)

PC UNDERGROUND

PRAXIS

Genesis-Projekt: Landschaften

A

| B =
rendern mit @penGL

3D-Landschaft

Im

3D-Spiele entfuhren den Spieler in virtuelle Land-

schaften. Lesen Sie, wie Sie von den

CARSTEN DACHSBACHER

ie Spielewelten von Drakan und
DWarcraft 111 beeindrucken

durch ihre Landschaften. Wir
fuhren Thnen vor, wie Sie diese mit Hil-
fe von OpenGL darstellen.

Kommerzielle 3D-Engines, die auf die
Darstellung von Landschaften ausge-
richtet sind, kénnen Sie in vielen Echt-
zeit-Strategiespielen bewundern. In die-
sem Projekt lernen Sie alle nétigen Me-
thoden und Algorithmen kennen, um ei-
ne vollwertige 3D-Landschafts-Engine
zu schreiben.

Landschaften stellen Sie im Allgemei-
nen mit vielen Polygonen dar, die Sie der
3D-Hardware Gibergeben. Dazu muissen
Sie die zu verwendende 3D-API
(OpenGL) kennen und wissen, wie Sie
Daten fiir den 3D-Beschleuniger aufbe-
reiten und an diesen Ubergeben. Algo-
rithmen setzen Sie ein, um die Polygon-
last einzuschranken — selbst wenn Sie ei-
ne 3D-Grafikkarte haben, die mit sehr
vielen Polygonen pro Sekunde fertig
wird. Wenn Sie die 3D-Engine in einem
Computerspiel einsetzen, hat der Rech-
ner noch weit mehr zu tun, als nur die
Landschaft zu rendern.

Unser Genesis-Projekt gliedert sich in folgende
drei Teile, die Sie von den OpenGL-Grundlagen bis
zum Einsatz praxistauglicher Algorithmen fuhren.

Teil 1: Landschaften rendern mit OpenGL

Teil 2: Eigene Landschaftsdaten generieren

Teil 3: Methoden des Landschafts-Texturierens
und Spezialeffekte

268 April 2001 PC Magazin

profitieren kénnen.

Verkniipfen Sie die Ausgabe von
OpenGL mit einem Windows-Fenster.
Um es anzulegen, registrieren Sie eine
Fensterklasse mit RegisterClass(
CONST WNDCLASS *IpWndClass)
und erzeugen ein Fenster zum Beispiel
mit der Funktion CreateWindowEX(...).

Die im Folgenden verwendeten Funk-
tionen befinden sich in user32.lib und
opengl32.lib, die Sie in Ihr Projekt einfii-
gen. Die Definitionen der Funktions-
rimpfe stehen in windows.h oder wing-
di.h. Um auf die Client Area eines Win-
dows-Fensters zu zeichnen, bendétigen
Sie den Device Context. Diesen bekom-
men Sie mit

hDC = GetDC(hWND);
Fir OpenGL brauchen Sie ein bestimm-
tes Pixelformat fur [Ihr Fenster:
OpenGL benétigt nicht nur einen Spei-
cherbereich fir die Farbwerte, sondern
zwei Buffers (einer wird dargestellt, der
andere solange bearbeitet), zusatzlich ei-
nen Z-Buffer, der die Tiefeninformation
enthdlt. Je nach Wunsch und Bedarf
kdnnen Sie weitere anfordern wie zum
Beispiel Accumulation- oder Stencil-
Buffers. Geben Sie beim Pixelformat
auch die gewiinschte Farbtiefe an. Da Sie
die Angaben machen, ohne zu wissen,
ob die gerade verwendete Hardware die-
se unterstitzt, mussen Sie die PIXEL-
FORMATDESCRIPTOR-Struktur
ausfullen. Damit kann Windows das
bestmogliche, vorhandene Pixelformat
wahlen:

static PIXELFORMATDESCRIPTOR pfd

/IGroRe PixelFormatDescriptor
sizeof(PIXELFORMATDESCRIPTOR),

‘i AUF CD 1

oA | Die Quelltexte sowie die fertig ibersetzten

Routinen finden Sie im Verzeichnis Praxis/Pro-
grammierung/PC Underground.

