
246 Mai 2001 PC Magazin

P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R

Die einfachste Methode, Land-
schaftsdaten zu generieren, geht
von einer Art Landschaftskarte

aus, in der die Höheninformation ge-
speichert ist (Heightmap oder einem
Heightfield). Dahinter verbirgt sich eine
Bitmap mit Graustufen.

Das Bild zeigt eine Heightmap. Helle-
re Pixel bedeuten, dass die Landschaft an
dieser Stelle höher ist, dunklere Pixel ste-
hen für tiefer gelegene Landschaftsteile.

Diese Bitmap enthält die später notwen-
digen Informationen, um die 3D-Daten
zu generieren. Zunächst erzeugen Sie die
Heightmaps. Dabei helfen Ihnen Algo-
rithmen, mit denen Sie charakteristische
Heightmaps für hügelige, flache oder
vulkanische Landschaften erzeugen. Al-
le Sourcecodes, die hier teilweise in Aus-
schnitten gezeigt werden, finden Sie
komplett auf der Heft-CD.

■ Fault Formation
Algorithmus
Der Fault Formation Algorithmus eig-
net sich, um Landschaftsdaten für Küs-
tenregionen, steile Hänge oder Felspla-
teaus anzulegen. In der Natur entstehen
solche Landstriche unter anderem da-
durch, dass sich Platten tektonisch ver-
schieben, Küsten erodieren und Land-
schaften sich durch Wasser- oder Wind-
Phänomene verändern.

Der Algorithmus ist einfach: Sie star-
ten mit einer leeren Heightmap der
Größe SIZE x SIZE. Jeder Punkt erhält
die Höhe Null. Nun wählen Sie eine zu-
fällige Linie in der Heightmap:

x1 = rand()%SIZE;
y1 = rand()%SIZE;
do
{

x2 = rand()%SIZE;
y2 = rand()%SIZE;

} while (x2==x1 && y2==y1);

float dx = (float)(x2 - x1);
float dy = (float)(y2 - y1);

Diese Linie teilt die Map in zwei Teile.
Entscheiden Sie sich für eine Seite, und
erhöhen Sie alle Punkte um eine be-
stimmte Höhendifferenz.

// Entscheidung, welche Seite
int upDown =

(dx>0&&dy<0)||(dx>0&&dy>0);

// die Steigung der Linie
if (dx)

dy /= dx; else dy = 0.0f;

x = 0;
y = y1 - x1 * dy;

// Punkte gegen die Linie testen
for (x2 = 0; x2 < SIZE;

x2 ++, y += dy)
{

for (y2 = 0;
y2 < SIZE; y2 ++)

if ((upDown && y2 < y)
/*up*/ || (!upDown && y2 > y)
/*down*/)
terrain[x2 + y2 * SIZE] +=

heightDifference;
}

Wiederholen (iterieren) Sie diesen Vor-
gang mehrmals, wobei Sie jedes Mal die
Höhendifferenz heightDifference ver-
kleinern, bis Sie genügend Details auf
der Heightmap haben.

Im Bild sehen Sie die Heightmap nach
vier, acht, 32 und 64 Iterationen. Es er-
geben sich unnatürliche Höhenunter-
schiede benachbarter Bereiche in der
Bitmap. In den hohen Frequenzen sind
Helligkeitssprünge bei einer Frequenz-
analyse der Bitmaps zu finden. Wenden
Sie den FIR-Filter (Finite Impulse Res-
ponse) an, um den natürlichen Erosions-
effekt auf der Landschaft nachzubilden.
Er wandelt eine Folge von Eingabewer-
ten x[1..n] in eine Sequenz y[1..n] um.
Verwenden Sie folgende Formel:

y[i] =
k*y[i-1] + (1-k)*x[i]

Die Konstante k bestimmt die Stärke des
Filters. Der Wert von k befindet sich im
Bereich von 0 bis 1. Kleine Werte stehen
für eine schwache Erosion, größere
Werte für stärkere. Ein Wert um 0.5 ist

Genesis-Projekt: Eigene Landschaftsdaten generieren

Blühende
Landschaften
Generieren Sie eigene realistische Landschafts-
daten mit dafür passenden Algorithmen. Die auf-
bereiteten 3D-Daten geben Sie über OpenGL aus.

AUF CD 1
Die Quelltexte sowie die fertig übersetzten

Routinen finden Sie im Verzeichnis Praxis/Pro-
grammierung/PC Underground.

