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C A R S T E N D A C H S B A C H E R

Mit dem mathematischen Hand-
werkszeug aus PC Under-
ground 01/01 (ab S. 258) zau-

bern Sie Bézier- und Spline-Flächen auf
Ihren Bildschirm. Diese Art der Reprä-
sentation von 3D-Modellen findet man
in Computerspielen: in Torbögen,
Brunnenschächten, Säulen oder Land-
schaften. Sie können damit auch Model-
le aus gewölbten Flächen präsentieren.

■ Tensor-Produkt-Flächen
Aus parametrischen Kurven können Sie
mit dem Tensor-Produkt-Ansatz
Flächen zusammensetzen. Dazu benöti-
gen Sie zwei Kurven:

Der Tensor-Produkt-Ansatz fasst
beide Kurven unter einer Doppelsumme
zusammen:

Wenn Sie die Terme in der obigen
Formel anders klammern, lässt sich die
Tensor-Produkt-Fläche als Kurve auf
einer Kurve deuten. Sie berechnen den
Funktionswert der einen Kurve (innere
Klammer) und verwenden das Ergebnis
als Stützpunkt für die zweite Kurve
(äußere Summe). 

Der Term dij fasst die Stützpunkte der
Tensor-Produkt-Fläche zusammen. Al-
lerdings haben Sie für die Fläche nicht
(m+n+2), sondern (m+1)*(n+1) Stütz-
punkte. Das gibt Ihnen mehr Freiheit,
die Fläche zu modellieren.

Welche Basisfunktionen (Bézier oder
Spline) Sie verwenden, ist aus mathema-
tischer Sicht nicht festgelegt. Praktiker
kombinieren immer zwei Basisfunktio-
nen gleichen Typs.

■ TP-Bézier-Patch
Von einem TP-Bézier-Patch spricht
man, wenn Sie für beide Basisfunktionen
Bézier-Kurven wählen. Diese Variante
besitzt Eigenschaften, die Sie beim Mo-
dellieren und beim Rendering nutzen
können.

TP-Bézier-Patches und andere TP-
Flächen haben ein zweidimensionales
Parametergebiet. Ein Punkt auf der
Fläche hängt von zwei Koordinaten ab.
Diese und das Kontrollpolygonnetz de-
finieren die Fläche.

Der TP-Bézier-Patch hat von den
zweidimensionalen Bézier-Kurven die
Eigenschaft konvexe Hülle geerbt. Das
bedeutet, dass die konvexe Hülle mit al-
len Knoten des Kontrollnetzes auch den
TP-Bézier-Patch enthält. Wie sich die
Kurve in den Start- und Endpunkten
tangentiell an das Kontrollpolygon legt,
so verhält sich die Fläche an den Eck-
punkten des Kontrollnetzes. Anders
ausgedrückt: Bei Bézier-Kurven endet
die Kurve im ersten und letzten Kon-

trollpunkt und verläuft tangentiell am
Kontrollpolygon. Ein TP-Bézier-Patch
verläuft durch die Eckpunkte des Kon-
trollnetzes und dort tangentiell am Kon-
trollnetz. Daraus ergibt sich die Norma-
le der Fläche an b00:

Die wichtigste Eigenschaft für den
Einsatz der Bézier-Patches in der 3D-
Grafik ist die Affine Invarianz. Eine af-
fine Transformation setzt sich aus Rota-
tion und Translation (Verschiebung) zu-
sammen. Mit dieser Eigenschaft können
Sie die Fläche über die Punkte des Kon-
trollnetzes rotieren und verschieben und
mit den gleichen Algorithmen neu aus-
werten. Wäre diese Eigenschaft nicht ge-
geben, würde die Fläche bei solchen Ak-
tionen ihre Gestalt verändern.

Eine Eigenschaft der Kurven über-
trägt sich allerdings nicht auf den TP-
Bézier-Patch: die Variation Diminishing
Property. Die parametrische Fläche
kann daher mehr Wölbungen oder Beu-
len aufweisen als die Basisfunktionen.

