ﬁ PC UNDERGROUND
© <) PRAXIS

¢ ‘m AUF CD

R . Die Quelltexte sowie die fertig tbersetzten
Routinen finden Sie im Verzeichnis Praxis/Pro-

r

Bézier- und SpIine-Kurven > f!; ,-%: — grammierung,/PC Underground.
Wer als Anwender mit Bézier-Kurven von Auto-

blechen am Rechner gestaltet, braucht keine hohere Mathematik.
Programmierern bleibt sie nicht erspart.

meistern Sie auch die Flachen im dreidi-
mensionalen Raum. Fir eine parametri-
sche Kurve geben Sie — wie bei Flachen
— eine Reihe von Basisfunktionen und
Sttzpunkten an. Die Bézier-Kurven
sind die bekanntesten parametrischen
Kurven. Sie wurden um 1960 entwickelt
und in der franzésischen Automobilin-
dustrie zum Karosseriedesign verwen-
det (Computer Aided Geometric De-
sign, CAGD). Die Basisfunktionen, die
Sie bei Bézier-Kurven verwenden,
heil3en Bernstein-Polynome.

CARSTEN DACHSBACHER

ie steigende Rechenleistung
Dmoderner CPUs und die Ent-

wicklung hochleistungsfahiger
3D-Grafikkarten haben dazu gefiihrt,
dass professionelles Modelling Einzug
in Computerspiele gehalten hat. Die
Grundlage fur Modelling sind parame-
trische (glatte, gekrimmte) Flachen. Ei-
ne parametrische Flache legen Sie durch
Basisfunktionen und Stutz-/Kontroll-
punkte fest. Die Grundlagen fur die Ba-

wertung mit den Bernstein-Polynomen
vor. Diese sieht wie folgt aus:

/I Koordinate d des Punkts
/I abhangig von u: d = F(u)
dx=dy=0;

for (i=0;i<grad;i++)

d=d+(b[i]*
bernstein(u, i));

/I wertet Bernstein-Polynom aus
double bernstein
(double u,long i)

_ _ . . wrn bin(grad. i) *
sisfunktionen und deren Auswertungle- | 5™ (H:' — (” }f (1 — H:lﬂ_i L%\L,f,r(nu"in)(,?ra h
sen Sie in diesem Beitrag. Zunachst ! ! $0W(1.0-u, grad-i);

zeichnen Sie Kurven. Deren Form ver-
andern Sie durch die Position der Stiitz-
punkte. Mit diesem Handwerkszeug

IZH) 7|
. " — /I berechnet Fakultat von n
m|t 1 | | double fac(longn)

(r — K]

{ double r=1.0;
Diese Funktionen besitzen drei Vari- for (i=2;i<=n;i++)
L ablen: r *= (double)i;
- . . . returnr;
n=3 -0 e u ist der Laufindex und nimmt Werte)
= = nist eine Ganzzahl und gibt den Grad ij/oEE:tr)]l?emtl)eiirI]k(?oer:gZ:)T(t)ng K)
i=1 der Kurve an. Das ist zum einen die {
héchste Potenz, in der die Laufvariable retum fac(n) /
vorkommt, zum anderen bestimmen Sie (Fac(n-k)* Fac(k));
dadurch die Zahl der Stutzpunkte.
e Die Bézier-Kurve hat (n+1) Stiitz- Der Sourcecode 2dvector.c zeigt eine de-
punkte. Fur verschiedene Indizes i er- finierte VVektorstruktur und Uberladene
0 1 halten Sie verschiedene Funktionen (ab-
1 héngig von der Variablen u). Die Funk- x|
e tionswerte liegen im Intervall von [0,1].
i=0 Sie stellen die Gewichtung der einzelnen
i=3 Stlitzpunkte dar, was auch in der Formel
flr Bézier-Kurven zu sehen ist.
i=1 i=2 N »
Flu)=73 B (u)- b
1=
Der Stutzpunkt b wird mit dem Bern-
0 1 stein-Polynom i vom Grad n multipli-
EINE BEZIER-KURVE vom Grad n=3 und

ziert. Alle Punkte, die Sie fur u zwischen
0 und 1 erhalten, liegen auf der Bézier-
Kurve. Nehmen Sie eine direkte Aus-

BERNSTEIN-POLYNOME sind die Basis der
Bézier-Kurven.

daruber das Kontrollpolygon als Linienzug

| |
| |
| |
| |
1 1
| |
| |
| |
1 l
| |
| |
[|
1 l
| |
| |
1 1
| |
1 1
| |
1 1
| |
1 1
| |
| |
! zwischen O und 1 an. !
1 1
| |
1 1
| |
1 1
| |
1 1
| |
1 1
| |
1 1
| |
1 1
| |
i i
| I zwischen den Kontrollpunkten

