
234 Februar 2001 PC Magazin

P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R

Die steigende Rechenleistung
moderner CPUs und die Ent-
wicklung hochleistungsfähiger

3D-Grafikkarten haben dazu geführt,
dass professionelles Modelling Einzug
in Computerspiele gehalten hat. Die
Grundlage für Modelling sind parame-
trische (glatte, gekrümmte) Flächen. Ei-
ne parametrische Fläche legen Sie durch
Basisfunktionen und Stütz-/Kontroll-
punkte fest. Die Grundlagen für die Ba-
sisfunktionen und deren Auswertung le-
sen Sie in diesem Beitrag. Zunächst
zeichnen Sie Kurven. Deren Form ver-
ändern Sie durch die Position der Stütz-
punkte. Mit diesem Handwerkszeug

meistern Sie auch die Flächen im dreidi-
mensionalen Raum. Für eine parametri-
sche Kurve geben Sie – wie bei Flächen
– eine Reihe von Basisfunktionen und
Stützpunkten an. Die Bézier-Kurven
sind die bekanntesten parametrischen
Kurven. Sie wurden um 1960 entwickelt
und in der französischen Automobilin-
dustrie zum Karosseriedesign verwen-
det (Computer Aided Geometric De-
sign, CAGD). Die Basisfunktionen, die
Sie bei Bézier-Kurven verwenden,
heißen Bernstein-Polynome.

Diese Funktionen besitzen drei Vari-
ablen:
• u ist der Laufindex und nimmt Werte
zwischen 0 und 1 an.
• n ist eine Ganzzahl und gibt den Grad
der Kurve an. Das ist zum einen die
höchste Potenz, in der die Laufvariable
vorkommt, zum anderen bestimmen Sie
dadurch die Zahl der Stützpunkte.
• Die Bézier-Kurve hat (n+1) Stütz-
punkte. Für verschiedene Indizes i er-
halten Sie verschiedene Funktionen (ab-
hängig von der Variablen u). Die Funk-
tionswerte liegen im Intervall von [0,1].
Sie stellen die Gewichtung der einzelnen
Stützpunkte dar, was auch in der Formel
für Bézier-Kurven zu sehen ist.

Der Stützpunkt bi wird mit dem Bern-
stein-Polynom i vom Grad n multipli-
ziert. Alle Punkte, die Sie für u zwischen
0 und 1 erhalten, liegen auf der Bézier-
Kurve. Nehmen Sie eine direkte Aus-

wertung mit den Bernstein-Polynomen
vor. Diese sieht wie folgt aus:

// Koordinate d des Punkts
// abhängig von u: d = F(u)
d.x = d.y = 0;
for (i = 0; i< grad; i ++)
{

d = d + (b[i] *
bernstein(u, i));

}

...

// wertet Bernstein-Polynom aus
double bernstein

(double u,long i)
{
return bin(grad, i) *
pow(u, i) *
pow(1.0-u, grad-i);
}

// berechnet Fakultät von n
double fac(long n)
{

double r = 1.0;
for (i = 2; i <= n; i++)

r *= (double)i;
return r;

}

// Binomialkoeffizient
double bin(long n, long k)
{
return fac(n) /

(Fac(n-k) * Fac(k));
}

Der Sourcecode 2dvector.c zeigt eine de-
finierte Vektorstruktur und überladene

Bézier- und Spline-Kurven

Mathematische Reize
Wer als Anwender mit Bézier-Kurven harmonische Rundungen von Auto-
blechen am Rechner gestaltet, braucht keine höhere Mathematik.
Programmierern bleibt sie nicht erspart.

AUF CD
Die Quelltexte sowie die fertig übersetzten

Routinen finden Sie im Verzeichnis Praxis/Pro-
grammierung/PC Underground.

BERNSTEIN-POLYNOME sind die Basis der
Bézier-Kurven.

