
268 April 2001 PC Magazin

P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R

Die Spielewelten von Drakan und
Warcraft III beeindrucken
durch ihre Landschaften. Wir

führen Ihnen vor, wie Sie diese mit Hil-
fe von OpenGL darstellen.

Kommerzielle 3D-Engines, die auf die
Darstellung von Landschaften ausge-
richtet sind, können Sie in vielen Echt-
zeit-Strategiespielen bewundern. In die-
sem Projekt lernen Sie alle nötigen Me-
thoden und Algorithmen kennen, um ei-
ne vollwertige 3D-Landschafts-Engine
zu schreiben.

Landschaften stellen Sie im Allgemei-
nen mit vielen Polygonen dar, die Sie der
3D-Hardware übergeben. Dazu müssen
Sie die zu verwendende 3D-API
(OpenGL) kennen und wissen, wie Sie
Daten für den 3D-Beschleuniger aufbe-
reiten und an diesen übergeben. Algo-
rithmen setzen Sie ein, um die Polygon-
last einzuschränken – selbst wenn Sie ei-
ne 3D-Grafikkarte haben, die mit sehr
vielen Polygonen pro Sekunde fertig
wird. Wenn Sie die 3D-Engine in einem
Computerspiel einsetzen, hat der Rech-
ner noch weit mehr zu tun, als nur die
Landschaft zu rendern.

■ Die OpenGL-API

Verknüpfen Sie die Ausgabe von
OpenGL mit einem Windows-Fenster.
Um es anzulegen, registrieren Sie eine
Fensterklasse mit RegisterClass(
CONST WNDCLASS *lpWndClass)
und erzeugen ein Fenster zum Beispiel
mit der Funktion CreateWindowEx(...).

Die im Folgenden verwendeten Funk-
tionen befinden sich in user32.lib und
opengl32.lib, die Sie in Ihr Projekt einfü-
gen. Die Definitionen der Funktions-
rümpfe stehen in windows.h oder wing-
di.h. Um auf die Client Area eines Win-
dows-Fensters zu zeichnen, benötigen
Sie den Device Context. Diesen bekom-
men Sie mit

hDC = GetDC(hWND);

Für OpenGL brauchen Sie ein bestimm-
tes Pixelformat für Ihr Fenster:
OpenGL benötigt nicht nur einen Spei-
cherbereich für die Farbwerte, sondern
zwei Buffers (einer wird dargestellt, der
andere solange bearbeitet), zusätzlich ei-
nen Z-Buffer, der die Tiefeninformation
enthält. Je nach Wunsch und Bedarf
können Sie weitere anfordern wie zum
Beispiel Accumulation- oder Stencil-
Buffers. Geben Sie beim Pixelformat
auch die gewünschte Farbtiefe an. Da Sie
die Angaben machen, ohne zu wissen,
ob die gerade verwendete Hardware die-
se unterstützt, müssen Sie die PIXEL-
FORMATDESCRIPTOR-Struktur
ausfüllen. Damit kann Windows das
bestmögliche, vorhandene Pixelformat
wählen:

static PIXELFORMATDESCRIPTOR pfd
=
{
//Größe PixelFormatDescriptor

sizeof(PIXELFORMATDESCRIPTOR),

// Version
1,
// Format muß Fenster, OpenGL
// DoubleBuffering unterstützen
PFD_DRAW_TO_WINDOW |
PFD_SUPPORT_OPENGL |
PFD_DOUBLEBUFFER,
// RGBA Pixel
PFD_TYPE_RGBA,
// Farbtiefe
bits,
0, 0, 0, 0, 0, 0,
// kein Alpha Buffer
0,
0,
// kein Accumulation Buffer
0,
0, 0, 0, 0,
// 16 Bit Z-Buffer
16,
// kein Stencil Buffer
0,
// kein Auxiliary Buffer
0,
PFD_MAIN_PLANE, 0, 0, 0, 0

};

// suche optimales Pixelformat
int PixelFormat =

ChoosePixelFormat(hDC, &pfd);

//dieses für Device Context:
SetPixelFormat

(hDC, PixelFormat, &pfd);

Erzeugen Sie einen OpenGL Rendering
Context: Damit können Sie auf den De-
vice Context Ihres Fensters (also im
Fenster) rendern. Dieser Rendering
Context verwendet das Pixelformat, das
Sie soeben festgelegt haben.

