"PC UNDERGROUND
PRAXIS

‘ B

‘ \ /:
{r
— i =
" . 7

o nd B

AUF CD

Die Quelltexte sowie die fertig tbersetzten

Bézier- und Spline-Flachen

P \.1!‘

Mathematik

Hinter den reizenden Kurven virtueller Gestalten und hinter malerischen,

CARSTEN DACHSBACHER

it dem mathematischen Hand-
M werkszeug aus PC Under-

ground 01/01 (ab S. 258) zau-
bern Sie Bézier- und Spline-Flachen auf
Ihren Bildschirm. Diese Art der Repra-
sentation von 3D-Modellen findet man
in  Computerspielen: in  Torbdgen,
Brunnenschachten, Saulen oder Land-
schaften. Sie kénnen damit auch Model-
le aus gewolbten Flachen présentieren.

Aus parametrischen Kurven kénnen Sie
mit dem  Tensor-Produkt-Ansatz
Flachen zusammensetzen. Dazu ben6ti-
gen Sie zwei Kurven:

= Zsr(u)m
W)= J_isjm(u)m

Der Tensor-Produkt-Ansatz fasst
beide Kurven unter einer Doppelsumme
zZusammen:

(uv) sz |

Wenn Sie die Terme in der obigen
Formel anders klammern, lasst sich die
Tensor-Produkt-Flache als Kurve auf
einer Kurve deuten. Sie berechnen den
Funktionswert der einen Kurve (innere
Klammer) und verwenden das Ergebnis
als Stutzpunkt fir die zweite Kurve
(auBere Summe)

(u)e,(

u v IZZd“B
ng HELIY >§
> 8 9845

d;8,(u)

Der Term dj; fasst die Stitzpunkte der
Tensor-Produkt-Flache zusammen. Al-
lerdings haben Sie fur die Flache nicht
(m+n+2), sondern (m+1)*(n+1) Stutz-
punkte. Das gibt Ihnen mehr Freiheit,
die Flache zu modellieren.

Welche Basisfunktionen (Bézier oder
Spline) Sie verwenden, ist aus mathema-
tischer Sicht nicht festgelegt. Praktiker
kombinieren immer zwei Basisfunktio-
nen gleichen Typs.

Von einem TP-Bézier-Patch spricht
man, wenn Sie fur beide Basisfunktionen
Bézier-Kurven wahlen. Diese Variante
besitzt Eigenschaften, die Sie beim Mo-
dellieren und beim Rendering nutzen
konnen.

beo

DAS PARAMETERGEBIET und das Kontroll-
polygon eines TP-Bézier-Patches

TP-Bézier-Patches und andere TP-
Flachen haben ein zweidimensionales
Parametergebiet. Ein Punkt auf der
Flache hangt von zwei Koordinaten ab.
Diese und das Kontrollpolygonnetz de-
finieren die Flache.

Der TP-Bézier-Patch hat von den
zweidimensionalen Bézier-Kurven die
Eigenschaft konvexe Hulle geerbt. Das
bedeutet, dass die konvexe Hiille mit al-
len Knoten des Kontrollnetzes auch den
TP-Bézier-Patch enthélt. Wie sich die
Kurve in den Start- und Endpunkten
tangentiell an das Kontrollpolygon legt,
so verhélt sich die Flache an den Eck-
punkten des Kontrollnetzes. Anders
ausgedriickt: Bei Bézier-Kurven endet
die Kurve im ersten und letzten Kon-

t*‘z

Routinen finden Sie im Verzeichnis Praxis/Pro-
— grammierung/PC Underground.

verbirgt sich simple Mathematik.

trollpunkt und verlduft tangentiell am
Kontrollpolygon. Ein TP-Bézier-Patch
verlauft durch die Eckpunkte des Kon-
trollnetzes und dort tangentiell am Kon-
trollnetz. Daraus ergibt sich die Norma-
le der Flache an b00:

M = (blo _boo) x (b01 _boo)

Die wichtigste Eigenschaft fur den
Einsatz der Bézier-Patches in der 3D-
Grafik ist die Affine Invarianz. Eine af-
fine Transformation setzt sich aus Rota-
tion und Translation (Verschiebung) zu-
sammen. Mit dieser Eigenschaft kdnnen
Sie die Flache tber die Punkte des Kon-
trollnetzes rotieren und verschieben und
mit den gleichen Algorithmen neu aus-
werten. Ware diese Eigenschaft nicht ge-
geben, wiirde die Flache bei solchen Ak-
tionen ihre Gestalt verandern.