Die Algorithmen, die Sie bereits für
den Kurvenfall kennengelernt haben,
wie de Casteljau-Algorithmen zum Bei-
spiel Unterteilung, Graderhöhung und
die Konstruktion stetiger Übergänge,
können Sie direkt von den Kurven auf
die Flächen übertragen. Dies führt Ihnen
unser Beitrag anhand des de Casteljau-
Algorithmus vor. Dieser verwendet die
Darstellung eines TP-Bézier-Patches als
Kurve auf einer Kurve. Es bietet sich al-
so an, zuerst die eine Kurve (die innere
Klammer in der obigen Formel) mit dem
de-Casteljau-Algorithmus auszuwer-
ten. Damit erhalten Sie die Stützpunkte
der zweiten Kurve, die Sie auch wieder
auswerten. Wie Sie aus der vorigen De-
finition der TP-Flächen entnehmen, lie-
fert jede Reihenfolge der Auswertungen,
also u/v oder v/u, dasselbe Ergebnis. Ei-
ne Darstellung der Auswertungspyra-
miden des de-Casteljau-Algorithmus q

Bézier- und Spline-Flächen

Mathematik ausgereizt
Hinter den reizenden Kurven virtueller Gestalten und hinter malerischen,
blühenden Landschaften verbirgt sich simple Mathematik. 

AUF CD
Die Quelltexte sowie die fertig übersetzten

Routinen finden Sie im Verzeichnis Praxis/Pro-
grammierung/PC Underground.
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bei einem bikubischen TP-Bézier-Patch
(in beiden Basisfunktionen kommen
Terme bis zur dritten Potenz vor) finden
Sie im Bild unten. 

■ 3x3-TP-Bézier-Patch
Mit bikubischen TP-Bézier-Patches las-
sen sich viele interessante Modelle kon-
struieren. Diese setzen sich meist aus
mehreren Patches zusammen; dadurch

können Sie 3D-Modelle mit zahlreichen
Details versehen. Sie werten aus Basis-
funktionen – durch geeignete Verfahren
und unter Berücksichtigung eines Spezi-
alfalls – noch schneller aus.

Der Spezialfall hier ist zum einen, dass
Sie bikubische TP-Bézier-Patches be-
trachten, und zum anderen, dass Sie da-
rauf 81 regelmäßig verteilte Punkte aus-
werten wollen – also die Fläche zu einem
9 x 9-Polygongitter tessellieren. Das
heisst, Sie wandeln die Fläche in Polygo-
ne, zumeist Dreiecke, um.

Dazu nutzen Sie Central Differen-
cing: Die Randkurven einer Bézier-
Fläche sind Bézier-Kurven. Diese Rand-
kurven können Sie sukzessive am Mit-
telpunkt und über die Fläche hinweg un-
terteilen. 

So berechnen Sie den Mittelpunkt ei-
ner Bézier-Kurve: Als erstes betrachten
Sie eine Randkurve. Diese schreiben Sie
als Taylor-Reihe. Dabei handelt es sich

um die Darstellung einer Funktion
durch eine Summe über ihre Ableitun-
gen. In der folgenden Formel ist Fi(u) die
i-te Ableitung der Funktion. Der Wert
der Formel ist ein Punkt in der Nähe von
u, also du entfernt.

Da Sie kubische Basisfunktionen be-
trachten, können Sie diese (mit den
zunächst unbekannten Parametern a, b,
c, d) und ihre Ableitungen wie folgt auf-
schreiben:

Ab der vierten Ableitung sind bei ei-
ner kubischen Funktion alle Ableitun-
gen gleich Null. Weil die Taylor-Reihe
keine Summe bis unendlich enthält, 
lässt sie sich leicht aufschreiben:

Für Punkte, die in der anderen Rich-
tung von u liegen, erhalten Sie folgende
Formel:

Wenn Sie die letzen beiden Gleichun-
gen addieren, erhalten Sie das vielver-
sprechende Ergebnis:

welche nach F(u) aufgelöst:
ergibt. 

Dabei halten Sie das Ziel im Auge, ei-
ne Bézier-Kurve in der Mitte zu unter-
teilen. So erhalten Sie die benötigte Men-
ge an Stützpunkten entlang der Bézier-
Kurve. Der Parameter u läuft von 0 bis
1, die Mitte der Kurve ist bei du = 0.5.

Die eingesetzten Werte sind für den ers-
ten Unterteilungsschritt.