HGLRC hRC =
wglCreateContext(hDC);

Mit dem folgenden Aufruf aktivieren Sie
den Rendering Context. Dabei wirken
sich alle OpenGL-Aufrufe Ihres Pro-
gramms auf die Client Area Ihres Fens-
ters aus.

wglMakeCurrent(hDC, hRC);

Mit OpenGL-Befehlen können Sie et-
was in Ihrem Fenster darstellen. So de-
aktivieren Sie den Rendering Context:

// deaktivieren
wglMakeCurrent(NULL, NULL);
// ... und löschen
wglDeleteContext(hRC);

OpenGL verwendet die eingestellte
Auflösung und Farbtiefe des Bild-
schirms. Wenn Sie Ihre OpenGL-An-
wendung im Vollbild und nicht im Fens-
ter laufen lassen wollen, stellen Sie die
Auflösung und Farbtiefe unter Win-
dows ein, bevor Sie das Fenster erzeugen
und den Rendering Context anlegen.
Dazu verwenden Sie folgende Codezei-
len:

DEVMODE screenRes;
memset(&screenRes, 0, sizeof

(screenRes));
screenRes.dmSize =

sizeof(screenRes);

Genesis-Projekt: Landschaften rendern mit OpenGL

3D-Landschaft
im Eigenbau
3D-Spiele entführen den Spieler in virtuelle Land-
schaften. Lesen Sie, wie Sie von den Erfahrungen
eines Spieleprogrammierers profitieren können.

AUF CD 1
Die Quelltexte sowie die fertig übersetzten

Routinen finden Sie im Verzeichnis Praxis/Pro-
grammierung/PC Underground.

Unser Genesis-Projekt gliedert sich in folgende
drei Teile, die Sie von den OpenGL-Grundlagen bis
zum Einsatz praxistauglicher Algorithmen führen.

Teil 1: Landschaften rendern mit OpenGL
Teil 2: Eigene Landschaftsdaten generieren
Teil 3: Methoden des Landschafts-Texturierens
und Spezialeffekte

DAS GENESIS-PROJEKT

PC Magazin April 2001 269

P C U N D E R G R O U N D
P R A X I S

// Breite
screenRes.dmPelsWidth = 640;
// Höhe
screenRes.dmPelsHeight = 480;
// Farbtiefe
screenRes.dmBitsPerPel = 32;
screenRes.dmFields =
DM_BITSPERPEL|DM_
➥PELSWIDTH|DM_PELSHEIGHT;
ChangeDisplaySettings
(&screenRes, CDS_FULLSCREEN);

Überprüfen Sie bei der Initialisierung
die Rückgabewerte der Funktionen,

und fangen Sie eventuelle Fehler ab. Im Quellcode
zu dieser Ausgabe ist das berücksichtigt.

■ Geometrische Objekte
zeichnen
Nach der erfolgreichen Initialisierung
können Sie zeichnen. Dazu müssen Sie
in Ihr Programm zwei OpenGL-Hea-
der-Dateien einbinden:

#include <gl/gl.h>
#include <gl/glu.h>

Bevor Sie zu rendern beginnen, müssen
Sie den Colorbuffer, der die Farbwerte
enthält, löschen. Dazu legen Sie einma-
lig die Hintergrundfarbe mit Rot-,
Grün-, Blau- und Alpha-Werten fest.
Alle Werte liegen im Bereich zwischen
0.0 und 1.0:

glClearColor
(0.0f, 0.0f, 0.0f, 0.0f);

Außerdem löschen Sie den Z-Buffer.
Dieser enthält für jeden Pixel den Ab-
stand zwischen Betrachter und dem ge-
renderten Objekt an der entsprechenden
Stelle. OpenGL führt beim Rendern die-
sen Vergleich durch und aktualisiert den
Z-Buffer:

zeichne Pixel an (x,y) mit Ab-
stand. z
wenn z < als Z-Buffer-Wert bei
(x, y)

dann setze Pixel im Colorbuffer
setze Z-Buffer bei (x, y) auf
Wert z

Genauso wie die Farbe bestimmen Sie
einen Wert, mit dem Sie den Z-Buffer
beim Löschen füllen:

glClearDepth(1.0);

Sie können auch einen anderen Wert
wählen und den Vergleich (kleiner als)
durch einen anderen ersetzen:

glDepthFunc(GLenum func)

Bevor Sie einen neuen Frame (Bild)
zeichnen wollen, löschen Sie zuvor den
Colorbuffer und den Z-Buffer mit

glClear(GL_COLOR_BUFFER_BIT
| GL_DEPTH_BUFFER_BIT);

In OpenGL gibt es einige Zustandsva-
riablen, die das Rendern beeinflussen.
Einen Zustand setzen Sie mit der Funk-
tion

TIPPTIPP

glEnable(...)

