
258 Oktober 2000 PC Magazin

P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R

Generieren Sie mit wenig Auf-
wand schrill bunte oder reali-
stisch anmutende Texturen.

Diese verwenden Sie für eigene Grafi-
ken, Ihre Webpages oder 3D-Modelle.
Diese Texturen sind dann garantiert frei
von Rechten Dritter. Das ist bei Textu-
ren von Modelling-Programmen oder
CD-ROMs nicht immer der Fall.

Die Texturen in Ihren Programmen
speichern Sie über die Parameter, mit de-

nen Sie sie angelegt haben. Damit sparen
Sie viel Platz im Gegensatz zur Da-
tenmenge, die eine fertige Textur als Bild
belegt. Textur-Parameter speichern Sie
mit etwa 100 Byte oder weniger.

Wir zeigen Ihnen Schritt für Schritt,
wie Sie Ihren eigenen Textur-Generator
bauen. Dieser arbeitet mit Layers. Das ist
ein Speicherbereich, der eine temporäre
Textur oder andere für die Texturgene-
rierung notwendige Daten enthält. Ein
Layer hat die Ausmaße der Textur, die
Sie generieren wollen. Er besteht aus drei
Kanälen, je einen für die Grundfarben
Rot, Grün und Blau. Ein Textur-Gene-

rator, wie Sie ihn programmieren, arbei-
tet mit vier Arbeitsschritten:
• Er generiert einfache temporäre Basis

texturen,
• verzerrt Texturen,
• Farboperationen
• und Filterfunktionen.

Notwendig ist nur der erste Schritt.
Die drei anderen sorgen dafür, dass die
Texturen interessant wirken. Sie gene-
rieren einfache Texturen auf einigen
Layers. Dann verzerren Sie den ersten
Layer mit den Daten des zweiten und
verändern mit dem Resultat die Textur
des dritten. Einfach generierte Texturen
können Sie aneinander legen, ohne einen
erkennbarer Rand zu lassen.

Zunächst definieren Sie die Daten-
strukturen für Ihre Layer. Diese beste-
hen aus einer Struktur für die Farbkanäle
eines Pixels und einer Liste aus Bildern
der gewünschten Größe. Der Wertebe-
reich unserer Texturen bewegt sich zwi-
schen 0 bis 255, wie der verwendete un-
signed char-Wert definiert ist:

// Definitionen für die Layer
typedef struct
{ unsigned char r, g, b; }

COLOR;
COLOR layer
[MAXLAYER][SIZE * SIZE];

■ Basistexturen

Um einfache Texturen zu erzeugen, set-
zen Sie Pixel auf den Layer. Am besten
bestimmen Sie die Farbwerte durch zwei
überlagerte Sinusfunktionen über der
Textur:

// Sinusfunktion
for (y = 0; y < SIZE; y++)

for (x = 0; x < SIZE; x++)
{

wert=127+63.5*sin(x*faktor)
+ 63.5 * sin(y*faktor);

layer[0][y*SIZE+x].r=wert;
}

Das Resultat überzeugt nicht. Sie kön-
nen Layers dieser Art aber verwenden,
um andere Layers zu verzerren. Ver-

wenden Sie die zweite einfache Basistex-
tur, um die Helligkeit anderer Layer zu
ändern. Betrachten Sie jeden Pixel, und
weisen Sie ihm eine Farbe entsprechend
seinem Abstand zum Mittelpunkt zu. Es
gilt dann der Satz: Je kleiner der Ab-
stand, desto heller die Farbe.

Eine etwas komplexere Methode
stellen Sub-Plasmas dar. Zuerst setzen
Sie einige Pixel mit zufälliger Helligkeit
an bestimmte Positionen im Layer. Bei-
spielsweise wählen Sie einen Abstand
von acht Pixeln zwischen zwei Zufalls-
werten. Mit diesen Zufallswerten inter-
polieren Sie die Farbwerte aller anderen
Pixel.

Dabei setzen Sie im zweidimensiona-
len Raum entsprechend alle Pixel an je-
der durch acht teilbaren x- und y-Koor-
dinate. Bei der Interpolation ist ent-

scheidend, welches Verfahren Sie ver-
wenden. Eine lineare Interpolation führt
zu unschönen Ergebnissen. Das Bild
markiert die gesetzten Zufallswerte
durch rote Punkte.

