
266 Dezember 2000 PC Magazin

P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R

Beim Rendering von 3D-Modellen
ist es hilfreich, ein Modell in meh-
reren Auflösungsstufen zu be-

trachten oder während der Ansicht (on
the fly) beliebige Detailstufen davon zu
erzeugen. Bei Objekten, die weiter vom
Betrachter entfernt sind, genügen grobe
Darstellungen, da die Details wegen der
begrenzten Bildschirmauflösung nicht
mehr sichtbar sind.

Detaillierte 3D-Modelle transportie-
ren Sie über Netzwerke oder via Inter-
net, indem Sie das Dreiecksnetz „pro-
gressiv“ übertragen: Mit den bereits
übertragenen Daten erzeugen Sie eine
Art Vorschau auf das fertige Modell. Die
Vorschau wird so lange verfeinert, bis
das Originaldreiecksnetz wiederherge-
stellt ist. Eine Anwendung der progres-
siven Übertragung kennen viele, die
JPEG-Dateien im Internet betrachten.
Zuerst sehen Sie ein grobes Bild. Mit
fortschreitender Übertragung erkennen
Sie Details. Am einfachsten lassen sich
3D-Modelle progressiv übertragen und
anzeigen, indem Sie verschiedene De-
tailstufen anlegen, die Sie unabhängig
voneinander übertragen. Schöner und
effizienter ist es, ein grobes Netz und In-
formationen zu übertragen, die von sich
aus Details herausarbeiten.

Um Dreiecksnetze zu speichern, ver-
wenden Programmierer meist die Struk-
tur Naive Shared Vertex. Diese spei-
chert eine Liste von Knoten und eine für
Dreiecke mit jeweils drei Indizes auf
Knoten.

Sofern diese Darstellung keine Attri-
bute wie Texturkoordinaten oder Ver-
tex-Normalen berücksichtigt, braucht
die Information der Topologie ungefähr

doppelt so viel Speicherplatz wie die der
Geometrie. Diese Abschätzung gilt bei
genügend großen Netzen. Die Topolo-
gie ordnet Vertizes den Kanten und Po-
lygonen zu. Die Geometrieinformation
begnügt sich mit den Koordinaten der
Vertizes.

Im Verlauf der Reduktion von Drei-
ecksnetzen berechnen Sie vergröberte
3D-Modelle, die die Originalform best-
möglich approximieren. Dabei erzeugen
Sie eine andere Struktur für die Speiche-
rung: die Progressive Meshes.

■ Dreiecksnet-
ze reduzieren
Details aus Dreiecks-
netzen lassen sich auf
verschiedene Arten
entfernen. Alle Arten
reduzieren die Zahl
der Vertizes und Po-
lygone.
• Die erste Methode
wählt einen Punkt,
der mit seinen Nachbarpunkten Drei-
ecke bildet, und entfernt diesen. Durch
den fehlenden Vertex fallen eine Reihe
von Dreiecken weg, wobei ein Loch im
Dreiecksnetz entsteht. Dieses Loch,

auch Patch genannt, füllen Sie mit neuen
Dreiecken aus, wobei Sie den gerade ent-
fernten Vertex nicht mehr verwenden.
Diese Operation nennt sich Knoten ent-
fernen/einfügen (Vertex removal/inser-
tion). Sie reduzieren bei jeder Anwen-
dung dieses Operators die Zahl der Ver-
tizes um 1, die Zahl der Dreiecke um 2.
• Eine zweite Methode bietet der Edge-
Collapse/Vertex-Split-Operator. Das
Verfahren wählt zwei durch eine Kante
verbundene Vertizes und ersetzt sie
durch einen neuen gemeinsamen Vertex.

Auch hier reduzieren Sie das Dreiecks-
netz um zwei Dreiecke und einen Ver-
tex. Da Sie bei der progressiven Über-
tragung, die diesen Operator verwendet,
die vereinfachten Dreiecksnetze wieder

verfeinern wollen,
müssen Sie die Infor-
mationen für die Ver-
feinerung speichern.
Dazu benötigen Sie
Informationen, wel-
cher der neue Vertex
v ist, welche er zu er-
setzen hat (v1 und
v2), und mit welchen
Nachbar-Vertizes
v(links) und v(rechts)
die Dreiecke wieder-

3D-Grafiken fürs Internet optimieren

Polygonnetze
in Vollendung
In der Computergrafik kommen häufig detaillierte Dreiecksnetze vor. Aus
diesen Dreiecksnetzen gestalten Sie feine und grobe 3D-Modelle.