Sie deaktivieren den Zustand mit
glDisable(...)

Als Parameter bekommen diese Funk-
tionen vordefinierte Konstanten. Schrei-
ben Sie beispielsweise, um den Z-Buffer
zu aktivieren:

glEnable(GL_DEPTH_TEST);

Wenn Sie geometrische Objekte zeich-
nen wollen, legen Sie zuerst deren Farbe
fest. Dazu stehen folgende Befehle zur
Verfügung:

glColor{3,4}{b,d,f,i,s,ub,ui,us}
[v](TYPE colors);

OpenGL stammt noch aus der Zeit, als
C statt C++ verwendet wurde. In C gibt
es keine überladenen Funktionen (na-
mensgleiche Funktionen, die unter-
schiedliche Typen von Parametern ent-
gegennehmen). Deshalb gibt es für jeden
Parametertyp eine eigene Funktion.

So arbeitet die Syntax:
• Der Befehl heißt glColor.
• Das nächste Zeichen ist eine 3 oder ei-
ne 4 – je nachdem, ob Sie nur Rot-, Grün-
und Blau-Werte oder zusätzlich noch ei-
nen Alpha-Wert übergeben wollen.
• Eine der Kennungen aus der nächsten
geschweiften Klammer gibt den Typ an,
zum Beispiel f für Float oder i für Integer.
• Optional können Sie dem Befehlsna-
men noch ein v anhängen. Das bedeutet,
dass Sie einen Pointer auf 3 oder 4 Va-
riablen Ihres Typs angeben und nicht die
Variablen selbst übergeben. Verwenden
Sie folgende Variante:

glColor3f(rot,

grün, blau);

Zeichnen Sie geome-
trische Primitive:
Punkte, Linien, Drei-
ecke, Vierecke und
Polygone. Dazu
zählen auch Triangle
Strips (Streifen aus
Dreiecken). Der Vor-
teil daran ist, dass Sie
weniger Vertices
(Knoten- bzw. Eck-
punkte) pro Dreieck
angeben müssen, als
wenn Sie einzelne
Dreiecke zeichnen.
Damit können Sie die
Ausgabe beschleuni-
gen.

Bevor Sie zeichnen,
rufen Sie
glBegin(...)

auf. Als Parameter
übergeben Sie eine
Konstante, die fest-

legt, was OpenGL zeichnen soll. Jeden
Programmblock, in dem Sie etwas zeich-
nen, beenden Sie mit einem Aufruf von

glEnd(...)

Sie haben auch zwei Blöcke, wenn Sie
erst Dreiecke und anschließend Linien
zeichnen wollen. Innerhalb der Blocks
übergeben Sie die Vertices an OpenGL.
Dazu verwenden Sie

glVertex{234}{sifd}[v]
(TYPE coords);

Als Beispiel zeichnen Sie ein weißes
Dreieck:

glColor3f(1.0f, 1.0f, 1.0f);
glBegin(GL_TRIANGLES);

glVertex2f(0.0f, 0.0f);
glVertex2f(1.0f, 0.0f);
glVertex2f(0.0f, 1.0f);

glEnd();

OpenGL ist eine State Machine: Es gibt
Zustände, die Sie an- und ausschalten
oder ändern und die so lange gelten, bis
Sie geändert werden. Einer dieser Zu-
stände ist die Farbe. Im obigen Beispiel
sehen Sie einen Aufruf von glColor*.
Wenn Sie für die Eckpunkte jeweils an-
dere Farben einstellen wollen, müssen
Sie vor jeden Aufruf von glVertex* einen
glColor*-Aufruf schreiben.