Eine Eigenschaft der Kurven Uber-
tragt sich allerdings nicht auf den TP-
Bézier-Patch: die Variation Diminishing
Property. Die parametrische Flache
kann daher mehr Wélbungen oder Beu-
len aufweisen als die Basisfunktionen.

Die Algorithmen, die Sie bereits fur
den Kurvenfall kennengelernt haben,
wie de Casteljau-Algorithmen zum Bei-
spiel Unterteilung, Graderhéhung und
die Konstruktion stetiger Ubergénge,
kodnnen Sie direkt von den Kurven auf
die Flachen Ubertragen. Dies fuhrt Ihnen
unser Beitrag anhand des de Casteljau-
Algorithmus vor. Dieser verwendet die
Darstellung eines TP-Bézier-Patches als
Kurve auf einer Kurve. Es bietet sich al-
so an, zuerst die eine Kurve (die innere
Klammer in der obigen Formel) mit dem
de-Casteljau-Algorithmus  auszuwer-
ten. Damit erhalten Sie die Stitzpunkte
der zweiten Kurve, die Sie auch wieder
auswerten. Wie Sie aus der vorigen De-
finition der TP-Flachen entnehmen, lie-
fert jede Reihenfolge der Auswertungen,
also u/v oder v/u, dasselbe Ergebnis. Ei-
ne Darstellung der Auswertungspyra-
miden des de-Casteljau-Algorithmus ©

PC Magazin Marz 2001 215



5-E]

PC UNDERGROUND
PRAXIS

bei einem bikubischen TP-Bézier-Patch
(in beiden Basisfunktionen kommen
Terme bis zur dritten Potenz vor) finden
Sie im Bild unten.

Mit bikubischen TP-Bézier-Patches las-
sen sich viele interessante Modelle kon-
struieren. Diese setzen sich meist aus
mehreren Patches zusammen; dadurch

m‘ ;weitert
/ \fﬂ" uswertung
b /M /
ﬁ]'\ ~ erste Auswertung
bo S
/
by
/N
b/ b
/NN
b /b b
/ 2
i NN
b b_f' bo

EINE DOPPELTE ANWENDUNG des de-Ca-
steljau- Algorithmus fuhrt zum gewunsch-
ten Punkt.

konnen Sie 3D-Modelle mit zahlreichen
Details versehen. Sie werten aus Basis-
funktionen — durch geeignete Verfahren
und unter Beruicksichtigung eines Spezi-
alfalls — noch schneller aus.

Der Spezialfall hier ist zum einen, dass
Sie bikubische TP-Bézier-Patches be-
trachten, und zum anderen, dass Sie da-
rauf 81 regelmé&Rig verteilte Punkte aus-
werten wollen —also die Flache zu einem
9 x 9-Polygongitter tessellieren. Das
heisst, Sie wandeln die Flache in Polygo-
ne, zumeist Dreiecke, um.

Dazu nutzen Sie Central Differen-
cing: Die Randkurven einer Bézier-
Flache sind Bézier-Kurven. Diese Rand-
kurven konnen Sie sukzessive am Mit-
telpunkt und Uber die Flache hinweg un-
terteilen.

——— = — =

ZUERST UNTERTEILEN SIE die Randkurven,
anschlieBend uber die Flache hinweg.

So berechnen Sie den Mittelpunkt ei-
ner Bézier-Kurve: Als erstes betrachten
Sie eine Randkurve. Diese schreiben Sie
als Taylor-Reihe. Dabei handelt es sich

216 Marz 2001 PC Magazin

um die Darstellung einer Funktion
durch eine Summe Uber ihre Ableitun-
gen. Inder folgenden Formel ist F;(u) die
i-te Ableitung der Funktion. Der Wert
der Formel istein Punkt in der Nidhe von
u, also du entfernt.