EINE BÉZIER-KURVE vom Grad n=3 und
darüber das Kontrollpolygon als Linienzug
zwischen den Kontrollpunkten

PC Magazin Februar 2001 235

P C U N D E R G R O U N D
P R A X I S

Operatoren-Anwendung. Bevor Sie die
Bézier-Kurven genauer betrachten, ver-
allgemeinern Sie die Formel zu einem
beliebigen Intervall [s,t] für die
Variable u:

■ Eigenschaften
von Bézier-Kurven
Bézier-Kurven für u aus [s,t] liegen in der
abgeschlossenen konvexen Hülle. Die
konvexe Hülle einer Punktmenge kön-
nen Sie so veranschaulichen, dass Sie mit
einer gespannten Schnur versuchen, alle
Punkte einzuschnüren. Weiterhin kön-
nen Sie sehen, dass die Bézier-Kurve im
ersten Stützpunkt b0 beginnt und im
letzten b3 endet (Endpunkt-Interpolati-
on).

Die Kurve endet nicht nur in den End-
punkten des Kontrollpolygons, sie ver-
läuft dort auch tangentiell an den Kanten
der Kontrollpolygone. Weiterhin sind
Bézier-Kurven affin invariant: Bei einer
affinen Transformation (eine Drehung
und/oder eine Verschiebung) der Kon-
trollpunkte wird die Kurve mittransfor-
miert, behält aber ihre Form.

Die Kurve schwankt nicht stärker als
ihr Kontrollpolygon (Variation-Dimi-
nishing-Property, variationsreduzie-
rend). Sie zeichnen Bézier-Kurven nicht
punktweise, doch Sie werten die Bern-
stein-Polynome für jeden Punkt aus.
Stattdessen approximieren Sie am Bild-
schirm die Kurve mit vielen Linien. Die
Zahl der Linien hängt von der Größe der
Kurve auf dem Bildschirm und der Auf-
lösung ab. Die Linien können Sie schnel-
ler zeichnen als die einzelnen Pixel, de-
ren Position Sie rechenintensiv auswer-
ten müssten.

■ Der de-Casteljau-
Algorithmus
Ein schnellerer Auswerte-Algorithmus –
nicht für die Bernstein-Polynomen – für

die Punkte auf Bézier-
Kurven ist der de-Ca-
steljau-Algorithmus.
Er bestimmt die Ko-
ordinate eines Kur-
venpunktes durch
schrittweise Untertei-
lung des Kontrollpo-

lygons.
Formal benötigen Sie folgende Defini-

tionen, wobei Sie die Variablen wie folgt
deuten können:

Den eigentlichen
Clou beim de-Castel-
jau-Algorithmus mit
dem Ziel, die Kurve
schnell mit Linien zu
approximieren, sehen
Sie im rechten Teil des
Bildes: Die Punkte,
die Sie als Zwi-
schenergebnis am
Rand der de-Castel-
jau-Pyramide erhal-

ten, sind die Kontrollpunkte zweier
neuer Bézier-Kurven, die zusammen die
bisherige Kurve ergeben. Mit einem Un-
terschied: Die neuen Kontrollpolygone
liegen näher an der tatsächlichen Bézier-
Kurve. Wenn Sie also den de-Casteljau-
Algorithmus rekursiv auf die neuen Bé-
zier-Kurven anwenden, erhalten Sie
Kontrollpolygone (Linienzüge), mit de-
nen Sie die Bézier-Kurve zeichnen. Der
de-Casteljau-Algorithmus lässt sich effi-
zient implementieren, wie Sie dem
Codeausschnitt im Quellcode entneh-
men. Dieser zeigt eine Mittelpunkts-
unterteilung (alpha=0.5).

Wenn Sie Flächen mit vielen Details
modellieren wollen, müssen Sie Bézier-
Kurven mit einem hohen Grad n ver-
wenden. Ändern Sie den Ort eines Kon-
trollpunkts, ändern Sie damit die ganze
Kurve. Das umgehen Sie, indem Sie
mehrere Bézier-Kurven von niedrige-
rem Grad (zum Beispiel kubisch, n=3)
aneinanderhängen. Die Flächen lassen
sich leicht lückenlos aneinander fügen,

da die Kurven am Endpunkt interpolie-
rend sind. Entscheidend für die Darstel-
lung ist auch die Steigung und Krüm-
mung der Kurven an den Anschluss-
stellen.

