Methoden vor, mit denen Sie die ent-
sprechenden Attribute setzen können.
Diese Attribute sind zum Beispiel Fak-
toren wie Doppler-, Rolloff- oder Dis-
tanzeffekt, der Lautstärkenänderungen
für verschiedene Entfernungen be-
schreibt, sowie Position, Geschwindig-
keit und Blickrichtung der Hörers. Die
Ortsangaben bestimmen Sie mit 3D-
Koordinaten. Hier die Positionierung
eines Listeners:

pDSListener->SetPosition
(0,0,1,DS3D_IMMEDIATE);
pDSListener->SetVelocity
(0,1,0,DS3D_IMMEDIATE);
pDSListener->SetOrientation
(0,1,0, 0,0,1, DS3D_IMMEDIATE);

Mit dem DS3D_IMMEDIATE-Flag le-
gen Sie fest, dass die Zustandsänderun-
gen sofort übernommen werden. Das
kostet Rechenzeit. Wollen Sie mehrere
Änderungen vornehmen, aber keine Re-
chenzeit vergeben, verwenden Sie das
DS3D_DEFERRED-Flag und rufen am
Ende aller Änderungen

HRESULT
IDirectSound3DListener::
CommitDeferredSettings()

auf, um sie wirksam werden zu lassen.
Nun fehlt Ihnen noch ein sekundärer

Sound Buffer, der 3D-Sound unter-
stützt. Dazu legen Sie DirectSound-Buf-
fer an und setzen wie beim primären
Buffer das DSBCAPS_CTRL3D-Flag.
Über einen Query-Interface-Aufruf be-
kommen Sie wieder ein DirectSound
3DBuffer-Objekt:

// sekundärer Buffer
LPDIRECTSOUNDBUFFER pDSBuffer
= NULL;
// 3D-Sound Buffer
LPDIRECTSOUND3DBUFFER
g_pDS3DBuffer = NULL;
if(FAILED(hr = _ds->
CreateSoundBuffer
(&dsbd, &pDSBuffer, NULL)))
return hr;

// Get the 3D buffer from the 2.
if(FAILED(hr = pDSBuffer->
QueryInterface(
IID_IDirect
Sound3DBuffer,
(VOID**)&pDS3D
Buffer)))

return hr;

Das IDirectSound3DBuffer- stellt Ih-
nen wie das Listener-Interface Metho-
den zur Verfügung, die Schallquelle zu
positionieren oder die Abstrahlrichtung
festzulegen. Sie können den Schall (Buf-

fer) auch automatisch immer in gleicher
Position zum Hörer platzieren. Direct-
Sound interpretiert die Ortsangaben für
den Buffer dann als relative Koordina-
ten. Dazu nehmen Sie folgenden Code-
ausschnitt:

// 3D Buffer Attribute
DS3DBUFFER dsBufferParams;

dsBufferParams.dwSize =
sizeof(DS3DBUFFER);
pDS3DBuffer->GetAllParameters
(&dsBufferParams);
dsBufferParams.dwMode =
DS3DMODE_HEADRELATIVE;
pDS3DBuffer->SetAllParameters(
&dsBufferParams,
DS3D_IMMEDIATE);

Den Buffer können Sie wie die sekun-
dären Buffer mit der Play-Methode ab-
spielen, ohne sich weiter um den 3D-
Sound kümmern zu müssen. Direct-
Sound übernimmt die Arbeit für Sie. Ein
Beispiel finden Sie im DirectX7-SDK,
das Sie mit den Parametern experimen-
tieren lässt.

■ Streaming von MP3
aus Direct Media
Unser Beispielprogramm auf der Heft-
CD nutzt die Vorteile, die das DirectX-
DirectMedia-Bundle bietet: Es bringt ei-
nen DirectMedia-AudioStream (wav,
mp3, wma) dazu, seine RAW-Daten Di-
rectSound zu liefern.