Unser Genesis-Projekt gliedert sich in folgende
drei Teile, die Sie von den OpenGL-Grundlagen bis
zum Einsatz praxistauglicher Algorithmen führen.

Teil 1: Landschaften rendern mit OpenGL
Teil 2: Eigene Landschaftsdaten generieren
Teil 3: Methoden des Landschafts-Texturierens
und Spezialeffekte

DAS GENESIS-PROJEKT

EINE GENERIERTE HEIGHTMAP legt die
Landschaft fest.

DIESE MIT FAULT-FORMATION angeleg-
ten Heightmaps weisen 4, 8, 32 und 64 Ite-
rationen auf.

PC Magazin Mai 2001 247

P C U N D E R G R O U N D
P R A X I S

gut geeignet für die Landschaftsgenerie-
rung. Den FIR-Filter wenden Sie auf je-
de Zeile und auf jede Spalte in beiden
Richtungen an.

Wenn Sie den Filter auf die Height-
map anwenden, lassen sich schöne
Landschaftsdaten erzeugen.

■ Midpoint-Displacement-
Algorithmus
Mit dem Midpoint-Displacement-Algo-
rithmus (Fraktal-Plasma oder Dia-
mond-Square-Algorithmus) können Sie

bergige und hügelige Landschaften ge-
nerieren. Sie erzeugen die Heightmap
wieder iterativ, wobei Sie die Start-
Höhen-Differenz dh wählen. Veran-
schaulichen Sie sich den Algorithmus
zuerst im Eindimensionalen.

Sie beginnen im ersten Schritt mit ei-
ner Linie AB im oberen Teil des Bildes.
Unterteilen Sie die Linie in der Mitte am
Punkt C, und addieren Sie zur Höhe des
neuen Punkts einen Zufallswert zwi-
schen -dh und +dh, wie dies der mittlere

Teil des Bildes zeigt. In den weiteren
Schritten verringern Sie dh, indem Sie dh
mit pow(2.0, -roughness) multiplizieren
und die neuen Liniensegmente unterteilen.

Mit der roughness-Konstante steuern
Sie, wie rauh und detailreich die Land-
schaft wird. Beim Wert 1 wird der Spiel-
raum für die zufällige Höhenänderung
in jedem Iterationsschritt halbiert. Für
Werte über 1 haben die ersten Iteratio-
nen größeren Einfluss auf die Form der
Landschaft, und Sie generieren große
Hügel und Berge. Bei Werten unter 1
haben die späteren Iterationsschritte
größeres Gewicht, und Sie erhalten eher
chaotische Daten. Wie die Werte das Er-
gebnis beeinflussen, sehen Sie im folgen-
den Bild für die Werte 4, 1 und 0.25.

Um solche Bilder zu berechnen, müs-
sen Sie den Algorithmus ins Zweidi-
mensionale übertragen. Hier beginnen

Sie nicht mit einer Linie, sondern mit ei-
nem Quadrat. Bei einem Quadrat müs-
sen Sie fünf Mittelpunkte berechnen:
vier an den Kanten zwischen den Eck-
punkten und einen in der Mitte.

Mit dem Diamond Step berechnen Sie
den Punkt in der Mitte des Quadrats. Sie
beginnen mit dem Quadrat ABCD. Die
Höhe des Punkts E in der Mitte erhalten
Sie durch Mittelung der Höhen bei A, B,
C, D und dem Addieren eines Zufalls-
werts. Die Mittelpunkte auf den Kanten
berechnen Sie durch die Eckpunkte des
Quadrats und der Quadratmittelpunkte
der beiden anliegenden Quadrate. Die-
sen Square Step zeigt das folgende Bild.

■ Particle-Deposition-
Algorithmus
Der Particle-Deposition-Algorithmus

eignet sich dazu, vul-
kanische Landschaf-
ten nachzubilden. Sie
programmieren eine
Art Partikelfallsys-
tem. Sie beginnen mit
einem leeren Height-
field. An einer Stelle
lassen Sie eine Reihe
von Partikeln fal- q

DIE HEIGHTMAPS aus dem vorigen Bild
hat ein FIR-Filter modifiziert.

MIT DEM DIAMOND STEP berechnen Sie
Midpoint Displacement in 2D.

DIE GRAFIK verdeutlicht den Midpoint-
Displacement-Algorithmus im Eindimen-
sionalen.

VERSCHIEDENE ROUGHNESS-WERTE (4, 1, 0.25) beeinflussen
Form und Detail der Landschaft.