Der Rest der Kurve ist gleichmäßig
glatt und führt zu einem hervorragenden
Sub-Plasma wie im vorigen Bild. Wer
sich in die mathematische Welt der Spli-
nes wagt, verwendet für die Interpolati-
on die Catmull-Rom-Splines. Mit deut-
lich weniger Rechenaufwand kommen
Sie aus, wenn Sie die Kosinus-Interpola-
tion verwenden.

Texturen generieren

Mit Marmor oder Holz
Mit wenigen Zeilen Programmcode gestalten Sie die schönsten Oberflächen
mit Texturen aller Art. Ihrer Fantasie sind keine Grenzen gesetzt, um die
Aufmerksamkeit des Betrachters zu erringen.

AUF CD 1
Die Quelltexte sowie die fertig übersetzten

Routinen finden Sie im Verzeichnis Praxis/Pro-
grammierung/PC Underground.

DIE SINUSFUNKTIONEN färbt die Textur. EINE NOISE-FUNKTION, die durch wenige
Stützpunkte festgelegt ist

PC Magazin Oktober 2000 259

P C U N D E R G R O U N D
P R A X I S

Verwenden Sie das Verfahren von
Ken Perlin, um Texturen zu synthetisie-
ren. Die Homepage von Ken Perlin, auf
der Sie auch seinen Artikel über proze-
durale Texturen lesen, finden Sie unter
http://mrl.nyu.edu/perlin.

Eine Perlin-Noise-Funktion liefert zu
einem Parameter (in diesem Fall eine
ganze Zahl) eine Zufallszahl zurück.
Wenn Sie zweimal denselben Parameter
übergeben, muss die Funktion auch
zweimal dasselbe Resultat erzeugen. An-
derenfalls erhalten Sie trotz gleicher Start-
parameter nie zweimal dieselbe Textur.

Perlin-Noise-Funktionen sind Erwei-
terungen der Sub-Plasmas: Mehrere
Sub-Plasmas mit unterschiedlicher Am-
plitude und Frequenz werden addiert.
Die Amplitude bezeichnet den höchsten
vorkommenden Zufallswert eines Sub-
Plasmas, und mit der Frequenz bestim-
men Sie den Abstand der Zufallswerte.

Sie können mehrere Noise-Funktionen
unterschiedlicher Amplitude und Fre-

quenz zu einer Perlin-Noise- Funktion
summieren.

Analog können Sie auch im Zweidi-
mensionalen vorgehen. Verschiedene
Sub-Plasmas ergeben zusammen eine
Perlin-Noise-Textur.

Das Beispiel interpoliert zwischen den
Zufallswerten der Sub-Plasmas nur line-
ar, was wegen der Überlagerung der
Sub-Plasmas im Endbild nicht mehr auf-
fällt.

Die Amplitude und die Frequenz, die
Sie für die einzelnen Noise Funktionen
verwenden, können Sie durch die Persi-
stence festlegen. Sie legen nur noch eine
Amplitude und eine Frequenz für die er-
ste Funktion fest. Für die jeweils nächste
Funktion, verdoppeln Sie die Frequenz
und multiplizieren die Amplitude mit
der Persistence. Der Wert der Persisten-
ce sollte zwischen 0 und 1 liegen. Größe-
re Werte bedeuten höhere Frequen- q

Bei der Bildbearbeitung und der Generie-
rung von Texturen entscheidet die Metho-
de der Interpolation über die Bildqualität.
Meist genügt die lineare Interpolation.
Diese können Sie bedenkenlos anwenden,
wenn Sie nur über wenige Pixel interpolie-
ren oder der interpolierte Bereich noch
weiter überdeckt wird (bei Perlin Noise).
Angenommen, Sie wollen Werte wie bei ei-
ner Noise-Funktion an der Stelle x ausle-
sen. Dann muss x nicht ganzzahlig sein, die
Werte sollen aber für ganzzahlige x be-
kannt sein. Sie interpolieren zwischen den
Werten, die an der Stelle des auf- und des

abgerundeten x liegen:
wert1 = abgerundet(x);

wert2 = aufgerundet(x);