234 Februar 2001 PC Magazin

Operatoren-Anwendung. Bevor Sie die
Bézier-Kurven genauer betrachten, ver-
allgemeinern Sie die Formel zu einem

beliebigen Intervall [s,t] fur die
Variable u:
-~ i -5
B)= 1-
i—=r f—sg

Plu)= ;s () &,

Bézier-Kurven flr u aus [s,t] liegen in der
abgeschlossenen konvexen Hiulle. Die
konvexe Hiuille einer Punktmenge kon-
nen Sie so veranschaulichen, dass Sie mit
einer gespannten Schnur versuchen, alle
Punkte einzuschniiren. Weiterhin kon-
nen Sie sehen, dass die Bézier-Kurve im
ersten Stitzpunkt b0 beginnt und im
letzten b3 endet (Endpunkt-Interpolati-
on).

Die Kurve endet nicht nur in den End-
punkten des Kontrollpolygons, sie ver-
lauft dort auch tangentiell an den Kanten
der Kontrollpolygone. Weiterhin sind
Bézier-Kurven affin invariant; Bei einer
affinen Transformation (eine Drehung
und/oder eine Verschiebung) der Kon-
trollpunkte wird die Kurve mittransfor-
miert, behalt aber ihre Form.

Die Kurve schwankt nicht starker als
ihr Kontrollpolygon (Variation-Dimi-
nishing-Property, variationsreduzie-
rend). Sie zeichnen Bézier-Kurven nicht
punktweise, doch Sie werten die Bern-
stein-Polynome fur jeden Punkt aus.
Stattdessen approximieren Sie am Bild-
schirm die Kurve mit vielen Linien. Die
Zahl der Linien hangt von der GrofRRe der
Kurve auf dem Bildschirm und der Auf-
I6sung ab. Die Linien kénnen Sie schnel-
ler zeichnen als die einzelnen Pixel, de-
ren Position Sie rechenintensiv auswer-
ten massten.

Ein schnellerer Auswerte-Algorithmus —
nicht fur die Bernstein-Polynomen — fir
die Punkte auf Bézier-
Kurven ist der de-Ca-
steljau-Algorithmus.

Er bestimmt die Ko-
ordinate eines Kur-
venpunktes durch
schrittweise Untertei-
lung des Kontrollpo-

»=i

b =[s]

lygons.
Formal benétigen Sie folgende Defini-
tionen, wobei Sie die Variablen wie folgt
euten kénnen:
0= A,

1

B = o) b+ (1- au))

i+l

e

PC UNDERGROUND
PRAXIS

5)-6

ten, sind die Kontrollpunkte zweier
neuer Bézier-Kurven, die zusammen die
bisherige Kurve ergeben. Mit einem Un-
terschied: Die neuen Kontrollpolygone
liegen ndher an der tatséchlichen Bézier-
Kurve. Wenn Sie also den de-Casteljau-
Algorithmus rekursiv auf die neuen Bé-
zier-Kurven anwenden, erhalten Sie
Kontrollpolygone (Linienziige), mit de-
nen Sie die Bézier-Kurve zeichnen. Der
de-Casteljau-Algorithmus I&sst sich effi-
zient implementieren, wie Sie dem
Codeausschnitt im Quellcode entneh-
men. Dieser zeigt eine Mittelpunkts-
unterteilung (alpha=0.5).

Wenn Sie Fldchen mit vielen Details
modellieren wollen, missen Sie Bézier-
Kurven mit einem hohen Grad n ver-
wenden. Andern Sie den Ort eines Kon-
trollpunkts, &ndern Sie damit die ganze
Kurve. Das umgehen Sie, indem Sie

-8 i Aiar. indriqe
zx(u) — d=1 . mi=0. .n—1{ mehrere Bézier Ku_rve_n von. niedrige
-z rem Grad (zum Beispiel kubisch, n=3)
F(u) — hr aneinanderhédngen. Die Flachen lassen
o sich leicht luckenlos aneinander fugen,
./’—\.
h=c, \
einfacher AnschluB zweier Bézier-Kurven
A, A, A, b b, AnschluB mit gleicher Tangente, die Verhaltnisse
b b,=¢, . c A CoC entsprechen den Abstanden der Kontrollpunkte
-l d) "

die "A-Frame" Bedingung fiir einen Anschluf3
mit gleicher Tangente und zweiter Ableitung

r S t

gen perfektionieren die Kurven.