FIRFilter

Diesen FIRFilter wenden Sie auf jede Zeile
und jede Spalte in beiden Richtungen an.

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:

// "ofs" legt die Richtung in
// der Heightmap fest
void filterFIR (float *value,
int ofs, float filter)
{
float v = value[0];
float *b = &value[ofs];
float ifilter = 1. 0f - filter;

for (i = 0; i <\<> SIZE-1;
i++,b+=ofs)

{
*b =filter * v + ifilter * *b;
v = *b;

}
}
// Landschaftfilter in 4 Richt.
void filterTerrain
(float *t, float f)
{
// Zeilen von lks nach rechts
// und umgekehrt filtern
for (int i = 0;

i <\<> SIZE; i++)
{
filterFIR(&t[SIZE*i], 1, f);
filterFIR
(&t[SIZE*i+SIZE-1],-1,f);
}

// Spalten von oben nach unten
// und umgekehrt filtern
for (i = 0; i <\<> SIZE; i++)
{
filterFIR(&t[i], SIZE, f);
filterFIR

(&t[SIZE*(SIZE-1)+i],-SIZE, f);
}

}

1

248 Mai 2001 PC Magazin

P C U N D E R G R O U N D
P R A X I S

len. Der erste bleibt am Boden liegen,
wie der obere Teil des unteren Bildes
zeigt. Der zweite trifft auf den ersten auf
und fließt weiter, bis er zur Ruhe
kommt, wenn es keinen Nachbarpunkt
im Heightfield gibt, der eine geringere
Höhe aufweist (Bild Mitte).

Lassen Sie einige Partikel fallen, wobei
Sie von Zeit zu Zeit den Ort variieren,
bis Sie einen Vulkankegel erhalten. Die
Form der Landschaft beeinflussen Sie
durch die Zahl der Partikel und der Än-
derung des Ursprungsort der Partikel.

Wenn die Lava abgekühlt ist, bricht
die Spitze des Kegels ein. Diesen Effekt
können Sie nachbilden. Dazu suchen Sie
den höchsten Punkt eines Kegels. Alle

Punkte in der Umgebung, deren Höhe
nicht zu stark von der des Gipfels ab-
weicht (dazu definieren Sie eine Kons-
tante), spiegeln Sie an der Kraterlinie.

■ Polygondaten generieren
Wenn Sie an dieser Stelle angelangt sind,
liegt eine Heightmap vor, aus der Sie Po-
lygondaten erzeugen müssen, um die
Landschaft mit OpenGL darzustellen.
Zum Rendern der Landschaft eignen
sich von den OpenGL-Render-Primiti-
ven besonders die Triangle Strips, die Sie

in der letzten Ausgabe kennengelernt
haben. 3D-Beschleuniger können diese
besonders schnell zeichnen. Zuerst defi-
nieren Sie eine Struktur, in der Sie die
Daten für jeden Vertex speichern:

typedef struct
{

// Texturkoordinaten
float texCoord[2];
// Farbwerte
float color[3];
// Vertexposition
float vertex[3];

}INTERLEAVEDVERTEX;
INTERLEAVEDVERTEX *pVertex;

Nun generieren Sie die Vertizes für die
Triangle Strips aus der Heightmap der
Größe SIZE x SIZE, die im Array ter-
rain gespeichert ist:

// SIZE: Größe der Heightmap
unsigned char terrain

[SIZE * SIZE];
pVertex = new INTERLEAVEDVERTEX

[SIZE * SIZE * 2 * 3];
INTERLEAVEDVERTEX *p = pVertex;
// Macro
#define addVertex(x, y) \
{ \
height=

terrain[(x)+(y)*SIZE]; \
p->vertex[0] = x - SIZE/2;\
p->vertex[1] = y - SIZE/2;\
p->vertex[2] = height;\
p->color[..] = ...;\
p->texCoord[0] = (x)/SIZE;\
p->texCoord[1] = (y)/SIZE;\
p ++; \
nVertices ++; \

}
// Vertexdaten
for (int j = 0;

j < SIZE-1; j+=1)
for (int i = 0;

i < SIZE-1; i+=1)
{

addVertex(i, j+RESOLUTION);
addVertex(i, j);