AUF CD 1
Die Quelltexte sowie die fertig übersetzten

Routinen finden Sie im Verzeichnis Praxis/Pro-
grammierung/PC Underground.

DIE OPERATION Vertex Removal/Insertion vereinfacht die
Darstellung von Dreiecksnetzen.

DER EDGE-COLLAPSE-OPERATOR entfernt Kanten.

PC Magazin Dezember 2000 267

P C U N D E R G R O U N D
P R A X I S

hergestellt werden müssen. Sie speichern
also für jede Anwendung des Operators
eine Datenstruktur mit

Edge Collapse Information:
v v1 v2 v(links) v(rechts)

• Eine Variante des Edge Collapse ist der
Half Edge Collapse. Dabei wird kein
neuer Punkt v berechnet, sondern einer
der Ausgangspunkte gewählt. In diesem
Fall speichern Sie nur folgende Informa-
tionen:

Half Edge Collapse Information:
v1 v2 v(links) v(rechts)

Bei der schrittweisen Vergröberung Ih-
res Dreiecksnetzes sind stets zwei Ent-
scheidungen zu treffen: welche Kante als
nächste entfernt werden soll und wo der
neue Punkt (beim Edge Collapse) liegt
oder welchen der beiden Kantenpunkte
Sie beibehalten wollen (beim Half Edge
Collapse). Beide Entscheidungen beein-
flussen die Qualität der erzeugten 3D-
Objekte.

Betrachten Sie zuerst die Suche nach
der Kante, deren Verlust das 3D-Objekt
möglichst wenig beeinflusst. Zwar sind
alle Methoden heuristischer Natur, denn
Sie können nicht berechnen, wie stark ei-
ne entfernte Kante den visuellen Ein-
druck des 3D-Objekts auf den Men-
schen stört. Deshalb gibt es verschiede-
ne Ansätze. Sie berechnen einen Kosten-
wert für jede mögliche Kantenentfer-
nung. Hohe Kosten bedeuten, dass die
Heuristik eine Kante als wichtig für das
Erscheinungsbild des 3D-Objekts wer-
tet.
• Nach der Methode, die auch das Bei-
spiel-Programm auf der Heft-CD an-
wendet, berechnen Sie die Länge der
Kante, zu der Sie die Kosten wissen wol-
len. Anschließend suchen Sie die zwei
Nachbardreiecke und berechnen den
Winkel zwischen deren Normalen. Als
Kosten betrachten Sie das Produkt aus
Länge der Kante und Winkel. Wenn Sie
eine Kante entfernen wollen, wählen Sie
jeweils die Kante mit den niedrigsten

Kosten. Allerdings müssen Sie auch
einen Spezialfall beachten und nicht
blind dem Kostenwert vertrauen. Es
kann passieren, dass Sie durch das Ent-
fernen einer Kante die neuen Kanten mit
den alten schneiden. Dieser Fall tritt

meist auf, wenn Sie
das 3D-Objekt zu
stark reduzieren.

Beim Edge Col-
lapse müssen Sie den
neuen Vertex richtig
platzieren. Das be-
kannteste Verfahren
dazu stammt von
Michael Garland und
Paul S. Heckbert, ist
beschrieben in Sur-
face Simplification
Using Quadric Error

Metrics (siehe Literaturhinweis am En-
de) und arbeitet mit einer Kostenfunkti-
on für die Vertex-Platzierung. Dabei be-
rechnen Sie die Kosten, die entstehen,
wenn Sie die beiden Vertizes der Kante
(v1 und v2) zum neuen Vertex v ver-
schieben. Bei der verwendeten Kosten-
funktion kann der Vertex v irgendwo
auf der Geraden, die durch v1 und v2
festgelegt ist, liegen.