Den eigentlichen
Clou beim de-Castel-
) jau-Algorithmus mit
AN dem Ziel, die Kurve
; schnell mit Linien zu
approximieren, sehen
Sie imrechten Teil des
Bildes: Die Punkte,
die Sie als Zwi-

DER DE-CASTELJAU-ALGORITHMUS wertet Bézier-Kurven aus

und teilt sie in diesem Beispiel.

schenergebnis am
Rand der de-Castel-
jau-Pyramide erhal-

VERSCHIEDENE UBERGANGE zweier Bézier-Kurven und geometrische Ubergangsbedingun-

da die Kurven am Endpunkt interpolie-
rend sind. Entscheidend fur die Darstel-
lung ist auch die Steigung und Krim-
mung der Kurven an den Anschluss-
stellen.

An einer Anschlussstelle entscheidet
sich, ob Sie einen unerwiinschten Knick
erhalten. Im Automobilbau gibt es eine
weitere Anforderung: Die Kurven mus-
sen am Anschlusspunkt auch in der
zweiten Ableitung gleich sein. Sonst ist
der Ubergang bei Reflexionen, zum ©

PC Magazin Februar 2001 235

)

PC UNDERGROUND
PRAXIS

Beispiel auf Autolacken, sichtbar. Im un-
teren Teil des rechten Bildes auf der vo-
rigen Seite sehen Sie die geometrischen
Bedingungen, die zwei Bézier-Kurven
erfillen massen, um den entsprechenden
Anforderungen zu genligen. Trotz der
etwas umsténdlichen Beschreibung de-
tailreicher Flachen haben sie aber trotz-
dem eine Existenzberechtigung: Rechner
werten Bézier-Kurven effizient und in
Echtzeit aus. Damit haben Bézier-
Flachen die Eigenschaften, die fur Echt-
zeit-Rendering von Vorteil sind.

B-Spline-Kurven sind eine neue Gat-
tung mathematischer Kurvenbeschrei-
bungen. Wir beschéftigen uns mit B-
Spline-Kurven, die die Eigenschaft der
affinen Invarianz (Begriff: siehe oben)
mitbringen. Die Definition eine B-
Spline-Kurve lautet:

b
s
Filu)= 2, N (w) 4,
i=l

Die Stiitzpunkte bezeichnen Sie mit d;
(de-Boor-Punkte, nach Carl de Boor).
Zusétzlich gibt es einen Knotenvektor t,
dessen Werte sich in den rekursiv defi-
nierten B-Spline-Basisfunktionen nie-
derschlagen:

G Su sty = Nw=1

sopEt

NPG)=0
—E g Bippl ~H i
N7)+ Mg),
S ~Ein

W) = =

i+l T i

Im Bild oben rechts sehen Sie Basis-
funktionen vom Grad 0 bis 2. Daran
kodnnen Sie einen Vorteil gegenliber den
Bernstein-Polynomen als Basisfunktio-
nen ablesen: Die B-Spline-Funktionen
sind nur in einem begrenzten Bereich
ungleich Null. Bernstein-Polynome
sind im gesamten Bereich, in dem sich
die Laufvariable u befindet, ungleich
Null. Dies ist gleichbedeutend damit,
dass ein Kontrollpunkt nur auf einem
sehr begrenzten Bereich der Kurve Ein-
fluss austibt. Damit kénnen Sie an be-
stimmten Teilen eine B-Spline-Kurve
detailreich modellieren, ohne die Kurve
zu &ndern.

B-Spline-Basisfunktionen vom Grad
n sind stlickweise polynomiell (durch
Polynome beschreibbar) und bieten des-
halb optimale Glattheit. Dadurch wer-
den die geometrischen Ubergangsbedin-
gungen uberflissig. Um ein Gefthl fur

236 Februar 2001 PC Magazin

Grad n=0

Gradn=1

Grad n=2

DIE B-SPLINE-BASISFUNKTIONEN sind nur
in kleinen Bereichen von Null verschie-
den.

die Auswirkungen des Knotenvektors
auf die Kurve zu bekommen, experi-
mentieren Sie am besten mit unserem
Beispielprogramm. Der Knotenvektor
hat so viele Werte wie Grad n plus An-
zahl der Stitzpunkte plus 2. Der Kno-
tenvektor beeinflusst den Verlauf der
Kurve innerhalb der konvexen Hiulle
des Kontrollpolygons. B-Spline-Kur-
ven sind zum Beispiel nur Endpunkt-
interpolierend, wenn jeweils die ersten
(n+1) und die letzten (n+1) Werte des
Knotenvektors gleich sind.