}

Zeichnen Sie die Daten mit den bekann-
ten OpenGL-Befehlen:

glBegin(GL_TRIANGLE_STRIP);
for (i = 0; i < SIZE; i++)
{

INTERLEAVEDVERTEX *p =
&pVertex[i * (SIZE*2-2)];

for (j = 0;
j < SIZE*2; j++)
{

glTexCoord2fv(&p->texCoord[0]);
glColor3fv(&p->color[0]);
glVertex3fv(&p->vertex[0]);
p ++;

}
}
glEnd();

Die Befehle verbrauchen jedoch Perfor-
mance. Bei einer Größe der Heightmap
von 256 x 256 Pixeln haben Sie es mit ei-
ner Anzahl von 131 072 Dreiecke zu tun.
Allein der Overhead, der durch das Auf-
rufen der Funktionen (mal 3 = 393 216
Aufrufe) entsteht, ist beachtlich. Opti-
mieren Sie deshalb die Übertragung der
Vertexdaten zu OpenGL.

■ Effizientes Rendering
Verwenden Sie Interleaved Arrays. Diese
enthalten Vertex-, Farb- und Texturda-
ten des 3D-Objekts oder der 3D-Land-
schaft. In diesem Array können Sie auch
andere Daten speichern, die mit dem
Rendering nichts zu tun haben. Dazu tei-
len Sie OpenGL mit, wie viele Bytes die-
se in Anspruch nehmen. Mit folgenden
Zeilen zeichnen Sie die Landschaft:

glInterleavedArrays
(GL_T2F_C3F_V3F, 0, pVertex);

for (int i = 0;
i < SIZE-1; i++)

glDrawArrays(GL_TRIANGLE_STRIP,
i * (SIZE*2-2), SIZE*2-2);

Der Parameter GL_T2F_C3F_V3F ist
eine OpenGL-Konstante, die den Auf-
bau der Struktur im Array beschreibt.
Dieser Aufbau entspricht unserem IN-
TERLEAVEDVERTEX. Der zweite
Parameter glInterleavedArrays ist der
Stride-Wert (die Größe der zusätzlichen
gespeicherten Daten in Bytes). Wenn Sie
Sie die Vertex-, Textur- und Farbdaten
jeweils in einem Array ohne weitere Da-
ten speichern, spricht man von Streams.
Diese können noch schneller von
OpenGL bearbeitet werden. Bereiten
Sie die Streaming-Daten für die Land-
schaft während der Initialisierung vor:

DER SQUARE STEP ist die zweite Opera-
tion des 2D-Midpoint-Displacement.

DER PARTICLE-DEPOSITION-ALGORITH-
MUS lässt Lava fließen.

DIE GRAFIK symbolisiert, wie Sie Vulkan-
krater anlegen.

PC Magazin Mai 2001 249

P C U N D E R G R O U N D
P R A X I S

float *pTexCoordStream = new...;
float *pColorStream = new...;
float *pVertexStream = new...;

p = pVertex;
for (i = 0;

i < nVertices; i++, p++)
{
memcpy(&pTexCoordStream[i * 2],

&p->texCoord[0],
2 * sizeof(float));

memcpy(&pColorStream[i * 3],
&p->color[0],

3 * sizeof(float));
memcpy(&pVertexStream[i * 3],

&p->
vertex[0], 3 * sizeof(float));
}

Teilen Sie OpenGL mit, dass Sie Strea-
ming-Daten verwenden wollen:

glEnableClientState
(GL_COLOR_ARRAY);

glEnableClientState
(GL_VERTEX_ARRAY);

glEnableClientState
(GL_TEXTURE_COORD_ARRAY);

//Pointer auf die Arrays setzen
glVertexPointer
(3, GL_FLOAT, 0, pVertexStream);
glTexCoordPointer
(2, GL_FLOAT,0,pTexCoordStream);
glColorPointer
(3, GL_FLOAT, 0, pColorStream);
...
// und Zeichnen
for (int i = 0;

i < SIZE-1; i++)
glDrawArrays(GL_TRIANGLE_STRIP,

i * (SIZE*2-2), SIZE*2-2);
glFlush();
// Streaming wieder abschalten
glDisableClientState

(GL_COLOR_ARRAY);
glDisableClientState

(GL_VERTEX_ARRAY);
glDisableClientState

(GL_TEXTURE_COORD_ARRAY);