An einer Anschlussstelle entscheidet
sich, ob Sie einen unerwünschten Knick
erhalten. Im Automobilbau gibt es eine
weitere Anforderung: Die Kurven müs-
sen am Anschlusspunkt auch in der
zweiten Ableitung gleich sein. Sonst ist
der Übergang bei Reflexionen, zum q

DER DE-CASTELJAU-ALGORITHMUS wertet Bézier-Kurven aus
und teilt sie in diesem Beispiel.

VERSCHIEDENE ÜBERGÄNGE zweier Bézier-Kurven und geometrische Übergangsbedingun-
gen perfektionieren die Kurven.

236 Februar 2001 PC Magazin

P C U N D E R G R O U N D
P R A X I S

Beispiel auf Autolacken, sichtbar. Im un-
teren Teil des rechten Bildes auf der vo-
rigen Seite sehen Sie die geometrischen
Bedingungen, die zwei Bézier-Kurven
erfüllen müssen, um den entsprechenden
Anforderungen zu genügen. Trotz der
etwas umständlichen Beschreibung de-
tailreicher Flächen haben sie aber trotz-
dem eine Existenzberechtigung: Rechner
werten Bézier-Kurven effizient und in
Echtzeit aus. Damit haben Bézier-
Flächen die Eigenschaften, die für Echt-
zeit-Rendering von Vorteil sind.

■ B-Spline-Kurven
B-Spline-Kurven sind eine neue Gat-
tung mathematischer Kurvenbeschrei-
bungen. Wir beschäftigen uns mit B-
Spline-Kurven, die die Eigenschaft der
affinen Invarianz (Begriff: siehe oben)
mitbringen. Die Definition eine B-
Spline-Kurve lautet:

Die Stützpunkte bezeichnen Sie mit di
(de-Boor-Punkte, nach Carl de Boor).
Zusätzlich gibt es einen Knotenvektor t,
dessen Werte sich in den rekursiv defi-
nierten B-Spline-Basisfunktionen nie-
derschlagen:

Im Bild oben rechts sehen Sie Basis-
funktionen vom Grad 0 bis 2. Daran
können Sie einen Vorteil gegenüber den
Bernstein-Polynomen als Basisfunktio-
nen ablesen: Die B-Spline-Funktionen
sind nur in einem begrenzten Bereich
ungleich Null. Bernstein-Polynome
sind im gesamten Bereich, in dem sich
die Laufvariable u befindet, ungleich
Null. Dies ist gleichbedeutend damit,
dass ein Kontrollpunkt nur auf einem
sehr begrenzten Bereich der Kurve Ein-
fluss ausübt. Damit können Sie an be-
stimmten Teilen eine B-Spline-Kurve
detailreich modellieren, ohne die Kurve
zu ändern.

B-Spline-Basisfunktionen vom Grad
n sind stückweise polynomiell (durch
Polynome beschreibbar) und bieten des-
halb optimale Glattheit. Dadurch wer-
den die geometrischen Übergangsbedin-
gungen überflüssig. Um ein Gefühl für

die Auswirkungen des Knotenvektors
auf die Kurve zu bekommen, experi-
mentieren Sie am besten mit unserem
Beispielprogramm. Der Knotenvektor
hat so viele Werte wie Grad n plus An-
zahl der Stützpunkte plus 2. Der Kno-
tenvektor beeinflusst den Verlauf der
Kurve innerhalb der konvexen Hülle
des Kontrollpolygons. B-Spline-Kur-
ven sind zum Beispiel nur Endpunkt-
interpolierend, wenn jeweils die ersten
(n+1) und die letzten (n+1) Werte des
Knotenvektors gleich sind.

Die direkte Auswertung der B-Splines
können Sie mit folgendem Codeaus-
schnitt berechnen. Beachten Sie die Spe-
zialfälle für den Knotenvektor bei der
Rekursion im Listing bspline.c.