Wenn Sie alles gezeichnet haben und
das neue Bild im Fenster sehen wollen,
teilen Sie das OpenGL mit, indem Sie gl-
Flush() oder glFinish() aufrufen. Vertau-
schen Sie den Arbeits- und Darstel-
lungs-Colorbuffer Ihres Device-Con-
texts:

SwapBuffers(hDC)

Für Sie ist vor allem das Rendern von
Polygonen, insbesondere von Drei- q

DIE GEOMETRISCHEN PRIMITIVE
von OpenGL

270 April 2001 PC Magazin

P C U N D E R G R O U N D
P R A X I S

ecken interessant, wenn Sie Landschaf-
ten (3D-Objekte) darstellen wollen. Po-
lygone zeichnen Sie für gewöhnlich so,
dass Sie die Pixel innerhalb der Poly-
gonkanten setzen. Sie können aber auch
nur den Rand oder die Eckpunkte zeich-
nen lassen. Das können Sie für Vorder-
und Rückseite separat angeben:

//Vorderseite ausfüllen
glPolygonMode(GL_FRONT,GL_FILL);
// Rückseite, nur Rand
glPolygonMode(GL_BACK,GL_LINE);

Wo ist vorne und wo hinten? Die Com-
putergrafik folgt der Konvention, Eck-
punkte, die Sie im Polygon von vorne se-
hen, gegen den Uhrzeigersinn anzuge-
ben. Diesen Test führt OpenGL durch.
3D-Modelle lassen sich so konstruieren,
dass alle Polygone Ihrer Außenseite die-
ser Konvention folgen. Wenn Sie sich
Polygongitter in Form einer Kugel vor-
stellen, sehen Sie immer nur die Polygo-
ne, die mit ihrer Vorderseite zu Ihnen
zeigen. Alle anderen sind verdeckt und
müssen nicht gezeichnet werden. Das
können Sie OpenGL überlassen. Legen
Sie zuerst fest, ob Sie mit oder gegen die
Konvention arbeiten. Beachten Sie, dass
Sie diese Entscheidung konsequent
durchhalten:

// entsprechend der Konvention
glFrontFace(GL_CCW);
// oder entgegen
glFrontFace(GL_CW);

Anschließend teilen Sie OpenGL mit,
dass es Polygone, deren Rückseite sicht-
bar sind, nicht zeichnen soll:

glCullFace(GL_BACK);

Dieses Backface Culling müssen Sie
noch aktivieren:

glEnable(GL_CULL_FACE);

■ Transformationen und
Kamera-Einstellungen
Mit den bisher verwendeten Befehlen
können Sie zwar geometrische Primitive
zeichnen, diese befinden sich aber noch
nicht im dreidimensionalen Raum. Bei
3D-Grafiken geben Sie nicht nur die 3D-
Objekte in Form der Primitive an, son-
dern müssen noch andere Parameter
festlegen. Dazu gehören Lage und Po-
sition der Objekte und die Einstellun-
gen (Transformationen) der virtuellen
Kamera, mit der Sie die Szene fotogra-
fieren.

Transformationen beschreiben Sie
mathematisch mit einer Matrix. Eine
Matrix ist zunächst eine Tabelle mit

Zahlenwerten. Wenn Sie diese Werte ge-
eignet wählen, beschreiben die Matrizen
eine Drehung oder eine Projektion,
wenn Sie mit einem Vektor (zum Bei-
spiel einem Vertex) multipliziert wer-
den. Sie können die Transformationen
hintereinander ausführen, indem Sie das
Ergebnis einer Transformation als Vek-
tor für die nächste verwenden. Weniger
Rechenzeit kostet es, die Matrizen mit-
einander zu multiplizieren. Als Ergebnis
erhalten Sie eine Matrix, die alle Trans-
formationen zusammen beschreibt. Die-
se Matrix-Matrix- und Matrix-Vektor-

Multiplikationen
übernimmt OpenGL
für Sie.

Im Bild oben sehen
Sie die Transformati-
onsschritte, die ein
Vertex durchlaufen
muss, den Sie ange-
ben, bis die 2D-Koor-
dinaten innerhalb des
Fensters berechnet
werden. Dort tauchen
die Begriffe Model-
View- und
Projection-Matrix
auf. Diese beiden Ma-
trizen verwaltet
OpenGL in einem
Stack. Sie überneh-
men die Funktionen
einer echten Kamera:

• Das Aufstellen der Kamera in der Szene
entspricht der Viewing Transformation.
• Sie platzieren die Objekte der Model-
ling Transformation.
• Die Wahl der Kameralinse und den
Zoomfaktor steuern sie über die Projec-
tion Matrix.
• Die Viewport Transformation skaliert
die projezierten Koordinaten auf die
Größe des Windows-Fensters.
• Die Modelling- und Viewing-Trans-
formation zusammen ergeben die Mo-
delView Matrix.