F(0) und F(1) sind zwei Eckpunkte des
Kontrollnetzes. Sie benötigen die zwei-
te Ableitung in der Mitte einer Bézier-
Kurve. Die von F(u) hergeleitete Formel
hilft Ihnen weiter, wenn Sie darin F(u)
durch F’’(u) ersetzen:

Den letzen Term können Sie vernach-
lässigen, da die vierte Ableitung immer
gleich Null ist. In unserem Beispiel er-
halten Sie:

Die zweiten Ableitungen an den Stel-
len u=0 und u=1 können Sie direkt be-
rechnen. Dazu schreiben Sie die Sum-
menform der Bézier-Kurve aus und lei-
ten diese ab. Damit erhalten Sie folgende
Resultate:

Nun haben Sie alle Berechnungen er-
ledigt, mit denen Sie eine Bézier-Kurve
sukzessiv unterteilen. Alle vorkommen-
den Werte (F(0), F(1)....) ersetzen Sie in
den weiteren Rechenschritten durch die
entsprechenden Zwischenergebnisse:
Wenn Sie eine Kurve unterteilt haben,
erhalten Sie zwei neue, deren einer End-
oder Startpunkt das Resultat der obigen
Berechnung ist.

Doch woher bekommen Sie die zwei-
te Ableitung, wenn Sie nicht mehr ent-
lang einer Randkurve, sondern über die
Fläche unterteilen? Das entspricht der
Unterteilung einer Kurve im anderen
Parameter. Dabei hilft Ihnen folgende
schon bekannte Gleichung:

Sie können also die zweite partielle
Ableitung in v-Richtung auf einer u-

EINE DOPPELTE ANWENDUNG des de-Ca-
steljau- Algorithmus führt zum gewünsch-
ten Punkt.

ZUERST UNTERTEILEN SIE die Randkurven,
anschließend über die Fläche hinweg.
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Randkurve berechnen, wenn Sie den
Wert Fuuvv kennen. Fuuvv bedeutet die
zweite Ableitung der Fläche in u- und v-
Richtung. Auch diese erhalten Sie durch
Mittelung zweier Werte an den Kurven
Start- oder Endpunkten, welche die fol-
gende Formel ausweist:

Es genügt also, den Wert an den Eck-
punkten zu kennen, um den ersten Be-
rechnungsschritt zu starten. Diese Wer-
te müssen Sie direkt ausrechnen:

In die untere Gleichung setzen Sie die
Ableitungen der Bernstein-Polynome
ein:

Die Initialisierung einer Unterteilung
berechet folgende drei Werte:

Sie unterteilen diese mit jedem Re-
chenschritt folgendermaßen

Alles zusammengenommen, können
Sie im Vergleich zum de-Casteljau-Al-

gorithmus die Anzahl der nötigen Addi-
tionen und Multiplikationen mehr als
halbieren, was den Aufwand in einer
zeitkritischen Anwendung rechtfertigt.
Einen Vergleich und eine genaue Aus-
wertung des de-Casteljau-Algorithmus
und des Central Differencing können Sie
im Artikel An In-Depth Look at Bicubic
Bézier Surfaces von Mark A. DeLoura
unter www.gamasutra.com/features/19
991027/deloura_01.htm abrufen. 

Auch für 4 x 4-TP-Bézier-Flächen
bietet das Internet Informationen. Haim
Barad beschreibt im Artikel Tessellation
of 4x4 Bézier Patches for the Intel Penti-
um III Processor unter www.gamasutra.
com/features/20000317/barad_01.htm
wie Sie solche Bézier-Patches mit Penti-
um-3-Befehlen effizient tessellieren
können.

■ Andere Tensor-
Produkt-Flächen
Mit jeder Basisfunktion können Sie Ten-
sor-Produkt-Flächen erzeugen (vgl. PC
Underground 1/01, ab S. 258). Genauso
wie bei den Bézier-Flächen können Sie al-
le Eigenschaften, bis auf Variation Dimi-

nishing, von den Kurven auf die Flächen
übertragen. Wenn Sie in einem kleinen
Teil einer Spline-Fläche mehr Details
modellieren wollen, benötigen Sie in je-
der Randkurve mehrere Stützpunkte.

Angenehmer wäre eine Lösung wie
rechts im Bild, bei der nur der Bereich
mit lokalem Detail auch mehr Stütz-
punkte enthält. Ein Lösungsansatz dazu
sind die hierarchischen Spline-Flächen:

F1(u,v) ist die grobe Fläche, F2(u,v)
die kleine, detailreiche auf F1 aufgesetz-
te Fläche.