Es bleibt zu entscheiden, wie Sie die beiden
Werte gewichten. Bei der linearen Inter-
polation verwenden Sie den Nachkom-
maanteil von x. Je kleiner dieser ist, desto
näher liegt der unbekannte Wert an der
Stelle x am Wert 1. Die Gewichtungsfakto-
ren berechnen Sie wie folgt, wobei die
Summe 1 ergibt:

faktor1 = 1.0 - nachkomma(x);
faktor2 = nachkomma(x);

Den interpolierten Wert erhalten Sie mit
wert=wert1*faktor1+wert2*faktor2

Wenn Sie mehr Rechenaufwand investie-
ren, erzielen Sie mit der Kosinusinterpola-
tion abgerundete Ergebnisse:

// Kosinusgewichtung
ft = nachkomma(x) * PI;
f = (1 - cos(ft)) * 0.5

faktor1 = 1.0 - f;
faktor2 = f;
wert=wert1*faktor1+wert2*faktor2;

Bei der Kosinusinterpolation steigt der
Gewichtungsfaktor f an den Rändern
langsamer. Dadurch erhalten Sie in der
Nähe der Zufallswerte abgerundete Ver-
läufe.

INTERPOLATIONSVERFAHREN

DER VERGLEICH ZEIGT die Unterschiede
zwischen Linear- und Kosinus-Interpola-
tion.

260 Oktober 2000 PC Magazin

P C U N D E R G R O U N D
P R A X I S

zen, also mehr Rauschen. Verdoppelte
(überlagerte) Frequenzen nennt man
Oktaven, da bei Klängen eine Verdop-
pelung der Frequenzen einem Sprung
von einer Oktave entspricht. Wie viele
Oktaven Sie wählen, ist Ihre Entschei-
dung. Berücksichtigen Sie nur, dass die
Amplitude irgendwann so klein wird,
dass die Funktion nicht mehr ins Ge-
wicht fällt.

Wie erzeugen Sie Noise-Funktionen?
Die herkömmlichen Zufallszahlengene-
ratoren, die Ihnen C anbietet, liefern bei
jedem Aufruf eine neue Zahl. Da das Er-
gebnis aber reproduzierbar sein muss
(weil Sie eine Noise-Funktion eventuell
mehrmals an derselben Stelle berechnen
müssen), können Sie diese nicht verwen-
den.

Sie können eine Funktion wählen, die
relativ zufällig Werte liefert – meistens
sehr große Primzahlen. Folgende Funk-
tion berechnet eine Zufallszahl zu x zwi-
schen -1 und 1:

x = (x<<13) ^ x;
return
(1.0-((x*(x*x*15731+789221)
+1376312589)&7fffffff)/

1073741824.0);

Eine andere Methode legt beim Start des
Programms eine Tabelle mit Zufallszah-
len mit dem Generator an. Es genügen
zum Beispiel 4096 verschiedene Zahlen.
Als Funktion dient dann

return randomTable[x & 4095];

■ Verzerrte Texturen
Aus Basistexturen können Sie interes-
sante Texturen machen. Sie verzerren
das Bild, indem Sie jeden Pixel des Bildes
betrachten und ihm den Wert eines an-
deren Pixels zuweisen. Dieser Pixel liegt
zum Beispiel drei Pixel tiefer und vier Pi-
xel rechts.

Schwieriger ist es, einen Wert mit ei-
ner Verschiebung von 2.7 Pixel tiefer
und 4.2 Pixel rechts auszulesen. Wenn
Sie die Werte auf 3 und 4 aufrunden, er-
halten Sie eine sehr körnige Textur mit

ungewünschten Alia-
sing-Effekten.