/I Version

i

/I Format muf3 Fenster, OpenGL

/I DoubleBuffering unterstiitzen

PFD_DRAW_TO_WINDOW |

PFD_SUPPORT_OPENGL |

PFD_DOUBLEBUFFER,

/I RGBA Pixel

PFD_TYPE_RGBA,

/I Farbtiefe

bits,

0,0,0,0,0,0,

/I kein Alpha Buffer

0,

0,

Il kein Accumulation Buffer

0,

0,0,0,0,

/I 16 Bit Z-Buffer

16,

/I kein Stencil Buffer

0,

/I kein Auxiliary Buffer

0,

PFD_MAIN_PLANE, 0, 0, 0,0
h

/I suche optimales Pixelformat
int PixelFormat =
ChoosePixelFormat(hDC, &pfd);

/ldieses fur Device Context:
SetPixelFormat
(hDC, PixelFormat, &pfd);

Erzeugen Sie einen OpenGL Rendering
Context: Damit kdnnen Sie auf den De-
vice Context lhres Fensters (also im
Fenster) rendern. Dieser Rendering
Context verwendet das Pixelformat, das
Sie soeben festgelegt haben.

HGLRC hRC =

wglCreateContext(hDC);
Mit dem folgenden Aufruf aktivieren Sie
den Rendering Context. Dabei wirken
sich alle OpenGL-Aufrufe lhres Pro-
gramms auf die Client Area lhres Fens-
ters aus.

wglMakeCurrent(hDC, hRC);
Mit OpenGL-Befehlen kénnen Sie et-
was in Threm Fenster darstellen. So de-
aktivieren Sie den Rendering Context:

/I deaktivieren

wglMakeCurrent(NULL, NULL);

/... und I8schen
wglDeleteContext(hRC);

OpenGL verwendet die eingestellte
Auflésung und Farbtiefe des Bild-
schirms. Wenn Sie Ihre OpenGL-An-
wendung im Vollbild und nicht im Fens-
ter laufen lassen wollen, stellen Sie die
Auflésung und Farbtiefe unter Win-
dows ein, bevor Sie das Fenster erzeugen
und den Rendering Context anlegen.
Dazu verwenden Sie folgende Codezei-
len:

DEVMODE screenRes;

memset(&screenRes, 0, sizeof
(screenRes));

screenRes.dmSize =
sizeof(screenRes);

/I Breite

screenRes.dmPelsWidth = 640;

/I Hohe

screenRes.dmPelsHeight = 480;

/I Farbtiefe
screenRes.dmBitsPerPel = 32;
screenRes.dmFields =
DM_BITSPERPEL|DM_

O PELSWIDTH|DM_PELSHEIGHT;
ChangeDisplaySettings
(&screenRes, CDS_FULLSCREEN);

Uberpriifen Sie bei der Initialisierung

die Riickgabewerte der Funktionen,
und fangen Sie eventuelle Fehler ab. Im Quellcode
zu dieser Ausgabe ist das beriicksichtigt.

Nach der erfolgreichen Initialisierung
kodnnen Sie zeichnen. Dazu mussen Sie
in Ihr Programm zwei OpenGL-Hea-
der-Dateien einbinden:

#include <gl/gl.h>

#include <gl/glu.h>
Bevor Sie zu rendern beginnen, missen
Sie den Colorbuffer, der die Farbwerte
enthalt, I16schen. Dazu legen Sie einma-
lig die Hintergrundfarbe mit Rot-,
Griin-, Blau- und Alpha-Werten fest.
Alle Werte liegen im Bereich zwischen
0.0 und 1.0:

glClearColor

(0.0f, 0.0f, 0.0f, 0.0f);
Auferdem ldschen Sie den Z-Buffer.
Dieser enthélt fur jeden Pixel den Ab-
stand zwischen Betrachter und dem ge-
renderten Objekt an der entsprechenden
Stelle. OpenGL fiihrt beim Rendern die-
sen Vergleich durch und aktualisiert den
Z-Buffer:

zeichne Pixel an (x,y) mit Ab-

stand. z
wenn z < als Z-Buffer-Wert bei

xy)

dann setze Pixel im Colorbuffer
setze Z-Buffer bei (x, y) auf
Wert z

Genauso wie die Farbe bestimmen Sie
einen Wert, mit dem Sie den Z-Buffer
beim Ldschen flllen:
glClearDepth(1.0);
Sie kdnnen auch einen anderen Wert
wahlen und den Vergleich (kleiner als)
durch einen anderen ersetzen:
glDepthFunc(GLenum func)
Bevor Sie einen neuen Frame (Bild)
zeichnen wollen, l6schen Sie zuvor den
Colorbuffer und den Z-Buffer mit
glClear(GL_COLOR_BUFFER_BIT
| GL_DEPTH_BUFFER_BIT);
In OpenGL gibt es einige Zustandsva-
riablen, die das Rendern beeinflussen.
Einen Zustand setzen Sie mit der Funk-
tion

PC UNDERGROUND
PRAXIS

GL_POLYGON GL_QUADS

; 6, - 7

0 5
] 2
2
5
3 0
4
34 7 rl (5]

Q 2
GL_QUAD_STRIP

1
1] 2 4
2
4 5
1
o 3
B 3 ! 3
0 2 5 A

Zeichnen Sie geome-

. DIE GEOMETRISCHEN PRIMITIVE trische Primitive:

5o -2 von OpenGL Punkte, Linien, Drei-
$ E ecke, Vierecke und
GL_POINTS Polygone. Dazu

) z&hlen auch Triangle

o__— 0 ' 0 ! Strips (Streifen aus
N Vs ;\jz “OZ Dreiecken). Der Vor-
) s N 4 TN 4 teil daran ist, dass Sie
GL_LINES GL_LINE_STRIP GL_LINE_LOOP weniger Vertices

(Knoten- bzw. Eck-
punkte) pro Dreieck
angeben miussen, als
wenn Sie einzelne
Dreiecke zeichnen.
Damit kénnen Sie die
Ausgabe beschleuni-
gen.

Bevor Sie zeichnen,
rufen Sie
glBegin(...)
auf. Als Parameter
Ubergeben Sie eine

GL_TRIANGLE GL_TRIANGLE_STRIP GL_TRIANGLE_FAN
glEnable(...)

Sie deaktivieren den Zustand mit
glDisable(...)

Als Parameter bekommen diese Funk-
tionen vordefinierte Konstanten. Schrei-
ben Sie beispielsweise, um den Z-Buffer
Zu aktivieren:

glEnable(GL_DEPTH_TEST);
Wenn Sie geometrische Objekte zeich-
nen wollen, legen Sie zuerst deren Farbe
fest. Dazu stehen folgende Befehle zur
Verfligung:

glColor{3,4}{b,d,f,i,s,ub,ui,us}

[VI(TYPE colors);
OpenGL stammt noch aus der Zeit, als
C statt C++ verwendet wurde. In C gibt
es keine Uberladenen Funktionen (na-
mensgleiche Funktionen, die unter-
schiedliche Typen von Parametern ent-
gegennehmen). Deshalb gibt es fir jeden
Parametertyp eine eigene Funktion.

So arbeitet die Syntax:
» Der Befehl heif3t glColor.
» Das ndchste Zeichen ist eine 3 oder ei-
ne 4—je nachdem, ob Sie nur Rot-, Griin-
und Blau-Werte oder zusétzlich noch ei-
nen Alpha-Wert Gbergeben wollen.
 Eine der Kennungen aus der nachsten
geschweiften Klammer gibt den Typ an,
zum Beispiel f fur Float oder i fur Integer.
* Optional kénnen Sie dem Befehlsna-
men noch ein v anhangen. Das bedeutet,
dass Sie einen Pointer auf 3 oder 4 Va-
riablen Ihres Typs angeben und nicht die
Variablen selbst tibergeben. Verwenden
Sie folgende Variante:

glColor3f(rot,

grin, blau);

Konstante, die fest-
legt, was OpenGL zeichnen soll. Jeden
Programmblock, in dem Sie etwas zeich-
nen, beenden Sie mit einem Aufruf von

glEnd(...)