Die Kostenfunktion ist wie folgt defi-
niert: Jeder Vertex wird von einer Reihe
Dreiecke geteilt. Jedes dieser Dreiecke
liegt in einer Ebene. Als Kosten verwen-
den Sie die Summe der quadrierten Ab-
stände zwischen den Ebenen und der
neuen Position. Die Gesamtkosten eines
neuen Vertex sind die Kosten für die
Verschiebung von v1 plus der von v2.
Eine beispielhafte Implementation mit
Sourcecode dieses Verfahrens finden Sie
auf der Website von Michael Garland
(http://graphics.cs.uiuc.edu/~garland/
CMU/quadrics/quadrics.html). Wenn
Sie nur einen Half Edge Collapse durch-

führen wollen, können Sie sich mit der
beschriebenen Kostenfunktion für einen
Vertex entscheiden. Die Kosten ergeben
sich aus der Verschiebung des einen Ver-
tex auf den anderen.

■ Progressive Meshes
Mit dem Progressive-Mesh-Verfahren
erzeugen Sie schnell beliebige Detailstu-
fen, wobei Sie sogar in Echtzeit Drei-
ecksnetze übertragen können. Es arbei-
tet nur mit Half Edge Collapses.

Für das erste Ziel speichern Sie zu-
sätzliche Daten: Sie müssen die Reihen-
folge, in der Sie Vertizes entfernen, spei-
chern (also eine Permutationstabelle).
Für jeden Vertex, den Sie entfernen,
müssen Sie die Information aufheben, zu
welchem Vertex er hingewandert ist
(Map-Tabelle). Die Objektreduktion im
Pseudocode:

v = Anzahl Vertizes
while (v > 0)
{
suche Kante mit kleinsten Kosten
Vertex u sei der zu entfernende

speichere: Vertex u nach Index v
permutation[index u] = v;

speichere:
collapse_map[v] =

Index des anderen KantenVertizes

v–;
}

Anhand der Permutationstabelle müs-
sen Sie die Vertizes des 3D-Objekts um-
sortieren und die Indizes der Dreiecke
(bei der Shared-Vertex-Struktur) anpas-
sen:

for (alle Vertizes)
pVertexList_neu

[permutation[i]] =
pVertexList[i];

for (alle Polygone)
for (alle Indizes)

index_neu =
permutation[index_alt];

Wenn Sie das 3D-Objekt zeichnen wol-
len, können Sie festlegen, wie viele Ver-
tizes das neue Dreiecksnetz haben soll.
Die Zahl der Dreiecke geben Sie nicht
direkt an. Mit Hilfe der Map-Tabelle
können Sie nachvollziehen, welche Ver-
tizes entfernt und auf welche verschoben
wurden. Wenn ein Dreieck (Bild S. 266
oben) aus v1, v2 und v(links) besteht und
v1 auf v2 verschoben wurde, würden Sie
aus der Map-Tabelle auslesen, dass v1 zu
v2 wurde. Für das resultierende Dreieck
ergäben sich die Eckpunkte v2, v2 und
v(links). Solche degenerierten Dreiecke,
bei denen zwei oder drei Eckpunkte zu-
sammenfallen, zeichnen Sie nicht. q

DER HALF-EDGE-COLLAPSE-OPERATOR ist ein Spezialfall des
Edge Collapse.

SIE DÜRFEN
nicht alle
Kanten
entfernen,
wenn das
Objekt
erhalten
bleiben
soll.

268 Dezember 2000 PC Magazin

P C U N D E R G R O U N D
P R A X I S

Der Pseudocode zeigt die komplette
Zeichenroutine. mx ist die neue Anzahl
der Vertizes im Objekt:

int remap(int idx,int mx)
{

while (idx >= mx)
idx = collapse_map[idx];

return idx;
}

for (alle Dreiecke)
{

p0 = remap(Index 1);
p1 = remap(Index 2);
p2 = remap(Index 3);

if(p0==p1 || p1==p2 || p2==p0
)