Diese können Sie in einen Direct-
Sound-Buffer kopieren und damit alles
anstellen, was das DirectSound-Buf-
fer-Interface bietet. Da Sie viele Klassen
aus dem DirectSound- und DirectMedia-
SDK einsetzen, sollten Sie häufiger einen
Blick in die Hilfedateien von DirectX-7
werfen. Die DirectMedia-Hierarchie
zeigt die Verbindung von Win32-Appli-
kationen mit der Sound-Hardware.

Um auf die DirectMedia-COM-Ob-
jekte zuzugreifen, aktivieren Sie die
COM-Schnittstelle für die Applikation:

CoInitialize(NULL);

Anschließend benötigen Sie einen IMul-
tiMediaStream, der in der Klassenhier-
archie von DirectMedia den höchsten
Level eines Streaming-Objekts darstellt.
Dieses kann mehrere MediaStreams auf-
nehmen wie Audio und Video:

IMultiMediaStream
*pMMStream;

Als Nächstes brauchen Sie einen IAM-
MultiMediaStream, der die Schnittstelle
zu den Stream-Funktionen darstellt.
Der Vorteil dieses Interfaces: Es gene-
riert die DirectMedia-Filter selbst. Die-
se benötigen Sie, um die Dateien abzu-
spielen oder anzuzeigen.

PC Magazin September 2000 237

P C U N D E R G R O U N D
P R A X I S

IAMMultiMediaStream *pAMStream;

Den DirectMedia Filter bekommen Sie
auch wieder über die COM-Schnittstel-
le via CoCreateInstance. Dieses liefert
Ihnen ein Object des CLSID-Eintrags.

CoCreateInstance
(CLSID_AMMultiMediaStream, NULL,
CLSCTX_INPROC_SERVER,
IID_IAMMultiMediaStream,
(void **)&pAMStream);

Initialisieren Sie den DirectMedia-
Stream. Lassen Sie den Lesezugriff
(STREAMTYPE_READ) und den zum
Dateityp gehörigen Filter automatisch
abrufen:

pAMStream->Initialize
(STREAMTYPE_READ,
AMMSF_NOGRAPHTHREAD, NULL);

Teilen Sie DirectMedia über die AddMe-
diaStream-Methode mit, was Sie mit dem
Stream vorhaben. Diese bekommt einen
Pointer zu einem Media-Stream-Objekt
als ersten Parameter. Um den Default-
Renderer (die Standardfunktion, um die
Daten aus dem Stream zu extrahieren)
nutzen zu können, tragen Sie für den ers-
ten Parameter den Wert 0 ein. Zudem
brauchen Sie die PurposeID (MSPID)
Audio. Den optionalen Parameter für
New Stream lassen Sie auf dem Wert 0.

pAMStream->AddMediaStream
(NULL, &MSPID_PrimaryAudio,
AMMSF_ADDDEFAULTRENDERER, NULL);

Nach den Einstellarbeiten für den Me-
diaStream öffnen Sie die Klangdatei.

pAMStream->OpenFile
(pszFileName, AMMSF_RUN);

Übergeben Sie den COM-Objekten
Unicode-Strings. Dazu wandeln Sie den
eingehenden Dateinamen über Multi-

ByteToWideChar in
dieses Format um.

WCHAR

wszName[_MAX_PATH];
MultiByteToWideChar
(CP_ACP, 0,
argv[1], -1,
wszName,
sizeof(wszName) /
sizeof(wszNa-
me[0]));

Probieren Sie die Au-
diofunktionen des
MediaStream aus.
Dazu machen Sie aus
dem IAMMultiMe-
diaStream wieder ei-
nen IMultiMedia-
Stream.
pMMStream = pAM-
Stream;

Jetzt können Sie den
fertig initialisierten
MediaStream bei Di-

rectMedia abholen.
IMediaStream *pStream;
pMMStream->GetMediaStream
(MSPID_PrimaryAudio, &pStream);

Da der Multimedia-Stream auch ein
AVI- oder MPEG-Video sein kann, for-
dern Sie nur dessen Audioteil an.