Sie haben auch zwei Blocke, wenn Sie
erst Dreiecke und anschlieRend Linien
zeichnen wollen. Innerhalb der Blocks
Ubergeben Sie die Vertices an OpenGL.
Dazu verwenden Sie
glVertex{234}Nsifd}[v]
(TYPE coords);
Als Beispiel zeichnen Sie ein weil3es
Dreieck:
glColor3f(1.0f, 1.0f, 1.0f);
glBegin(GL_TRIANGLES);
glVertex2f(0.0f, 0.0f);
glVertex2f(1.0f, 0.0f);
glVertex2f(0.0f, 1.0f);

glEnd();

OpenGL ist eine State Machine: Es gibt
Zustédnde, die Sie an- und ausschalten
oder &ndern und die so lange gelten, bis
Sie gedndert werden. Einer dieser Zu-
stdnde ist die Farbe. Im obigen Beispiel
sehen Sie einen Aufruf von glColor*.
Wenn Sie fur die Eckpunkte jeweils an-
dere Farben einstellen wollen, miissen
Sie vor jeden Aufruf von glVVertex* einen
glColor*-Aufruf schreiben.

Wenn Sie alles gezeichnet haben und
das neue Bild im Fenster sehen wollen,
teilen Sie das OpenGL mit, indem Sie gl-
Flush() oder glFinish() aufrufen. Vertau-
schen Sie den Arbeits- und Darstel-
lungs-Colorbuffer lhres Device-Con-
texts:

SwapBuffers(hDC)

Fir Sie ist vor allem das Rendern von
Polygonen, insbesondere von Drei- ©

PC Magazin April 2001 269

5)-6

)

PC UNDERGROUND
PRAXIS

ecken interessant, wenn Sie Landschaf-
ten (3D-Objekte) darstellen wollen. Po-
lygone zeichnen Sie fur gewdhnlich so,
dass Sie die Pixel innerhalb der Poly-
gonkanten setzen. Sie konnen aber auch
nur den Rand oder die Eckpunkte zeich-
nen lassen. Das kdnnen Sie fur VVorder-
und Ruckseite separat angeben:
/IVorderseite ausfiillen
glPolygonMode(GL_FRONT,GL_FILL);

/I Ruckseite, nur Rand
glPolygonMode(GL_BACK,GL_LINE);

Wo ist vorne und wo hinten? Die Com-
putergrafik folgt der Konvention, Eck-
punkte, die Sie im Polygon von vorne se-
hen, gegen den Uhrzeigersinn anzuge-
ben. Diesen Test fuhrt OpenGL durch.
3D-Modelle lassen sich so konstruieren,
dass alle Polygone Ihrer AuRenseite die-
ser Konvention folgen. Wenn Sie sich
Polygongitter in Form einer Kugel vor-
stellen, sehen Sie immer nur die Polygo-
ne, die mit ihrer Vorderseite zu lhnen
zeigen. Alle anderen sind verdeckt und
mussen nicht gezeichnet werden. Das
koénnen Sie OpenGL Uberlassen. Legen
Sie zuerst fest, ob Sie mit oder gegen die
Konvention arbeiten. Beachten Sie, dass
Sie diese Entscheidung konsequent
durchhalten:
/I entsprechend der Konvention
glFrontFace(GL_CCW);

/I oder entgegen
glFrontFace(GL_CW);

AnschlieBend teilen Sie OpenGL mit,
dass es Polygone, deren Riickseite sicht-
bar sind, nicht zeichnen soll:

glCullFace(GL_BACK);
Dieses Backface Culling missen Sie
noch aktivieren:

glEnable(GL_CULL_FACE);