Fu+du)= i%?(u)

Da Sie kubische Basisfunktionen be-
trachten, kénnen Sie diese (mit den
zunachst unbekannten Parametern a, b,
¢, d) und ihre Ableitungen wie folgt auf-
schreiben:

F(u) =au® +bu® +cu +d
F'(u) =3au® +2bu +c
F"(u) =6au +2b

Fs(u) =6a

£ (u) =0

Ab der vierten Ableitung sind bei ei-
ner kubischen Funktion alle Ableitun-
gen gleich Null. Weil die Taylor-Reihe
keine Summe bis unendlich enthélt,
lasst sie sich leicht aufschreiben:

F(u :du) = F(u) +(du)F'(u) +
(d;) F"(u)+(d:) Fa(u)

Fir Punkte, die in der anderen Rich-
tung von u liegen, erhalten Sie folgende
Formel:

F(u - du) = F(u) + (—du)F'(u) +

F3(u)

Wenn Sie die letzen beiden Gleichun-
gen addieren, erhalten Sie das vielver-
sprechende Ergebnis:

F(u —du) + F(u +du) = 2F(u) +(du)2 F"(u)

3

du)3

(—du)z F"(u)+ (_ 5

2

welche nach F(u) aufgeldst:
ergibt.

B F(u —du)+ F(u +du)—(du)2 F"(u)

Fu)= >

Dabei halten Sie das Ziel im Auge, ei-
ne Bézier-Kurve in der Mitte zu unter-
teilen. So erhalten Sie die benétigte Men-
ge an Stutzpunkten entlang der Bézier-
Kurve. Der Parameter u lauft von 0 bis
1, die Mitte der Kurve ist bei du = 0.5.

OF(0)+F(1)0 CF(05)0

RN BRI

Die eingesetzten Werte sind fr den ers-
ten Unterteilungsschritt.

F(0) und F(1) sind zwei Eckpunkte des
Kontrollnetzes. Sie benétigen die zwei-
te Ableitung in der Mitte einer Bézier-
Kurve. Die von F(u) hergeleitete Formel
hilft Thnen weiter, wenn Sie darin F(u)
durch F”’(u) ersetzen:

F"(u) _ F (u —du)+F (u +du) _
2

(o) F(u)

2

Den letzen Term konnen Sie vernach-
lassigen, da die vierte Ableitung immer
gleich Null ist. In unserem Beispiel er-
halten Sie:

F(0) ; F(1)

Die zweiten Ableitungen an den Stel-
len u=0 und u=1 koénnen Sie direkt be-
rechnen. Dazu schreiben Sie die Sum-
menform der Bézier-Kurve aus und lei-
ten diese ab. Damit erhalten Sie folgende
Resultate:

F(u) = bo(l— u)3 + b13u(1— u)2 +
b23u2(1— u)+b3u3

F*(u)=6(b, —2b, +b, )(1-u)+
6(b, ~2b, +b,)u

F(0)=6(b, —2b, +b,)

F*(1) =6(b, ~2b, +b,)

F(0.5)=

Nun haben Sie alle Berechnungen er-
ledigt, mit denen Sie eine Bézier-Kurve
sukzessiv unterteilen. Alle vorkommen-
den Werte (F(0), F(1)....) ersetzen Sie in
den weiteren Rechenschritten durch die
entsprechenden  Zwischenergebnisse:
Wenn Sie eine Kurve unterteilt haben,
erhalten Sie zwei neue, deren einer End-
oder Startpunkt das Resultat der obigen
Berechnung ist.

Doch woher bekommen Sie die zwei-
te Ableitung, wenn Sie nicht mehr ent-
lang einer Randkurve, sondern tber die
Flache unterteilen? Das entspricht der
Unterteilung einer Kurve im anderen
Parameter. Dabei hilft Ihnen folgende
schon bekannte Gleichung:

Fw(u,v) _ Fw(u —du,v)erFW(u +du,v) ~

(du)2 Fuzuw(u,v)

Sie konnen also die zweite partielle
Ableitung in v-Richtung auf einer u-



Randkurve berechnen, wenn Sie den
Wert F(, v Kennen. F, yn, bedeutet die
zweite Ableitung der Flache in u- und v-
Richtung. Auch diese erhalten Sie durch
Mittelung zweier Werte an den Kurven
Start- oder Endpunkten, welche die fol-
gende Formel ausweist:

Fuuw(u,v) =
Fuuw(u - du,v) + Fuuw(u +du,v)
2

Es genigt also, den Wert an den Eck-
punkten zu kennen, um den ersten Be-
rechnungsschritt zu starten. Diese Wer-
te mussen Sie direkt ausrechnen:

Fluv)= Z Zbusi(u)sj(v)
o (uv) = Z st (e (v)

In die untere Gleichung setzen Sie die
Ableitungen der Bernstein-Polynome
ein:

B", (u) =—6u +6
B",(u) =18u-12
B",(u)=-18u +6
B", (u) =-6u

Die Initialisierung einer Unterteilung
berechet folgende drei Werte:

F..(0.0)=6b,, ~12b,, +6by,,

F.,(0.0) =6by, ~12b,, +6b;,

Fuuw(0.0) =6(6b,, ~12b,, +6by,) -
12(6b,, ~12b,, +6b,, ) +
6(6b,, —12b,, +6b,,)

Sie unterteilen diese mit jedem Re-
chenschritt folgendermaRlen

Fuu(u,v) _ Fuu(u —du,v) + Fuu(u +du,v)

2
Fuuw(u,v)=
F (u —du,v)+ F

uuvv uuwv

(u +du,v)

B F(u —du,v)+F(u +du,v)

F(u,v)— > -
(du)zFuu(u,v)
2
Fw(u,v) _ Fw(u —du,v) 42- Fw(u +du,v) ~

F(u,v) = Fl(u,v)+F2(u,v)

Alles zusammengenommen, kdnnen
Sie im Vergleich zum de-Casteljau-Al-

gorithmus die Anzahl der nétigen Addi-
tionen und Multiplikationen mehr als
halbieren, was den Aufwand in einer
zeitkritischen Anwendung rechtfertigt.
Einen Vergleich und eine genaue Aus-
wertung des de-Casteljau-Algorithmus
und des Central Differencing kdnnen Sie
im Artikel An In-Depth Look at Bicubic
Bézier Surfaces von Mark A. DelLoura
unter www.gamasutra.com/features/19
991027/deloura_01.htm abrufen.

Auch fir 4 x4-TP-Bézier-Flachen
bietet das Internet Informationen. Haim
Barad beschreibt im Artikel Tessellation
of 4x4 Bézier Patches for the Intel Penti-
um 11 Processor unter www.gamasutra.
com/features/20000317/barad 01.htm
wie Sie solche Bézier-Patches mit Penti-
um-3-Befehlen effizient tessellieren
konnen.

Mit jeder Basisfunktion kénnen Sie Ten-
sor-Produkt-Flachen erzeugen (vgl. PC
Underground 1/01, ab S. 258). Genauso
wie bei den Bézier-Flachen kénnen Sie al-
le Eigenschaften, bis auf Variation Dimi-

LINKS SEHEN SIE EINE herkémmliche
Spline-Flache, rechts eine hierarchische
mit aufgesetztem lokalen Detail.

nishing, von den Kurven auf die Flachen
Ubertragen. Wenn Sie in einem kleinen
Teil einer Spline-Flache mehr Details
modellieren wollen, bendtigen Sie in je-
der Randkurve mehrere Stitzpunkte.

Angenehmer wére eine LOsung wie
rechts im Bild, bei der nur der Bereich
mit lokalem Detail auch mehr Stitz-
punkte enthélt. Ein Lésungsansatz dazu
sind die hierarchischen Spline-Flachen:

F1(u,v) ist die grobe Flache, F2(u,v)
die kleine, detailreiche auf F1 aufgesetz-
te Flache.

Nicht immer wollen Sie, dass das ganze
Parametergebiet verwendet wird, son-
dern Sie wollen lhre parametrische
Flache zurechtschneiden. Dabei spricht

PC UNDERGROUND
PRAXIS

man vom Trimmen der Fl&che. Bei der
Tessellierung lasst sich das nicht direkt
umsetzen, aber zur direkten Berechnung
kdnnen Sie das nachfolgende Verfahren
nutzen. Um eine Flache zu trimmen,
verwenden Sie im Parametergebiet eine
geschlossene Kurve und ein Flachen-
schema. Ermitteln Sie fiir jedes Ko-
ordinatenpaar (u,v), ob es innerhalb
oder aufRerhalb des getrimmten Berei-
ches liegt. Die geschlossenen Kurven

NEBEN DER MATHEMATISCHEN Darstel-
lung des Parametergebiets sehen Sie in
Blau die getrimmte Flache.

markieren den getrimmten Bereich. Da-
zu bedienen Sie sich des so genannten
Odd-Even-Tests: Vom Punkt (u,v) im
Parametergebiet ausgehend verfolgen
Sie eine Halbgerade in eine beliebige
Richtung. Nun z&hlen Sie die Anzahl
der Schnittpunkte der Halbgerade mit
den gegebenen Kurven. Bei einer unge-
raden Anzahl von Schnittpunkten liegt
(u,v) im getrimmten Bereich, sonst
auferhalb.