gehe zu nächstem Dreieck

Zeichne Dreieck mit p0, p1, p2
}

Die zweite Anwendung der Progressive
Meshes ist, Dreiecksnetze progressiv zu
übertragen. Dabei übertragen Sie zuerst
ein grobes Modell, das Sie am Ende Ih-
res Reduktionsvorgangs erhalten haben.
Anschließend übertragen Sie nur noch
die Half-Edge-Collapse-Information.
Damit kann das Originalmodell wieder
vollständig hergestellt werden. Bei der
Übertragung von Dreiecksnetzen wer-
den für die Koordinaten der Vertizes
meistens keine drei Floats investiert.
Stattdessen quantisieren Sie die Koordi-
naten. Das heißt, Sie stellen die Koordi-
naten durch Integer-Werte mit weniger
Bits pro Koordinate dar. Dazu berech-
nen Sie die Ausdehnung des Objekts
entlang der x-, y- und z-Achse, skalieren
die Float-Werte auf einen genügend
großen Zahlenbereich und runden an-
schließend. Folgendes Beispiel zeigt die
Quantisierung einer Achse auf 12 Bit:

finde min+max Koordinate,
(min_x und max_x)
Ausdehnung = max_x - min_x
Skalierung = (2 ^ 12) / Ausdehung

for (jede Koordinate)
quantisierte Koordinate =

(Floatkoordinate - min_x) *
Skalierung

■ Das Netz verfeinern
Um die Auflösung des Dreiecksnetzes
(also die Zahl der Vertizes, Kanten und
Dreiecke) zu erhöhen, um Details am
Objekt zu modellieren oder numerische
Simulationen mit hoher Rechengenauig-
keit durchzuführen, verfeinern Sie die
Maschen des Netzes.

Beim Mesh Refinement (Netzverfei-
nerung) unterscheidet man zwischen
dem globalen (Uniform Refinement)
und dem adaptiven Verfeinern (Refine-
ment). Das globale Verfeinern ist für al-
le Dreiecke identisch.

Sie verfeinern Drei-
ecksnetze, indem Sie
die Dreiecke in meh-
rere kleine zerschnei-
den. Es erhöht die
Genauigkeit der Dar-
stellung, wenn keine
langen, schmalen
Dreiecke, sondern
möglichst gleichseiti-
ge entstehen: Edge
Splitting (auch 1-to-4-
split genannt) und
sqrt(3)-subdivision.
• Beim 1-to-4-split-Verfahren fügen Sie
neue Vertizes an den Mittelpunkten der
Kanten ein, die Sie zu einem neuen Drei-
eck verbinden. Sie erhalten vier mal so
viele Dreiecke, wenn Sie das mit dem ge-
samten Netz machen.

• Bei der sqrt(3)-Subdivision betrachten
Sie zwei benachbarte Dreiecke. Sie fügen
jeweils einen Vertex im Mittelpunkt der
Dreiecke ein und verbinden ihn mit den
Eckpunkten. Nun drehen Sie die alte
Kante zwischen den Originaldreiecken,
um die beiden neuen Vertizes zu verbin-
den. Wenn Sie diesen Vorgang zweimal
auf ein Dreieckspaar anwenden, teilen
Sie die Originalkanten in drei Strecken
auf.

Es ist nicht immer notwendig, alle
Dreiecke des Netzes zu zerschneiden.
Behandeln Sie zunächst nur die Drei-
ecke, die Sie verfeinert benötigen.

Dadurch können T-Vertizes an Gren-
zen zu den benachbarten Dreiecken ent-

stehen. Diese vermei-
den Sie im Refine-
ment-Prozess mit ei-
ner Schließungsopera-
tion: Unterteilen Sie
die Nachbardreiecke
(eins, zwei oder alle
drei).

■ Dreiecksnetze glätten
Mit jedem Bildbearbeitungsprogramm
können Sie ein Bild weich zeichnen, wo-
durch es unscharf erscheint. Das funk-
tioniert auch mit Dreiecksnetzen (Mesh
Relaxation = Entspannung).