IAudioMediaStream
*pAudioStream;
pStream->QueryInterface
(IID_IAudioMediaStream,
(void **)&pAudioStream);

Den Audiotrack fragen Sie nach seinem
Format und erhalten eine fertig ausge-
füllte WAVEFORMATX-Struktur:

WAVEFORMATEX wfx;
pAudioStream->GetFormat(&wfx);

Jetzt fehlt Ihnen nur noch der Zugriff auf
die Audiodaten. Diesen erlangen Sie
wieder über die COM-Schnittstelle:

IAudioData *pAudioData;
CoCreateInstance
(CLSID_AMAudioData, NULL,
CLSCTX_INPROC_SERVER,
IID_IAudioData,
(void **)&pAudioData);

Somit haben Sie ein IAudioData-Inter-
face, das von einem IMemoryInterface
abgeleitet wurde. Dieses ist in der Lage,
Daten in einem von Ihnen ansprechba-
ren Speicher abzulegen.

#define DATA_SIZE 8192
PBYTE pMyBuffer =
new PBYTE[DATA_SIZE];
pAudioData->SetBuffer
(DATA_SIZE, pMyBuffer, 0);
pAudioData->SetFormat(&wfx);

Teilen Sie Ihrem Audio-Stream per
CreateSample-Methode mit, wo und
wie Sie die entpackten Daten abholen
wollen. Der erste Übergabeparameter ist
Ihr erzeugtes Audiodata-Objekt, in dem

die Samples abgelegt werden. Die Flags
sind in der jetzigen Version nicht spezi-
fiziert, deshalb setzen Sie sie auf den
Wert 0. Der dritte Parameter ist ein IAu-
dioStreamObject, über das Sie später auf
die Update-Funktion zugreifen. Diese
signalisiert, dass Daten abzuholen sind.

IAudioStreamSample *pSample;
pAudioStream->CreateSample
(pAudioData, 0, &pSample);

Nun brauchen Sie noch ein Event, über
das das Audio-Interface Ihrem Pro-
gramm mitteilen kann, dass neue Daten
vorliegen. Sie können dann die Update-
Funktion benutzen, die das IAudio-
StreamSamplevom IMemoryData-Inter-
face geerbt hat.

HANDLE hEvent =
CreateEvent(FALSE, NULL,
NULL, FALSE);
loop:
HRESULT hr = pSample->Update
(0, hEvent, NULL, 0);
if(FAILED(hr) ||
MS_S_ENDOFSTREAM == hr) {

break;
}

Wenn Ihr Event eintritt, können Sie die
aktuellen Sound-Daten im Buffer abholen
und an den DirectSound-Buffer schicken.

WaitForSingleObject
(hEvent, INFINITE);
DWORD dwLength;
pAudioData->GetInfo
(NULL, NULL, &dwLength);
ds_streambuffer.write
(dwLength, pBuffer);
goto loop

Die Vorteile dieser Methode für Stream-
buffer sind folgende: DirectMedia küm-
mert sich darum, die Daten aufzuberei-
ten und zu entpacken. Außerdem extra-
hiert DirectMedia die Audiostreams aus
allen ihm bekannten Videoformaten.

■ Ausblick auf Version 8
Unser Beispielprogramm und die des
DirectX-SDKs bieten eine Grundlage
für weitere Experimente und einen pro-
fessionellen Einsatz von DirectSound.
Wenn Sie sich für DirectMusic interes-
sieren, sollten Sie einen Blick in den Di-
rectMusic-Producer riskieren, den Sie im
SDK etwas versteckt im Verzeichnis es-
sentls\dmusprod finden. Die noch nicht
veröffentlichte Version 8 von DirectX
wird DirectSound und DirectMusic ver-
schmelzen. Die dann entstehende Kom-
ponente soll DirectAudio heißen. s E T

Die Quelltexte sowie die fertig übersetzten Rou-

tinen finden Sie auf unserer Website unter

www.pc-magazin.de/magazin/extras.htm

Klicken Sie unter Online Extras im Menü Praxis auf

das entsprechende Download-Feld.

SIE SEHEN IN DIESER HIERARCHIE den Aufbau von Multimedia-
Streams.