Die direkte Auswertung der B-Splines
kénnen Sie mit folgendem Codeaus-
schnitt berechnen. Beachten Sie die Spe-
zialfalle fur den Knotenvektor bei der
Rekursion im Listing bspline.c.

Betrachten Sie eine B-Spline-Kurve
vom Grad n mit m de-Boor-Punkten
und einem Knotenvektor t. Nutzen Sie
die folgenden Eigenschaften, um Kur-
ven gezielt zu modellieren:

e Fallen n de-Boor-Punkte zusammen
(sind also identisch), so verlauft die Kur-
ve durch diesen Punkt und liegt dort tan-
gentiell an dem Kontrollpolygon an.
Damit kdnnen Sie Ecken in der Kurve
modellieren.

< Wenn Sie n de-Boor-Punkte auf einer
Geraden platzieren, bertihrt die Kurve
diese Gerade. Wenn sich (n+1) Punkte
auf einer Gerade befinden, liegt ein Ab-
schnitt der Kurve auf dieser Geraden.

e Fallen n Knoten (Werte im Knoten-
vektor) zusammen, also t=tj+1=...=tj,,

so gilt F(t)=d;. Das heil3t, dass die Kurve
durch einen Kontrollpunkt verlauft und
dort tangentiell am Kontrollpolygon an-
liegt.

e Als letzte Eigenschaft kénnen Sie die
,,lokale konvexe Hiille* ausnutzen. Fir
ein u im Intervall [t;, tj;4] liegt die Kur-
ve in der abgeschlossenen konvexen
Hiille der (n+1) vielen Kontrollpunkte
di_p, - dj.

Auch fir B-Spline-Kurven gibt es ele-
gante Algorithmen zur Auswertung, die
aber trotzdem rechenintensiver als die
fur Bézier-Kurven sind. Als Pendant
zum de-Casteljau-Algorithmus gibt es
fur B-Spline-Kurven den — rekursiv de-
finierten — de-Boor-Algorithmus. Seine

Definition:
- 23— £
at = [17] an [_J 4
Lt — Lipna1 — &

I=1. . mi=j—n+j..j
F(u):d;

4= d;

Um ihn anschaulich darzustellen, be-
darf es einer anderen Darstellung der B-
Spline-Kurve, der so genannten Polar-
form.

Laut Definition gilt der de-Boor-Al-
gorithmus nur fur Parameter aus dem
Intervall [tj, tj+1]. Folgender Programm-

PL. normalisierte B-Spline Kurven x|

Knatenvektor t={ 0,0,0,0,1,2,2,4,7,8,8,8,8 }

EINE NORMALISIERTE B-Spline-Kurve und
ihr Knotenvektor

code berechnet den de-Boor-Algorith-
mus fur die Kurve an der Stelle u vom
Grad | im Intervall [t(i), t(i+1)]:

/IVECTOR deBoor
0 (double u,long l,long i)

if (1==0)
/I letzte ausgewertete Stelle
/l'im letzten Intervall !
if (i == nKontrollPunkte)
return d[nKontrollPunkte-1];
else
return d[i];

double t2=(u -t [i])/

(t[i+grad +1-1] - t[i]);
double t1=1.0-t2;

return deBoor(u, I-1, i-1)
*t1 + deBoor(u,l-1,i) * t2;

Wenn Sie eine Spline-Kurve an der An-
zahl steps Stellen pro Intervall des Kno-
tenvektors auswerten wollen, verwen-
den Sie folgenden Code:

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
/ISpeicher ausreichend Punkte |

-

VECTOR resultf GENUGPUNKTE];
int nPunkte =0;

|
|
i
/I Kurvengrad n, ,steps“-Stellen |
/I ,nintervals® im Knotenvektor |
for (i=n; }

i< nintervals +n;i++) |

{ |

/I Vorraussetzung im de Boor Al- |
gorithmus |
if(ti+11>1i]) !