Mit den bisher verwendeten Befehlen
kdnnen Sie zwar geometrische Primitive
zeichnen, diese befinden sich aber noch
nicht im dreidimensionalen Raum. Bei
3D-Grafiken geben Sie nicht nur die 3D-
Objekte in Form der Primitive an, son-
dern missen noch andere Parameter
festlegen. Dazu gehdren Lage und Po-
sition der Objekte und die Einstellun-
gen (Transformationen) der virtuellen
Kamera, mit der Sie die Szene fotogra-
fieren.

Transformationen beschreiben Sie
mathematisch mit einer Matrix. Eine
Matrix ist zunachst eine Tabelle mit

» Das Aufstellen der Kamera in der Szene
entspricht der Viewing Transformation.
« Sie platzieren die Objekte der Model-
ling Transformation.

e Die Wahl der Kameralinse und den
Zoomfaktor steuern sie Uber die Projec-
tion Matrix.

 Die Viewport Transformation skaliert
die projezierten Koordinaten auf die
GroRe des Windows-Fensters.

* Die Modelling- und Viewing-Trans-
formation zusammen ergeben die Mo-
delView Matrix.

Indem Sie die Matrizen in einem Stack
verwalten, kdnnen Sie hierarchische 3D-
Modelle einfacher gestalten und elegan-
ter mit Matrizen umgehen. Aus einem
Stack kdnnen Sie Elemente pushen (hin-

ModelView l\ Projection
Matrix Matrix

I Vertex ‘

i

Viewport ED-Koordinaten

Transformation

Perpeskt.
Division

i

DIE TRANSFORMATIONEN, die ein Vertex uber sich ergehen lassen muss

Zahlenwerten. Wenn Sie diese Werte ge-
eignet wahlen, beschreiben die Matrizen
eine Drehung oder eine Projektion,
wenn Sie mit einem Vektor (zum Bei-
spiel einem Vertex) multipliziert wer-
den. Sie konnen die Transformationen
hintereinander ausfiihren, indem Sie das
Ergebnis einer Transformation als Vek-
tor fur die ndchste verwenden. Weniger
Rechenzeit kostet es, die Matrizen mit-
einander zu multiplizieren. Als Ergebnis
erhalten Sie eine Matrix, die alle Trans-
formationen zusammen beschreibt. Die-
se Matrix-Matrix- und Matrix-Vektor-
Multiplikationen

Blick von
vorne: hinten:
V2
v0 v
v
Seitenansicht:
—_— —_—
Blickrichtung

Ubernimmt OpenGL
fur Sie.

vi Im Bild oben sehen
Sie die Transformati-
onsschritte, die ein
Vertex durchlaufen
muss, den Sie ange-
ben, bis die 2D-Koor-
V2 dinaten innerhalb des
Fensters berechnet
werden. Dort tauchen
die Begriffe Model-
View- und
Projection-Matrix
auf. Diese beiden Ma-
trizen verwaltet
OpenGL in einem
Stack. Sie Uberneh-

VORNE ODER HINTEN? Die Richtung der Normalen entschei-

det: Backface Culling in OpenGL.

270 April 2001 PC Magazin

men die Funktionen
einer echten Kamera:

zufiigen) und poppen (herunternehmen).
Wenn Sie den Push-Befehl
glPushMatrix()
aufrufen, wird die oberste Matrix auf
dem Stack kopiert und nochmals auf den
Stack gepackt.
glPopMatrix()
entfernt die oberste Matrix. Der Befehl
glLoadldentity()
Uberschreibt die oberste Matrix mit der
Einheitsmatrix. Nun stellen Sie eine vir-
tuelle Kamera auf, wobei der Befehl
gluPerspective(...)
Ihnen viel Arbeit abnimmt. Wahlen Sie
die Kameralinse:
/I Projection Matrix wahlen
gIMatrixMode(GL_PROJECTION);
glLoadldentity();
/1 Offnungswinkel, Aspectratio..
gluPerspective
(45.0f, width/height,
1.01f, 1000.0f);