Sie lösen die Aufga-
be mit der bilineare
Interpolation. Dazu
nehmen Sie den Pixel,
den Sie auslesen wol-
len. Sie ordnen ihm x-
und y-Koordinaten
zu, denen Sie die ge-
rundeten Werten von
2 und 4 zuweisen.
Dann betrachten Sie
die vier umliegenden

Punkte:
(x, y),
(x+1, y),
(x, y+1)
(x+1, y+1)

Die Farbwerte dieser Pixel gewichten Sie
abhängig vom Nachkomma-Anteil der
Verschiebung. Für den ersten bis zum
vierten Fall ergeben sich folgende
Punktwerte:

0.7 * 0.2 = 0.14
0.3 * 0.2 = 0.06
0.7 * 0.8 = 0.56
0.3 * 0.8 = 0.24

Die vier Gewichte ergeben in der Sum-
me den Wert 1. Mit diesen Gewichten
multiplizieren Sie die Rot-, Grün- und
Blau-Farbanteile der umliegenden Pixel
und addieren diese. Damit erhalten Sie
einen gefilterten Farbwert ohne hässli-
che Verzerrungen.

Texturen lassen sich nach verschiede-
nen Methoden verzerren:
• Bei der ersten verwenden Sie eine
Funktion, die Ihnen abhängig von der
Position Ihres Pixels einen Verschie-
bungsvektor liefert.
• Die zweite Variante verwendet den In-
halt eines oder zweier Layers, um die
Verschiebung eines Pixels zu bestimmen
(Map-Distortion, siehe nächsten Ab-
schnitt).
• Sie können eine Textur auch verzerren,
indem Sie die Verschiebung an einer Pi-
xelposition durch zwei Sinusfunktionen
berechnen:

x_move =
sin(x * 0.03)

* 4.0;
y_move =

sin(x * 0.04)
* 4.0;

Damit setzen Sie an
der Pixelposition (x,
y) den Wert, den Sie
bei (x+x_move,
y+y_move) auslesen.
• Eine andere Verzer-
rung (in Adobe Pho-

toshop gebräuchlich) nutzt den Twirl-
Effekt. Dieser dreht das Bild. Den Dreh-
winkel eines Pixels bestimmen Sie über
seinen Abstand zum Mittelpunkt der
Textur.

■ Map-Distortion
Bei der Map-Distortion berechnen Sie
den Verschiebungsvektor eines Pixels
durch die Helligkeitswerte der entspre-
chenden Pixel in den anderen Layern.
Die Helligkeitswerte multiplizieren Sie
am besten mit einem Wert zwischen 0
und 1. Sie können diese Werte auch als
Parameter einer Sinusfunktion auffassen
und so eine Marmortextur erreichen, die
zum Beispiel auf das 3D-Modell einer
Vase passt.

Der Pseudocode für eine Map-Distor-
tion sieht wie folgt aus. Hierbei verzer-
ren Sie den roten Farbkanal von Layer 3
mit den Layern 1 und 2 und schreiben
das Ergebnis in Layer 4:

for (y = 0; y < SIZE; y++)
for (x = 0; x < SIZE; x++)
{

x_move = layer[0].r * 0.1;
y_move =
sin(layer[1].r * 0.1);
layer[4][x + y * SIZE] =

interpolatePixel
(3, x+x_move, y+y_move);
}

■ Farboperationen
Mit den Farboperationen können Sie
Ihren Texturen den letzen Schliff ver-
passen. Dabei verändern Sie die Hellig-
keit, den Kontrast oder den Farbton.

Am einfachsten ändern Sie die Farben
in Ihrer Textur, indem Sie die Farb-
kanäle invertieren. Dabei erhalten Sie in-
teressante Farbkombinationen. Sie müs-
sen lediglich für jeden Pixel die Rot-,
Grün- und Blau-Werte wie folgt ändern:

layer[0][x+y*SIZE].r =
255 - layer[0][x+y*SIZE].r;

Wenn Sie Finetuning an Ihren Texturen
vornehmen wollen, sollten Sie das Farb-
modell wechseln. Für Farbkorrekturen
eignet sich das HSV-Farbmodell. Das
RGB-Modell können Sie sich als einen

EINDIMENSIONALE NOISE-FUNKTIONEN addieren Sie zu einer
Perlin-Noise-Funktion.

DIE TWIRL-FUNKTION, wie Sie sie aus Bildbearbeitungspro-
grammen kennen.

PC Magazin Oktober 2000 261

P C U N D E R G R O U N D
P R A X I S

Würfel vorstellen, dessen Kanten die
Achsen der drei Farbwerte darstellen.