■ Parametrische Flächen
trimmen 
Nicht immer wollen Sie, dass das ganze
Parametergebiet verwendet wird, son-
dern Sie wollen Ihre parametrische
Fläche zurechtschneiden. Dabei spricht

man vom Trimmen der Fläche. Bei der
Tessellierung lässt sich das nicht direkt
umsetzen, aber zur direkten Berechnung
können Sie das nachfolgende Verfahren
nutzen. Um eine Fläche zu trimmen,
verwenden Sie im Parametergebiet eine
geschlossene Kurve und ein Flächen-
schema. Ermitteln Sie für jedes Ko-
ordinatenpaar (u,v), ob es innerhalb
oder außerhalb des getrimmten Berei-
ches liegt. Die geschlossenen Kurven

markieren den getrimmten Bereich. Da-
zu bedienen Sie sich des so genannten
Odd-Even-Tests: Vom Punkt (u,v) im
Parametergebiet ausgehend verfolgen
Sie eine Halbgerade in eine beliebige
Richtung. Nun zählen Sie die Anzahl
der Schnittpunkte der Halbgerade mit
den gegebenen Kurven. Bei einer unge-
raden Anzahl von Schnittpunkten liegt
(u,v) im getrimmten Bereich, sonst
außerhalb.

Einen interessanten Artikel über
NURBS (Non-Uniformal Rational B-
Splines, eine Variante von Splines) fin-
den Sie bei Intel unter http://developer.

intel.com/software/idap/games/nurbs/
index.htm.

■ Patches rendern 
Die besten Algorithmen, um Flächen zu
berechnen, nutzen Ihnen nichts, wenn
Sie diese nicht darstellen können. Mit
OpenGL bringen Sie mit relativ weni-
gen Befehlen die Patches auf den Bild-
schirm. Einen einfachen Start, mit q
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LINKS SEHEN SIE EINE herkömmliche 
Spline-Fläche, rechts eine hierarchische
mit aufgesetztem lokalen Detail.
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NEBEN DER MATHEMATISCHEN Darstel-
lung des Parametergebiets sehen Sie in
Blau die getrimmte Fläche.

DER ODD-EVEN-TEST verrät Ihnen, wo sich
der Punkt befindet.
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dem Sie OpenGL im Fenster- und im
Vollbild-Modus in beliebiger Auflösung
und Farbtiefe verwenden können, fin-
den Sie im Quellcode auf der Heft-CD
im Verzeichnis unter PC Underground.

Um die parametrischen Flächen zu
rendern, positionieren Sie zuerst den Be-
trachter. Diese Information speichert
OpenGL in der Projektionsmatrix:
glMatrixMode( GL_PROJECTION );
glLoadIdentity();
gluPerspective(45.0f, 
aspectratio, 1.01f, 1000.0f );
glTranslatef(0.0f,0.0f,-120.0f);

Die Transformationen der Polygon-Da-
ten speichern Sie in der Modelview-Ma-
trix:
glMatrixMode( GL_MODELVIEW );
glLoadIdentity();

Hierbei verfügen Sie über folgende Be-
fehle, um Polygone im Raum um eine
Achse zu drehen, zu verschieben (Trans-
lation) oder in der Größe zu verändern
(Skalierung):
void glRotatef(GLfloat winkel, 
GLfloat x,GLfloat y,GLfloat z);
void glTranslatef(GLfloat x, 
GLfloat y, GLfloat z );
void glScalef(GLfloat x, 
GLfloat y, GLfloat z );

Nachdem Sie diese Befehle mit ange-
passten Parametern ausgeführt haben –

eine Implementation können Sie unse-
rem Beispielprogramm entnehmen –
können Sie die Polygone zeichnen.
Zunächst bestimmen Sie die Zeichen-
farbe:

glColor3f(GLfloat rot,  

GLfloat green, GLfloat blue );

So können Sie Dreiecke, die Sie durch
das Tessellieren erhalten haben, auf ver-
schiede Arten ausgeben. 

Geben Sie einzelne Dreiecke aus, in-
dem Sie deren Eckpunkte angeben:
glBegin( GL_TRIANGLES );
for (alle Dreiecke)
{
glVertex3f( x1, y1, z1 );
glVertex3f( x2, y2, z2 );
glVertex3f( x3, y3, z3 );
}
glEnd();

Alternativ können Sie Triangle Strips
zeichnen. Dabei nutzen Sie, dass Sie einen
Streifen von Dreiecken rendern, bei dem
sich zwei aufeinander folgende Dreiecke
eine Kante teilen. Mit dieser Variante er-
reichen Sie eine deutlich höhere Perfor-
mance, weil weniger Daten an OpenGL
übertragen werden und OpenGL weni-
ger Aufwand betreiben muss.