Einen interessanten Artikel Uber
NURBS (Non-Uniformal Rational B-
Splines, eine Variante von Splines) fin-
den Sie bei Intel unter http://developer.

Schnittpunkte

1

ﬁ ungerade/auBerhalb
3

4
} gerade/innerhalb
2

[

DER ODD-EVEN-TEST verrat lhnen, wo sich
der Punkt befindet.

intel.com/software/idap/games/nurbs/
index.htm.

Die besten Algorithmen, um Flachen zu
berechnen, nutzen Ihnen nichts, wenn
Sie diese nicht darstellen kénnen. Mit
OpenGL bringen Sie mit relativ weni-
gen Befehlen die Patches auf den Bild-
schirm. Einen einfachen Start, mit ©

PC Magazin Marz 2001 217

5)-€



9-E]

PC UNDERGROUND
PRAXIS

dem Sie OpenGL im Fenster- und im
Vollbild-Modus in beliebiger Auflésung
und Farbtiefe verwenden konnen, fin-
den Sie im Quellcode auf der Heft-CD
im Verzeichnis unter PC Underground.

Bildschirm Texturemap

EINE TEXTUR WIRD auf ein Dreieck ge-
spannt.

Um die parametrischen Flachen zu
rendern, positionieren Sie zuerst den Be-
trachter. Diese Information speichert
OpenGL in der Projektionsmatrix:

gl Matri xMode( GL_PRQIECTI ON ) ;
gl Loadl dentity();

gl uPer specti ve(45. 0f,
aspectratio, 1.01f, 1000.0f );
gl Transl at ef (0. Of , 0. Of , - 120. 0f ) ;

Die Transformationen der Polygon-Da-
ten speichern Sie in der Modelview-Ma-
trix:

gl Matri xMode( GL_MODELVI EW);

gl Loadl dentity();
Hierbei verfiigen Sie Uber folgende Be-
fehle, um Polygone im Raum um eine
Achse zu drehen, zu verschieben (Trans-
lation) oder in der Grof3e zu verédndern
(Skalierung):

voi d gl Rot at ef (GLfl oat wi nkel,
G.float x,G.float y,Gfloat z);
void gl Transl at ef (G.fl oat x,
G.float y, Gfloat z );

voi d gl Scal ef (GL.fl oat x,
G.float y, Gfloat z );

Nachdem Sie diese Befehle mit ange-
passten Parametern ausgefuhrt haben —

0 2 5

GL_TRIANGLE GL_TRIANGLE_STRIP

POLYGONE KONNEN SIE mit OpenGL auf
verschiedene Arten ausgeben.

eine Implementation kénnen Sie unse-
rem Beispielprogramm entnehmen -
konnen Sie die Polygone zeichnen.
Zunéchst bestimmen Sie die Zeichen-
farbe:

gl Col or 3f (G.fl oat rot,

GLfl oat green, G.float blue );

218 Marz 2001 PC Magazin

So konnen Sie Dreiecke, die Sie durch
das Tessellieren erhalten haben, auf ver-
schiede Arten ausgeben.

Geben Sie einzelne Dreiecke aus, in-
dem Sie deren Eckpunkte angeben:

gl Begi n( GL_TRI ANGLES ) ;
for (alle Dreiecke)

gl Vertex3f ( x1,
gl Vertex3f( x2,
gl Vertex3f ( x3,

z1);
z2 );
23 );

yi,
y2,
y3,

}
gl End() ;

Alternativ kdnnen Sie Triangle Strips
zeichnen. Dabei nutzen Sie, dass Sie einen
Streifen von Dreiecken rendern, bei dem
sich zwei aufeinander folgende Dreiecke
eine Kante teilen. Mit dieser Variante er-
reichen Sie eine deutlich héhere Perfor-
mance, weil weniger Daten an OpenGL
Ubertragen werden und OpenGL weni-
ger Aufwand betreiben muss.