Anders als bei Bitmaps lassen sich nicht
einfach Farbwerte mitteln und ändern.
Objektkoordinaten stellen kein Pendant
zu Pixeln dar, weil Sie zusätzlich die To-

pologie-Information
berücksichtigen müs-
sen. Wie der Name des
Verfahrens andeutet,
geht es darum, Span-
nung aus den Drei-
ecksnetzen zu neh-
men. Spannung tritt
an Stellen auf, an de-
nen Spitzen hervorra-
gen. Betrachten Sie je-
den Vertex, und zie-
hen Sie ihn ein Stück
zu jedem seiner Nach-
barn hin.

Ein Beispiel: Die Nachbar-Vertizes
bilden eine mehrseitige Pyramide mit
dem aktuell betrachteten Vertex als Spit-
ze, dann zieht der Algorithmus den Ver-
tex in Richtung der Grundfläche. So
glätten Sie das Dreiecksnetz. Wenn alle
Vertizes (inklusive des betrachteten) in
einer Ebene liegen, können Sie zwar den

SO TEILEN SIE EIN DREIECK in vier weitere auf.

DIE SQRT(3)-SUBDIVISION zerschneidet bei zweimaliger An-
wendung eine Kante in drei Teile.

DIE SCHLIESSUNGSOPERATIONEN verhindern T-Vertizes.

HIER WÄHLEN SIE für das mittlere blaue
Dreieck das 1-to-4-split-Verfahren.

PC Magazin Dezember 2000 269

merische Simulationen. Die
Formel, nach der Sie die Ver-
tizes verschieben, verdeutlicht
das Bild unten.

Der Pseudocode meshre-
lax.c veranschaulicht das Vor-
gehen. Sie benötigen zwei
Speicherbereiche für die Verti-
zes: einen für die alten und ei-
nen für die neuen Positionen.

Mit Mesh Relaxation run-
den Sie die Kanten eines Wür-
fels ab. Vor dem Glätten wur-
de das Dreiecksnetz des Wür-
fels mehrmals mit einem 1-to-
4-split geteilt. Ansonsten wä-
re die Darstellung nicht de-
tailliert genug, um eine Glät-
tung erkennen zu können.

Mit den vorgestellten Me-
thoden können Sie 3D-Mo-
delle feiner oder gröber be-
rechnen, ohne Software Drit-
ter zu benutzen. s E T

Vertex verschieben, aber än-
dern dadurch nicht die Form
des Objekts. Trotzdem hat
das Verfahren einen positi-
ven Aspekt: Die Dreiecke des
Netzes verändern durch die
neuen Vertex-Positionen ih-
re Form in Richtung gleich-
seitiger Dreiecke. Dieses Ver-
fahren verwenden Sie für nu-

DIE MESH-RELAXATION-ME-
THODE glättet Dreiecksnetze,
indem sie Vertizes verschiebt.

WENN SIE DIE DARSTELLUNG eines Würfel glätten, runden Sie
seine Kanten ab.

Pseudocode von meshrelax

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

// Mesh Relaxation
for (i = 0; i < nVertices; i++)
{
VERTEX3D v_neu = { 0, 0, 0 };
int count = 0;

// alte Position
VERTEX3D pi = pVertexList[i];

for (j = 0; j < nPolys; j++)
{
if (Vertex mit Index i in Dreieck j)
{
// Nachbarvertices addieren
v_neu += pVertexList[pPolyList[j]. a];
v_neu += pVertexList[pPolyList[j]. b];
v_neu += pVertexList[pPolyList[j]. c];
v_neu -= pi * 3;
count += 2;

}
}

v_neu *= (1. 0f / count);
pi += summe;
pVertexList2[i] = pi;
}

meshrelax.c zeigt auszugsweise die Reduktion eines Gitternetzes.

LLiitteerraattuurr::

Michael Garland and Paul S. Heckbert: Surface Simplification Using Quadric Er-

ror Metrics, http://graphics.cs.uiuc.edu/~garland/CMU/quadrics/quadrics.html

Joseph O’Rourke, Computational Geometry in C, ftp://cs.smith.edu/pub/

compgeom

Die Quelltexte sowie die fertig übersetzten Routinen finden Sie auf der Heft-

CD 1 und auf unserer Website unter www.pc-magazin.de/magazin/extras.htm

Klicken Sie unter Online Extras im Menü Praxis auf das entsprechende Download-Feld.