/I Breite und Hohe des Fensters
glViewport(0,0,width,height);

Beschreiben Sie die 3D-Szene. Platzie-
ren Sie die Kamera:

glMatrixMode(GL_MODELVIEW);
glLoadldentity();
/I Abstand vom Objekt
glTranslatef

(0.0f, 0.0f, -80.0f);

Der Befehl

glTranslatef(...)
erzeugt eine Matrix, die eine Verschie-
bung (eine Translation) enthélt, und
multipliziert die oberste Matrix auf dem
Stack mit dieser Matrix.

ACHTUNG! Die Reihenfolge der Trans-
formationen, die ein Vertex durch-
lauft, ist umgekehrt zu der Reihenfolge, die Sie im
Programmcode angeben.
Es gibt noch weitere Befehle flr Trans-
formationen:
//Winkeldrehung um x, y, z
glRotatef

(GLfloat angle, GLfloat X,
GLfloaty, GLfloat z)

und

//Skalierung in x, y, z Richtung
glScalef(GLfloat x, GLfloat y,
GLfloat z);

Das folgende Beispiel zeigt die Reihen-
folge der Transformationen auf:

glPushMatrix();
glTranslatef(2, 0, 0);
glRotatef(45, 1, 1,0);
drawCube();
glPopMatrix();

Damit drehen Sie den Wiirfel zuerst und
verschieben ihn dann. Achten Sie auf die
umschliefenden Befehle

glPushMatrix()

éiPopMatrix()

Diese gewahrleisten, dass der Matrix-
stack nach dem Zeichnen und Transfor-
mieren des Wiirfels genauso wie vorher
hinterlassen wird. Das ist wichtig, wenn
Sie viele 3D-Objekte unabhangig von-
einander bewegen wollen.

m Licht an!

Nun konnen Sie Ihre 3D-Objekte und
Ihre virtuelle Kamera beliebig im Raum
platzieren. Leider erscheinen die Objek-
te noch einfarbig und fade. Es fehlt
Licht!

In OpenGL gibt es drei Arten von
Licht:

e Das ambiente Licht ist der Teil des
Lichts, der durch die Umgebung so sehr
gestreut ist, dass seine Richtung nicht
mehr auszumachen ist.

 Das diffuse Licht ist deutlich heller. Es
kommt von einer Lichtquelle, trifft auf
eine Oberflache und wird dort in alle
Richtungen gestreut.

« Die Specular (spiegelnde) Reflexion
entsteht etwa dadurch, dass Sie ein Spie-
gelbild der Lichtquelle wahrnehmen.

In OpenGL geben Sie fir jede Licht-
quelle, wovon Sie mehrere gleichzeitig
verwenden konnen, Position, Farbe und
Intensitat des emittierten Lichts an. Da-
zu verwenden Sie

glLight{i,f}[v]

(GLenum light, GLenum pname,
TYPE param);

Als Beispiel setzen Sie eine Lichtquelle
ein:

/I Parameter setzen
GLfloat IAmbient[] =
{0.0, 0.0, 0.0, 1.0};
GLfloat IDiffuse[] =
{1.0, 1.0, 1.0, 1.0}
GLfloat ISpecular[] =
{1.0,1.0, 1.0, 1.0}
GLfloat IPosition[] =
{1.0, 1.0, 1.0, 0.0};

glLightfv(GL_LIGHTO,GL_AMBIENT,
IAmbient);

glLightfv(GL_LIGHTO,GL_DIFFUSE,
IDiffuse);

glLightfv(GL_LIGHTO,GL_SPECULAR,
ISpecular);

glLightfv(GL_LIGHTO,GL_POSITION,
IPosition);

/I Beleuchtungsberechnung an
glEnable(GL_LIGHTING);

/I diese Lichtquelle anschalten
glEnable(GL_LIGHTO);