{ |

1

|

for(j=0;j <= steps; j++)

PC UNDERGROUND
PRAXIS

double u=t[i]+(double)j*
(t[i+1]- t[i])/(double)steps;

result[nPunkte++] =
deBoor(u,grad,i);
}

}
} ET

Literatur:

Gerald Farin: Curvers and Surfaces for Computer
Aided Geometric Design, Academic Press,

ISBN 0-12-249054-1

long n, long k, VECTCR *dat a,

2dvector.c zeigt eine definierte Vektorstruktur und eine iiberladene

77: '}

78:
1= //2dvector.c: 2D Vektor Struktur 79: del ete Pyranide;
2: typedef struct { 80: }
85 double x, y; 81:
4z }VECTCR 82: void DeCastel jau(
53 83: VECTCR **result, long *nP, long *nBeziers)
6: // Vektor + Vektor 84: {
7: VECTCR operator + (const VECTCR &, const VECICR &) { 85: /I soviele Bezierkuven werden wir haben
8: VECTCR resul t; 86: *nBeziers = 1 << k;
9: result.x = a.x + b.x; 87: /I und soviele Punkte
10: result.y =a.y + b.y; 88: *nP = *nBeziers * (n+l);
11: return resul t; 89:
12: } 90: // Speicher dafur allokieren
als)s 91: nPoints = 0;
14: /1 Vektor * Skal ar 92: Points = new VECTGR *nP];
15: VECTCR operator * (const VECTCR &, const double b) { 93:
16: VECTCR resul t; 94: DeCastel jauRekursiv(1, n + 1, k, data);
17: result.x = a.x * b; 955
18: result.y = a.y * b; 96: *result = Points;
19: return result; 97: }
20z }
21:
22: /| Berechnet eine de Casteljau Pyranmide nit al pha(u)=0.5

Operatoren-Anwendung.

23: void calcPyramide(|ong n, VECTCR *Pyranide)
24: {
25: long i, J;
26:
27: /Il Ebene
28: for (i =1;i <n; i++)
2953 { 1: //bspline.c
30: /1 Spalte . - 2: doubl @ bspline
g;: for (j =0; j <n-i;j+) 3: (long i, long I, double u)
5 43
33: Pyranide[j +i * n] = 5; if (1 ==0)
34: (Pyramde[j+(i-1)*n] + Pyranide[(j+1)+(i-1)*n])*0.5; 6
3553 7: /1 Rekursionstiefe 0
36:~ } 8: if (T(Ci) <=
37: } 9: u&uU<T(i +1))
38: i . 10: return 1.0; else return 0.0;
39: // Berechnet rekursiv de Casteljau 113 } else
40: voi d DeCast el j auRekur si v 12
41: (long rek, long n, long k, VECTCR *data) 13: /1 hoehere Rekursi onsti ef en
42: {) 14: doubl e a, b;
43: long i; 15:
44: VECTCR *Pyramide = new VECTORl n * n]; 16: a=No(i, | -1, u);
45:) . 17: b=N(i +1, 1 -1, u);
46: /] unterste Pyranidenebene nit 18:
47: /1 Kontrollpunkten der Bezierkurve fullen 19: doubl e d1=(T(iH)-T(i));
48: for (i = 0; i<n i++)) 20: doubl e d2 =(T(i+ +1)-T(i+1));
49: Pyranide[i +0 * n] = data[i]; 21:
50: . 223 doubl e q1=(u-T(i));
51: /I Pyram Qe ber echnen) 23: doubl e q2=(T(iH +1)-u);
52: Cal cPyramide(n, Pyramide); 243
5353 . 25 /1 Division durch 0 abfangen
54: if (rek==k) 26: if (d1 == 0.0) d1=q1-=1.0;
55: { . . 5 5 27: if (d2 == 0.0) d2=g2=1.0;
56: /1 Rekursionstiefe erreicht => Punkte spei chern 283
57: for (1 =0; i <m i++)) . 29: if (q1==0.0 &% d1==0.0) ql =1.0;
58: Points[nPoints ++] = Pyramide[O +i * n]; 30 else gl /= d1;
59: for (1 =0; i <m i++) : : 31: if (92==0.0 && d2==0.0) g2 =1.0;
60: Points[nPoints ++] = Pyramide[(n- i - 1) +i * n]; 32: el se q2 /=d2;
61: } else 838
62:)) 34; return ql * a +q2 * b;
63: /] weiter unterteilen 35
64: VECTCR *data = new VECTCH n]; 363 }
65: 37:
66: for (i =0; i <m i++) 38:
67: datal i] = Pyranide[] O +i * n]; 39:
68: . . 40: /1 Auswertung der Kurve mit
69: DeCastel jauRekursiv(rek + 1, n, k, data); 41: Il mStutzpunkten d[]: f = F(u)
705 . . . 42; f.x="f.y =0
71 for (i =0; i <n; i++) 43:
723 data[i] =Pyranmide[(n-i -1) +i *n]; 44 for (i=0; i <= mi+)
73z i i 45: f=f+d[i]*bspline(i,grad, u);
74: DeCastel jauRekursiv(rek + 1, n, k, data);
75z
765 delete data; Der Ausschnitt bspline.c wertet B-Splines aus.

PC Magazin Februar 2001 237