Die Anzahl der Dreiecke, die Sie bei
der Tessellierung erzeugen, ist nicht nur
für die Frame-Rate beim Rendern inte-
ressant. Je näher eine Fläche am Be-
trachter ist, desto feiner müssen Sie tes-
sellieren, damit sie glatt wirkt. Flächen,
die nur klein am Bildschirm zu sehen
sind, lassen sich nur grob tessellieren.
Wie Sie sehen. Besteht ein 3D-Modell
aus parametrischen Flächen, benötigen
Sie – anders als bei polygonalen Model-
len  – nur eine Repräsentation, um ver-
schiedene Detailstufen zu berechnen. 

■ Parametrische Flächen
texturieren
Eine Textur ist ein zweidimensionales
Muster, das Sie auf 3D-Objekte oder
Flächen kleben. Nutzen Sie die beiden
Parameter u und v aus Ihrem zweidi-
mensionalen Parametergebiet, um para-
metrische Flächen zu texturieren. Die
Texturkoordinaten in OpenGL geben
Sie für jeden Vertex an:
glTexCoord2d( u, v ); 
glVertex3f( x, y, z ); 

Vorher laden Sie eine entsprechende
Textur und übergeben sie an OpenGL.
Verwenden Sie die Funktionen aus der
glaux-Library (Datei: glaux.h). Mit we-
nigen Codezeilen können Sie eine Tex-
tur laden und für OpenGL verwenden,
wobei Sie zuerst eine bmp-Datei in den
Speicher laden:
AUX_RGBImageRec *texture;
texture = auxDIBImageLoad
(„texture.bmp“);

Lassen Sie sich von OpenGL eine ID ge-
ben, mit der Sie Ihre Textur bezeichnen
wollen:

GLint textureID;
glGenTextures(1, &textureID );

Schalten Sie OpenGL ein:
glBindTexture(GL_TEXTURE_2D,
textureID );

Stellen Sie die Texturfilter ein: wie die
Textur gerendert werden soll, wenn sie
gedehnt oder gestaucht wird:
glTexParameteri(GL_TEXTURE_2D, 
GL_TEXTURE_MAG_FILTER, 
GL_LINEAR );
glTexParameteri(GL_TEXTURE_2D, 
GL_TEXTURE_MIN_FILTER, 
GL_LINEAR );

Im nächsten Arbeitsschritt übergeben
Sie OpenGL die Texturdaten:
glTexImage2D
( GL_TEXTURE_2D, 0, 3, 
texture->sizeX, 
texture->sizeY, 
0, GL_RGB, GL_UNSIGNED_BYTE,
texture->data );

und können den jetzt nicht mehr
benötigten Speicher wieder freigeben:
free( texture->data );
free( texture );

Mit folgenden Befehlen schalten Sie das
Texturieren an oder aus:
glEnable( GL_TEXTURE_2D ); 
glDisable( GL_TEXTURE_2D ); 

Bei Texturen können Sie zu jedem Texel
(ein Bildpunkt der Textur) nicht nur die
Farbe, sondern auch einen Alphawert
angeben. Der Alphawert steht für die
Opakheit (Sichtbarkeit als Gegensatz
zur Transparenz) eines Texels: Der Wert
(1.0) steht für nicht transparent, 0.0 für
durchsichtig. Sie können eine Fläche mit
einer Textur vollständig überziehen und
auf dieser die unsichtbaren Teile mit
dem entsprechenden Alphawert markie-
ren. Weisen Sie OpenGL an, diese Teile
der Fläche nicht zu zeichnen. Dabei hilft
Ihnen der Alpha-Test, den Sie wie folgt
aktivieren und verwenden:
glEnable(GL_ALPHA_TEST);
glAlphaFunc(GL_GREATER,);

Damit verfügen Sie über eine Reihe von
Methoden, um parametrische Flächen
zu berechnen und einzusetzen. In Com-
puterspielen können Sie den Einsatz die-
ser Verfahren beobachten. s E T

EINE TEXTUR WIRD auf ein Dreieck ge-
spannt.

POLYGONE KÖNNEN SIE mit OpenGL auf
verschiedene Arten ausgeben.
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