/I Schattierung der Polygone
glShadeModel(GL_FLAT);

PC UNDERGROUND
PRAXIS

/I Normale n

n[0] =a[1] * b[2] - b[1] * a[2];

n[1] =a[2] * b[0] - b[2] * a[0];

n[2] =a[0] * b[1] - b[0] * a[1];
Die Normale tibergeben Sie an OpenGL
mit dem Befehl

gINormal3{b, d, f, i, s}

[VI(TYPE coords);

In unserem Fall verwenden Sie die Para-
meter

gINormal3fv(n)
Eine angegebene Nlormale wird so lange
jedem Vertex zugewiesen, bis Sie eine
andere angegeben haben (genau wie bei
glColor*). Sie kdnnen auch fiir jeden
Vertex eine Normale angeben. Diese
Vertex-Normalen erhalten Sie, indem
Sie die Normalen aller Dreiecke, an de-
nen ein Vertex beteiligt ist, mitteln. Da-
mit erhalten Sie unter OpenGL das

Gouraud Shading:

PL.PC Underground: DpenGL Tutorial

UNSER BEISPIELPROGRAMM in Aktion: beleuchtete, animierte

3D-Modelle mit Flat- oder Gouraud Shading

Zur Beleuchtungsberechnung braucht
OpenGl auBer den Koordianten der
Eckpunkte der 3D-Objekte noch die
Oberflachennormalen.

Die Oberflachennormalen erhalten
Sie entweder aus einem 3D-Modelling-
Programm, wenn Sie damit lhre 3D-
Objekte gestalten, oder Sie berechnen sie
selbst. Dazu verwenden Sie das Kreuz-
produkt zweier Vektoren. Fur ein Drei-
eck berechnen Sie die Normale wie folgt:

/I Die Vertices des Dreiecks

GLfloat vO ={ 0.0f, 0.0f, 0.0f }
GLfloat v1 ={ 1.0f, 1.0f, 0.0f }
GLfloat v2 ={ 3.0f, 0.0f, 1.0f }

GLfloata[3],b[3],n[3];

a[0]=v1[0]-vO[O];
a[1]=v1[1]-vO[1];
a[2]=v1[2]-vO[2];

b[0]=v2[0]-vO[0];
b[1]=v2[1]-vO[1];
b[2]=v2[2]-v0[2];

Diese berechnet die
Beleuchtung an je-
dem Eckpunkt eines
Dreiecks und inter-
poliert die Farbwerte
linear. Damit wirken
die Objekte visuell
runder als bei dem
Flat Shading. Das
Gouraud Shading ak-
tivieren Sie mit gl-
ShadeModel (GL_
SMOOTH).

Wenn Sie 3D-Ob-
jekte beleuchten wol-
len, mussen Sie den
Oberflachen ein Ma-
terial zuweisen. Da-
hinter verbirgt sich
nur eine Farbe — aber
jeweils eine fur den ambienten, diffusen
und spekuléren Teil des Lichts. Ein Ma-
terial definieren Sie wie folgt:

GLfloat mAmbient[] =

{ 1.0f, 1.0f, 1.0f };
GLfloat mDiffuse[] =
{ 1.0, 1.0f, 0.0f };
glMaterialfv(GL_FRONT,
GL_AMBIENT, mAmbient);

glMaterialfv(GL_FRONT,
GL_DIFFUSE, mDiffuse);

—1oix

In der ndchsten Ausgabe werden Sie ers-
te Landschaftsdaten generieren und dar-
stellen. QET

Literatur

Jackie Neider, Tom Davis, Mason Woo: OpenGL
Programming Guide, The Official Guide to Learning
OpenGL, Release 1

Burg, Haf, Wille: Hohere Mathematik fur Ingenieu-
re, Band 2 Lineare Algebra, ISBN 3-519-22956-0
Bronstein, Semendjajew, Musiol, Mihlig: Taschen-
buch der Mathematik, ISBN 3-8171-2002-8

PC Magazin April 2001 271

o ¢