Beim HSV-Modell wird der Farbraum
durch einen Kegel aufgespannt. Dabei
geben Sie die Farben mit drei Werten an:
• Mit dem Hue-Wert bestimmen Sie den
Farbton. Dieser Wert ist der Drehwin-
kel um die Achse des Kegels.
• Der zweite Wert, S, steht für die Sätti-
gung (Saturation). Im Kegel interpretie-
ren Sie ihn als Abstand zur Achse. Klei-
ne Werte ergeben blassere Farben bis hin
zu Graustufen. Mit großen Werten er-
zielen Sie leuchtende Farben.
• Der verbleibende dritte Parameter, V,
steht für Value (Helligkeit).

Wenn Sie den Hue-Wert ändern, mo-
difizieren Sie bei einer Farbe im HSV-
Modell nur den Farbton. Helligkeit und
Sättigung bleiben unverändert. So kön-
nen Sie aus einer blauen Textur zum Bei-
spiel eine rote oder eine blasse blaue Tex-
tur erzeugen, ohne den umständlichen
Weg über die RGB-Farbwerte zu gehen.
Dazu wandeln Sie die RGB- in HSV-
Werte um, verändern diese und konver-
tieren sie zurück. Die Routine zu dieser
Konvertierung finden Sie im Sourceco-
de zu dieser Ausgabe.

■ Filterfunktionen
Texturen bearbeiten Sie vielfältig: So
können Sie aus einer Fraktalplasma-
Textur eine mit Holzmaserung erzeu-
gen. Schieben Sie die Bits der Farbwerte
um drei bis fünf Bits nach links. Wenn
Sie diese Bits wieder unten einmaskie-
ren, haben Sie eine Holzmaserung:

f = layer[0][x+y * SIZE].r;
f = (f << 3) | ((f>5) & 7);
layer[1][x+y * SIZE].r =f;

Besonders schöne Holztexturen erhal-
ten Sie durch Perlin-Noise-Texturen.
Dabei sollte die Persistenz, also der
hochfrequente Anteil (Rauschen), in Ih-
rer Textur nicht zu hoch ist. Wenn Sie
zusätzlich eine andere Startfrequenz für
die x- oder y-Achse wählen, erhalten Sie
noch bessere Ergebnisse.

Eine klassische Filterfunktion besteht
aus einer Matrix, die für einen Pixel an-
gibt, wie Sie seinen Farbwert und die sei-
ner Nachbarn gewichten müssen, um ei-
nen neuen Farbwert zu erhalten. Dies ist
ein Filter für Bildglättung:

1 2 1
2 4 2
1 2 1

Den Farbwert an der aktuellen Position
multiplizieren Sie mit 4, die der direkten
Nachbarn mit 2 und die der diagonalen
Nachbarn mit 1.

Nachdem Sie die Farbwerte aufad-
diert haben, multiplizieren Sie sie mit
1/16, um die Gesamthelligkeit des Bildes
zu erhalten. Dies ist der Emboss-Filter:

-1 0 1
-1 0 1
-1 0 1

Mit dem Emboss-Filter entsteht ein Be-
leuchtungseffekt. Mit diesem Beleuch-
tungsinformation können Sie die Aus-
gangstextur multiplizieren. Wenden Sie
den Emboss-Filter auf jeden Pixel an,
und addieren Sie 128, um das graue Bild
zu erhalten. Mit diesem Wert skalieren

Sie den Originalfarbwert. Achten Sie bei
den Filtern darauf, dass Sie die Pixel
nicht gleich mit Ihren neuen Farbwerten
überschreiben. Diese Werte benötigen
Sie noch zum Filtern des Nachbarpixels.

Sie müssen das Resultat immer in einen
temporären Layer schreiben.

Sie können die Bildglättung auch so
modifizieren, dass Sie das Bild in eine be-
stimmte Richtung verwischen. Wenn Sie
diese Richtung von der Position des Pi-
xels abhängig machen, erhalten Sie wie-
der neue interessante Effekte. s E T

Die Quelltexte sowie die fertig übersetzten Routi-

nen finden Sie auch auf unserer Website unter

www.pc-magazin.de/magazin/extras.htm

Klicken Sie unter Online Extras im Menü Praxis auf

das entsprechende Download-Feld.

EINE HOLZTEXTUR ERZEUGEN Sie durch
eine einfache Bit-Operation.