Betrachten Sie eine B-Spline-Kurve
vom Grad n mit m de-Boor-Punkten
und einem Knotenvektor t. Nutzen Sie
die folgenden Eigenschaften, um Kur-
ven gezielt zu modellieren:
• Fallen n de-Boor-Punkte zusammen
(sind also identisch), so verläuft die Kur-
ve durch diesen Punkt und liegt dort tan-
gentiell an dem Kontrollpolygon an.
Damit können Sie Ecken in der Kurve
modellieren.
• Wenn Sie n de-Boor-Punkte auf einer
Geraden platzieren, berührt die Kurve
diese Gerade. Wenn sich (n+1) Punkte
auf einer Gerade befinden, liegt ein Ab-
schnitt der Kurve auf dieser Geraden.
• Fallen n Knoten (Werte im Knoten-
vektor) zusammen, also t=ti+1=...=ti+n,

so gilt F(t)=di. Das heißt, dass die Kurve
durch einen Kontrollpunkt verläuft und
dort tangentiell am Kontrollpolygon an-
liegt.
• Als letzte Eigenschaft können Sie die
„lokale konvexe Hülle“ ausnutzen. Für
ein u im Intervall [ti, ti+1] liegt die Kur-
ve in der abgeschlossenen konvexen
Hülle der (n+1) vielen Kontrollpunkte
di-n, ..., di.

■ Der de-Boor-Algorithmus
Auch für B-Spline-Kurven gibt es ele-
gante Algorithmen zur Auswertung, die
aber trotzdem rechenintensiver als die
für Bézier-Kurven sind. Als Pendant
zum de-Casteljau-Algorithmus gibt es
für B-Spline-Kurven den – rekursiv de-
finierten – de-Boor-Algorithmus. Seine
Definition:

Um ihn anschaulich darzustellen, be-
darf es einer anderen Darstellung der B-
Spline-Kurve, der so genannten Polar-
form.

Laut Definition gilt der de-Boor-Al-
gorithmus nur für Parameter aus dem
Intervall [tj, tj+1]. Folgender Programm-

code berechnet den de-Boor-Algorith-
mus für die Kurve an der Stelle u vom
Grad l im Intervall [t(i), t(i+1)]:

//VECTOR deBoor
➥ (double u,long l,long i)

{
if (l == 0)

// letzte ausgewertete Stelle
// im letzten Intervall !

if (i == nKontrollPunkte)
return d[nKontrollPunkte-1];
else
return d[i];

double t2=(u - t [i])/

DIE B-SPLINE-BASISFUNKTIONEN sind nur
in kleinen Bereichen von Null verschie-
den.

EINE NORMALISIERTE B-Spline-Kurve und
ihr Knotenvektor

PC Magazin Februar 2001 237

P C U N D E R G R O U N D
P R A X I S

(t [i + grad + 1 - l] - t[i]);
double t1 =1.0 - t2;

return deBoor(u, l-1, i-1)
*t1 + deBoor(u,l-1,i) * t2;
}

Wenn Sie eine Spline-Kurve an der An-
zahl steps Stellen pro Intervall des Kno-
tenvektors auswerten wollen, verwen-
den Sie folgenden Code:

//Speicher ausreichend Punkte

VECTOR result[GENUGPUNKTE];
int nPunkte = 0;

// Kurvengrad n, „steps“-Stellen
// „nIntervals“ im Knotenvektor

for (i = n;
i< nIntervals +n;i++)
{

// Vorraussetzung im de Boor Al-
gorithmus

if(t[i + 1] > t[i])
{

for(j = 0; j <= steps; j++)
{

Literatur:
Gerald Farin: Curvers and Surfaces for Computer
Aided Geometric Design, Academic Press,
ISBN 0-12-249054-1

2dvector.c

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:

//2dvector. c: 2D Vektor Struktur
typedef struct {

double x, y;
}VECTOR;