Die Anzahl der Dreiecke, die Sie bei
der Tessellierung erzeugen, ist nicht nur
fUr die Frame-Rate beim Rendern inte-
ressant. Je ndher eine Flache am Be-
trachter ist, desto feiner missen Sie tes-
sellieren, damit sie glatt wirkt. Flachen,
die nur klein am Bildschirm zu sehen
sind, lassen sich nur grob tessellieren.
Wie Sie sehen. Besteht ein 3D-Modell
aus parametrischen Flachen, bendtigen
Sie — anders als bei polygonalen Model-
len — nur eine Représentation, um ver-
schiedene Detailstufen zu berechnen.

Eine Textur ist ein zweidimensionales
Muster, das Sie auf 3D-Objekte oder
Flachen kleben. Nutzen Sie die beiden
Parameter u und v aus lhrem zweidi-
mensionalen Parametergebiet, um para-
metrische Flachen zu texturieren. Die
Texturkoordinaten in OpenGL geben
Sie fiir jeden Vertex an:

gl TexCoord2d( u, v );

gl Vertex3f( x, y, z);
Vorher laden Sie eine entsprechende
Textur und Ubergeben sie an OpenGL.
Verwenden Sie die Funktionen aus der
glaux-Library (Datei: glaux.h). Mit we-
nigen Codezeilen kdnnen Sie eine Tex-
tur laden und fiir OpenGL verwenden,
wobei Sie zuerst eine bmp-Datei in den
Speicher laden:

AUX_RGBI mageRec *texture;
texture = auxDl Bl mageLoad
(,texture. bnp*);

Lassen Sie sich von OpenGL eine ID ge-
ben, mit der Sie lhre Textur bezeichnen
wollen:

GLint texturel D
gl GenTextures(1l, &exturelD);

Schalten Sie OpenGL ein:
gl Bi ndText ur e( GL_TEXTURE_2D,
texturelD);
Stellen Sie die Texturfilter ein: wie die
Textur gerendert werden soll, wenn sie
gedehnt oder gestaucht wird:

gl TexPar anmet eri ( GL_TEXTURE_2D,
GL_TEXTURE_MAG FI LTER,
GL_LINEAR );
gl TexPar anmet eri ( GL_TEXTURE_2D,
GL_TEXTURE_M N_FI LTER,
GL_LINEAR );
Im néchsten Arbeitsschritt Gbergeben
Sie OpenGL die Texturdaten:

gl Texl mage2D
( GL_TEXTURE_2D, 0, 3,
t ext ur e->si zeX,
t ext ur e->si zeY,
0, GL_RGB, G._UNSI GNED BYTE,
texture->data );
und konnen den jetzt nicht mehr
bendtigten Speicher wieder freigeben:
free( texture->data );
free( texture );
Mit folgenden Befehlen schalten Sie das
Texturieren an oder aus:
gl Enabl e( GL_TEXTURE_2D );
gl Di sabl e( GL_TEXTURE_2D );
Bei Texturen kdnnen Sie zu jedem Texel
(ein Bildpunkt der Textur) nicht nur die
Farbe, sondern auch einen Alphawert
angeben. Der Alphawert steht fur die
Opakheit (Sichtbarkeit als Gegensatz
zur Transparenz) eines Texels: Der Wert
(1.0) steht fiir nicht transparent, 0.0 fur
durchsichtig. Sie kénnen eine Flache mit
einer Textur vollstandig tberziehen und
auf dieser die unsichtbaren Teile mit
dem entsprechenden Alphawert markie-
ren. Weisen Sie OpenGL an, diese Teile
der Flache nicht zu zeichnen. Dabei hilft
Ihnen der Alpha-Test, den Sie wie folgt
aktivieren und verwenden:
gl Enabl e( GL_ALPHA_TEST) ;
gl Al phaFunc( GL_GREATER, ) ;
Damit verfiigen Sie Uber eine Reihe von
Methoden, um parametrische Flachen
zu berechnen und einzusetzen. In Com-
puterspielen kdnnen Sie den Einsatz die-
ser Verfahren beobachten. ET

Literatur:

Gerald Farin, Curvers and Surfaces for Computer
Aided Geometric Design, Academic Press, ISBN
0-12-249054-1

Brian Sharp, Implementing Curved Surface Geome-
try und Optimizing Curved Surface Geometry,
Game Developer Magazine

Alan und Mark Watt, Advanced Animation and
Rendering Techniques: Theory and Practice, New
York: ACM Press, 1992

J.H. Clark, A Fast Scan-Line Algorithm for Rende-
ring Parametric Surfaces, Computer Graphics
Vol. 13 No.2: pp. 289-99.