Indem Sie die Matrizen in einem Stack
verwalten, können Sie hierarchische 3D-
Modelle einfacher gestalten und elegan-
ter mit Matrizen umgehen. Aus einem
Stack können Sie Elemente pushen (hin-

zufügen) und poppen (herunternehmen).
Wenn Sie den Push-Befehl

glPushMatrix()

aufrufen, wird die oberste Matrix auf
dem Stack kopiert und nochmals auf den
Stack gepackt.

glPopMatrix()

entfernt die oberste Matrix. Der Befehl
glLoadIdentity()

überschreibt die oberste Matrix mit der
Einheitsmatrix. Nun stellen Sie eine vir-
tuelle Kamera auf, wobei der Befehl

gluPerspective(...)

Ihnen viel Arbeit abnimmt. Wählen Sie
die Kameralinse:

// Projection Matrix wählen
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
// Öffnungswinkel, Aspectratio..
gluPerspective
(45.0f, width/height,
1.01f, 1000.0f);
// Breite und Höhe des Fensters
glViewport(0,0,width,height);

Beschreiben Sie die 3D-Szene. Platzie-
ren Sie die Kamera:

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
// Abstand vom Objekt
glTranslatef

(0.0f, 0.0f, -80.0f);

Der Befehl
glTranslatef(...)

erzeugt eine Matrix, die eine Verschie-
bung (eine Translation) enthält, und
multipliziert die oberste Matrix auf dem
Stack mit dieser Matrix.

DIE TRANSFORMATIONEN, die ein Vertex über sich ergehen lassen muss

VORNE ODER HINTEN? Die Richtung der Normalen entschei-
det: Backface Culling in OpenGL.

PC Magazin April 2001 271

P C U N D E R G R O U N D
P R A X I S

ACHTUNG! Die Reihenfolge der Trans-
formationen, die ein Vertex durch-

läuft, ist umgekehrt zu der Reihenfolge, die Sie im
Programmcode angeben.
Es gibt noch weitere Befehle für Trans-
formationen:

//Winkeldrehung um x, y, z
glRotatef
(GLfloat angle, GLfloat x,

GLfloat y, GLfloat z)

und
//Skalierung in x, y, z Richtung
glScalef(GLfloat x, GLfloat y,

GLfloat z);

Das folgende Beispiel zeigt die Reihen-
folge der Transformationen auf:

glPushMatrix();
glTranslatef(2, 0, 0);
glRotatef(45, 1, 1, 0);
drawCube();
glPopMatrix();

Damit drehen Sie den Würfel zuerst und
verschieben ihn dann. Achten Sie auf die
umschließenden Befehle

glPushMatrix()
...
glPopMatrix()

Diese gewährleisten, dass der Matrix-
stack nach dem Zeichnen und Transfor-
mieren des Würfels genauso wie vorher
hinterlassen wird. Das ist wichtig, wenn
Sie viele 3D-Objekte unabhängig von-
einander bewegen wollen.

■ Licht an!
Nun können Sie Ihre 3D-Objekte und
Ihre virtuelle Kamera beliebig im Raum
platzieren. Leider erscheinen die Objek-
te noch einfarbig und fade. Es fehlt
Licht!

In OpenGL gibt es drei Arten von
Licht:
• Das ambiente Licht ist der Teil des
Lichts, der durch die Umgebung so sehr
gestreut ist, dass seine Richtung nicht
mehr auszumachen ist.
• Das diffuse Licht ist deutlich heller. Es
kommt von einer Lichtquelle, trifft auf
eine Oberfläche und wird dort in alle
Richtungen gestreut.
• Die Specular (spiegelnde) Reflexion
entsteht etwa dadurch, dass Sie ein Spie-
gelbild der Lichtquelle wahrnehmen.

In OpenGL geben Sie für jede Licht-
quelle, wovon Sie mehrere gleichzeitig
verwenden können, Position, Farbe und
Intensität des emittierten Lichts an. Da-
zu verwenden Sie

glLight{i,f}[v]
(GLenum light, GLenum pname,

TYPE param);

Als Beispiel setzen Sie eine Lichtquelle
ein:

TIPPTIPP
// Parameter setzen
GLfloat lAmbient[] =

{0.0, 0.0, 0.0, 1.0};
GLfloat lDiffuse[] =

{1.0, 1.0, 1.0, 1.0};
GLfloat lSpecular[] =

{1.0, 1.0, 1.0, 1.0};
GLfloat lPosition[] =

{1.0, 1.0, 1.0, 0.0};

glLightfv(GL_LIGHT0,GL_AMBIENT,
lAmbient);

glLightfv(GL_LIGHT0,GL_DIFFUSE,
lDiffuse);

glLightfv(GL_LIGHT0,GL_SPECULAR,
lSpecular);

glLightfv(GL_LIGHT0,GL_POSITION,
lPosition);

// Beleuchtungsberechnung an
glEnable(GL_LIGHTING);
// diese Lichtquelle anschalten
glEnable(GL_LIGHT0);

// Schattierung der Polygone
glShadeModel(GL_FLAT);

Zur Beleuchtungsberechnung braucht
OpenGl außer den Koordianten der
Eckpunkte der 3D-Objekte noch die
Oberflächennormalen.

Die Oberflächennormalen erhalten
Sie entweder aus einem 3D-Modelling-
Programm, wenn Sie damit Ihre 3D-
Objekte gestalten, oder Sie berechnen sie
selbst. Dazu verwenden Sie das Kreuz-
produkt zweier Vektoren. Für ein Drei-
eck berechnen Sie die Normale wie folgt:

// Die Vertices des Dreiecks
GLfloat v0 ={ 0.0f, 0.0f, 0.0f }
GLfloat v1 ={ 1.0f, 1.0f, 0.0f }
GLfloat v2 ={ 3.0f, 0.0f, 1.0f }

GLfloat a[3], b[3], n[3];

a[0]=v1[0]-v0[0];
a[1]=v1[1]-v0[1];
a[2]=v1[2]-v0[2];

b[0]=v2[0]-v0[0];
b[1]=v2[1]-v0[1];
b[2]=v2[2]-v0[2];

// Normale n
n[0] =a[1] * b[2] - b[1] * a[2];
n[1] =a[2] * b[0] - b[2] * a[0];
n[2] =a[0] * b[1] - b[0] * a[1];

Die Normale übergeben Sie an OpenGL
mit dem Befehl

glNormal3{b, d, f, i, s}
[v](TYPE coords);

In unserem Fall verwenden Sie die Para-
meter

glNormal3fv(n)

Eine angegebene Normale wird so lange
jedem Vertex zugewiesen, bis Sie eine
andere angegeben haben (genau wie bei
glColor*). Sie können auch für jeden
Vertex eine Normale angeben. Diese
Vertex-Normalen erhalten Sie, indem
Sie die Normalen aller Dreiecke, an de-
nen ein Vertex beteiligt ist, mitteln. Da-
mit erhalten Sie unter OpenGL das

Gouraud Shading:
Diese berechnet die
Beleuchtung an je-
dem Eckpunkt eines
Dreiecks und inter-
poliert die Farbwerte
linear. Damit wirken
die Objekte visuell
runder als bei dem
Flat Shading. Das
Gouraud Shading ak-
tivieren Sie mit gl-
ShadeModel (GL_
SMOOTH).

Wenn Sie 3D-Ob-
jekte beleuchten wol-
len, müssen Sie den
Oberflächen ein Ma-
terial zuweisen. Da-
hinter verbirgt sich
nur eine Farbe – aber

jeweils eine für den ambienten, diffusen
und spekulären Teil des Lichts. Ein Ma-
terial definieren Sie wie folgt:

GLfloat mAmbient[] =
{ 1.0f, 1.0f, 1.0f };

GLfloat mDiffuse[] =
{ 1.0f, 1.0f, 0.0f };

glMaterialfv(GL_FRONT,
GL_AMBIENT, mAmbient);

glMaterialfv(GL_FRONT,
GL_DIFFUSE, mDiffuse);

In der nächsten Ausgabe werden Sie ers-
te Landschaftsdaten generieren und dar-
stellen. s E T

LLiitteerraattuurr

Jackie Neider, Tom Davis, Mason Woo: OpenGL
Programming Guide, The Official Guide to Learning
OpenGL, Release 1

Burg, Haf, Wille: Höhere Mathematik für Ingenieu-
re, Band 2 Lineare Algebra, ISBN 3-519-22956-0

Bronstein, Semendjajew, Musiol, Mühlig: Taschen-
buch der Mathematik, ISBN 3-8171-2002-8

UNSER BEISPIELPROGRAMM in Aktion: beleuchtete, animierte
3D-Modelle mit Flat- oder Gouraud Shading