// Vektor + Vektor
VECTOR operator + (const VECTOR &a, const VECTOR &b) {

VECTOR result;
result. x = a. x + b. x;
result. y = a. y + b. y;
return result;

}

// Vektor * Skalar
VECTOR operator * (const VECTOR &a, const double b) {

VECTOR result;
result. x = a. x * b;
result. y = a. y * b;
return result;

}

// Berechnet eine de Casteljau Pyramide mit alpha(u)=0. 5
void calcPyramide(long n, VECTOR *Pyramide)
{
long i, j;

// Ebene
for (i = 1; i < n; i++)
{
// Spalte
for (j = 0; j < n - i; j++)

{
Pyramide[j + i * n] =

(Pyramide[j+(i-1)*n] + Pyramide[(j+1)+(i-1)*n])*0. 5;
}
}

}

// Berechnet rekursiv de Casteljau
void DeCasteljauRekursiv
(long rek, long n, long k, VECTOR *data)
{
long i;
VECTOR *Pyramide = new VECTOR[n * n];

// unterste Pyramidenebene mit
// Kontrollpunkten der Bezierkurve fÅllen

for (i = 0; i < n; i++)
Pyramide[i + 0 * n] = data[i];

// Pyramide berechnen
CalcPyramide(n, Pyramide);

if (rek == k)
{
// Rekursionstiefe erreicht => Punkte speichern
for (i = 0; i < n; i++)
Points[nPoints ++] = Pyramide[0 + i * n];

for (i = 0; i < n; i++)
Points[nPoints ++] = Pyramide[(n - i - 1) + i * n];

} else
{
// weiter unterteilen
VECTOR *data = new VECTOR[n];

for (i = 0; i < n; i++)
data[i] = Pyramide[0 + i * n];

DeCasteljauRekursiv(rek + 1, n, k, data);

for (i = 0; i < n; i++)
data[i] = Pyramide[(n - i - 1) + i * n];

DeCasteljauRekursiv(rek + 1, n, k, data);

delete data;

1

2dvector.c zeigt eine definierte Vektorstruktur und eine überladene
Operatoren-Anwendung.

77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:

}

delete Pyramide;
}

void DeCasteljau(long n, long k, VECTOR *data,
VECTOR **result, long *nP, long *nBeziers)
{
// soviele Bezierkuven werden wir haben
*nBeziers = 1 << k;
// und soviele Punkte
*nP = *nBeziers * (n+1);

// Speicher dafÅr allokieren
nPoints = 0;
Points = new VECTOR[*nP];

DeCasteljauRekursiv(1, n + 1, k, data);

*result = Points;
}

bspline.c

Der Ausschnitt bspline.c wertet B-Splines aus.

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:

//bspline. c
double bspline
(long i, long l, double u)

{
if (l == 0)
{
// Rekursionstiefe 0
if (T(i) <=

u && u < T(i + 1))
return 1. 0; else return 0. 0;
} else
{
// hoehere Rekursionstiefen
double a, b;

a = Nb(i, l - 1, u);
b = Nb(i + 1, l - 1, u);

double d1=(T(i+l)-T(i));
double d2 =(T(i+l+1)-T(i+1));

double q1=(u-T(i));
double q2=(T(i+l+1)-u);

// Division durch 0 abfangen
if (d1 == 0. 0) d1=q1=1. 0;
if (d2 == 0. 0) d2=q2=1. 0;

if (q1==0. 0 && d1==0. 0) q1 =1. 0;
else q1 /= d1;

if (q2==0. 0 && d2==0. 0) q2 =1. 0;
else q2 /=d2;

return q1 * a + q2 * b;
}

}

. . .

// Auswertung der Kurve mit
// m StÅtzpunkten d[]: f = F(u)
f. x = f. y = 0;

for (i= 0; i <= m;i++)
f=f+d[i]*bspline(i,grad,u);

2

double u=t[i]+(double)j*
(t[i+1]- t[i])/(double)steps;

result[nPunkte++] =
deBoor(u,grad,i);

}
}

} s E T