Auch dass die Daten der Landschaft sta-
tisch sind, können Sie OpenGL mittei-
len. Damit optimieren Sie die Daten für
den Treiber oder kopieren die Daten in
den eigenen Speicher der Grafikkarte,
falls diese Optionen unterstützt werden.
Bei den dazu benötigten Funktionen
handelt es sich um OpenGL-Extensions
(Erweiterungen), die nicht immer in
OpenGL vorhanden waren. Deren
Existenz in einem OpenGL-Treiber
müssen Sie abfragen. Dazu versuchen
Sie, die Adresse der benötigten Funktio-
nen im Speicher zu bekommen:

typedef void
(APIENTRY *LOCKARRAYS_PROC)

(int first, int count);
typedef void
(APIENTRY *UNLOCKARRAYS_PROC)

(void);
LOCKARRAYS_PROC pfLockArrays;
UNLOCKARRAYS_PROC

pfUnlockArrays;
pfLockArrays = (LOCKARRAYS_PROC)

wglGetProcAddress
(„glLockArraysEXT“);

pfUnlockArrays =
(UNLOCKARRAYS_PROC)

wglGetProcAddress
(„glUnlockArraysEXT“);
if (!pfLockArrays ||

!pfUnlockArrays)
{ /* nicht unterstützt! */ }

Werden die beiden Funktionen unter-
stützt, teilen Sie OpenGL mit, dass Sie
Streaming-Daten ver-
wenden wollen, und
sperren („locken“)
die Streams mit:

(*pfLockArrays)
(0, nVertices

);

Zeichnen Sie mit
glDrawArrays. Am
Programmende he-
ben Sie die Sperre auf
und schalten das Stre-
aming ab:

(*pfUnlockAr-
rays)();

Die Farbwerte be-
stimmen Sie durch die
Höhe der Landschaft.
Die Beleuchtungsef-
fekte auf der Land-
schaft entstehen durch eine Textur, die
Sie entweder mit Paintshop Pro oder
Photoshop anlegen. Wenden Sie einen
Emboss-Filter auf die Heightmap (Bild
rechts) an.

Übergeben Sie die Texturkoordinaten
der Landschaft mit den anderen Daten
an OpenGL. Lassen Sie sich zunächst
eine ID geben, die Ihre Textur in Zu-
kunft eindeutig identifiziert:

int ID;
glGenTextures(1, &ID);

Nun wählen Sie die Textur aus:
glBindTexture
(GL_TEXTURE_2D, ID);

Bei OpenGL gibt es eine Reihe von Pa-
rametern, die das Texture Mapping be-
einflussen – etwa ob sich die Textur wie-
derholen soll, wie sie vergrößert oder
verkleinert dargestellt werden soll.Ar-
beiten Sie mit folgenden Einstellungen:

glTexParameterf(GL_TEXTURE_2D,
GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D,
GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D,
GL_TEXTURE_MAG_FILTER,

GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D,
GL_TEXTURE_MIN_FILTER,
GL_LINEAR_MIPMAP_NEAREST);

Welche Tricks Ihnen die Funktion gl-
TexParameterf eröffnet, entnehmen Sie
der Online- oder jeder OpenGL-Doku-
mentation. Im nächsten Schritt laden Sie
eine Bitmap im bmp-Format und über-
geben sie an OpenGL:

AUX_RGBImageRec *texture;
texture = auxDIBImageLoad

(„texture.bmp“);
gluBuild2DMipmaps

(GL_TEXTURE_2D, 3,
texture->sizeX,
texture->sizeY,
GL_RGB, GL_UNSIGNED_BYTE,
texture->data);

Der letzte Befehl übergibt die Daten und
verkleinert die Textur-Versionen. Schal-
ten Sie das Texturieren an- und aus:

glEnable(GL_TEXTURE_2D);
glDisable(GL_TEXTURE_2D);

Alle Texturfunktionen, die Sie für unser
Beispielprogramm benötigen, finden Sie
in der Wrapper-Klasse PCUTexture.
Dort verwenden Sie das Texture Map-
ping, um die Lichtverhältnisse auf der
Landschaft darzustellen. s E T / T R

Literatur

Jackie Neider u.a.: OpenGL Programming Guide:
The Official Guide to Learning OpenGL, Release 1

A. L. Barabási und H. E. Stanley: Fractal Concepts in
Surface Growth, Cambridge University Press, 1995

Robert Krten: Generating Realistic Terrain, Dr.
Dobbs Journal (July 1994)

DIE TEXTUR zeigt Licht- und Schatten-
effekte zur Landschaft aus dem ersten
Bild.

EINE GENERIERTE LANDSCHAFT in 3D-Darstellung wartet auf
Besucher.

