o-E]

PC UNDERGROUND
PRAXIS

o >

Genesis-Projekt: Eigene Landschaftsdateq_ge?a,eri‘éféﬁ

BlUhende

Generieren Sie eigene

mit dafir passenden Algorithmen. Die auf-
bereiteten 3D-Daten geben Sie uber OpenGL aus.

CARSTEN DACHSBACHER

ie einfachste Methode, Land-
D schaftsdaten zu generieren, geht

von einer Art Landschaftskarte
aus, in der die Hoheninformation ge-
speichert ist (Heightmap oder einem
Heightfield). Dahinter verbirgt sich eine
Bitmap mit Graustufen.

Das Bild zeigt eine Heightmap. Helle-
re Pixel bedeuten, dass die Landschaft an
dieser Stelle hoher ist, dunklere Pixel ste-
hen fur tiefer gelegene Landschaftsteile.

EINE GENERIERTE HEIGHTMAP legt die
Landschaft fest.

Unser Genesis-Projekt gliedert sich in folgende
drei Teile, die Sie von den OpenGL-Grundlagen bis
zum Einsatz praxistauglicher Algorithmen fuhren.

Teil 1: Landschaften rendern mit OpenGL

Teil 2: Eigene Landschaftsdaten generieren

Teil 3: Methoden des Landschafts-Texturierens
und Spezialeffekte

246 Mai2001 PC Magazin

Diese Bitmap enthdlt die spater notwen-
digen Informationen, um die 3D-Daten
zu generieren. Zunéchst erzeugen Sie die
Heightmaps. Dabei helfen Thnen Algo-
rithmen, mit denen Sie charakteristische
Heightmaps fur hugelige, flache oder
vulkanische Landschaften erzeugen. Al-
le Sourcecodes, die hier teilweise in Aus-
schnitten gezeigt werden, finden Sie
komplett auf der Heft-CD.

Der Fault Formation Algorithmus eig-
net sich, um Landschaftsdaten fur Kus-
tenregionen, steile Hange oder Felspla-
teaus anzulegen. In der Natur entstehen
solche Landstriche unter anderem da-
durch, dass sich Platten tektonisch ver-
schieben, Kisten erodieren und Land-
schaften sich durch Wasser- oder Wind-
Phédnomene verandern.

Der Algorithmus ist einfach: Sie star-
ten mit einer leeren Heightmap der
GroRe SIZE x SIZE. Jeder Punkt erhalt
die H6he Null. Nun wahlen Sie eine zu-
fallige Linie in der Heightmap:

x1 = rand()%SIZE;
y1 = rand()%SIZE;
do

x2 = rand()%SIZE;
y2 = rand()%SIZE;
} while (x2==x1 && y2==y1);

float dx = (float)(x2 - x1);

float dy = (float)(y2 - y1);
Diese Linie teilt die Map in zwei Teile.
Entscheiden Sie sich fir eine Seite, und
erhdhen Sie alle Punkte um eine be-
stimmte Hohendifferenz.

/I Entscheidung, welche Seite
int upDown =

£ Die Quelltexte sowie die fertig ibersetzten
Routinen finden Sie im Verzeichnis Praxis/Pro-
grammierung/PC Underground.

(dx>0&&dy<0)||(dx>0&&dy>0);

/I die Steigung der Linie
if (dx)
dy /= dx; else dy = 0.0f;

X='0;
y =yl -x1*dy;

/I Punkte gegen die Linie testen
for (x2 = 0; X2 < SIZE;
X2 ++,y +=dy)

for (y2=0;

y2 < SIZE; y2 ++)
if ((upDown && y2 <y)
IFup*/ || ('upDown && y2 >y)
[*down*/)
terrain[x2 + y2 * SIZE] +=

heightDifference;
}

Wiederholen (iterieren) Sie diesen Vor-
gang mehrmals, wobei Sie jedes Mal die
Hohendifferenz heightDifference ver-
kleinern, bis Sie genligend Details auf
der Heightmap haben.

DIESE MIT FAULT-FORMATION angeleg-
ten Heightmaps weisen 4, 8,32 und 64 Ite-
rationen auf.

Im Bild sehen Sie die Heightmap nach
vier, acht, 32 und 64 Iterationen. Es er-
geben sich unnatirliche Héhenunter-
schiede benachbarter Bereiche in der
Bitmap. In den hohen Frequenzen sind
Helligkeitssprunge bei einer Frequenz-
analyse der Bitmaps zu finden. Wenden
Sie den FIR-Filter (Finite Impulse Res-
ponse) an, um den natirlichen Erosions-
effekt auf der Landschaft nachzubilden.
Er wandelt eine Folge von Eingabewer-
ten x[1..n] in eine Sequenz y[l..n] um.
Verwenden Sie folgende Formel:

ylil= _
k*y[i-1]+ (1-K)*x[i]
Die Konstante k bestimmt die Starke des
Filters. Der Wert von k befindet sich im
Bereich von 0 bis 1. Kleine Werte stehen
fur eine schwache Erosion, groRere
Werte fiir starkere. Ein Wert um 0.5 ist

gut geeignet fur die Landschaftsgenerie-
rung. Den FIR-Filter wenden Sie auf je-
de Zeile und auf jede Spalte in beiden
Richtungen an.

Wenn Sie den Filter auf die Height-
map anwenden, lassen sich schdne
Landschaftsdaten erzeugen.

-

= /] "ofs" legt die Richtung in

: [/ der Heightmap fest

2 void filterFIR (float *val ue,
= int ofs, float filter)

= {

float v = value[0];

float *b = &al ue[ofs];
float ifilter = 1.0f - filter;

© 0~ uls W

10: for (i =0; i <\<> SIZE1;
11: i ++, b+=of s)

{
13: *b =filter * v + ifilter * *b;
14: vV = *b;
1155 }

: }
17: /1 Landschaftfilter in 4 Richt.
18: void filterTerrain
19: (float *t, float f)

s {
21: /] Zeilen von |ks nach rechts
22: I/ und ungekehrt filtern

23: for (int i =0;
24: i <> SIZE i++)
253

{
26: filterFIR(&[SIZE*i], 1, f);
27 filterFIR
28: (&[SIZE*i+SI1ZE-1],-1,f);

}

31: /] Spalten von oben nach unten
323 // und ungekehrt filtern

33: for (i =0; i \<> SIZE i++)
34: {

858 filterFIR(&[i], SIZE f);
36: filterAR

37: (&[SI ZE*(SIZE-1)+i],-SIZE,);
=}
39: }

Diesen FIRFilter wenden Sie auf jede Zeile
und jede Spalte in beiden Richtungen an.

Mit dem Midpoint-Displacement-Algo-
rithmus (Fraktal-Plasma oder Dia-
mond-Square-Algorithmus) kénnen Sie

bergige und hiigelige Landschaften ge-
nerieren. Sie erzeugen die Heightmap
wieder iterativ, wobei Sie die Start-
Hohen-Differenz dh wahlen. Veran-
schaulichen Sie sich den Algorithmus
zuerst im Eindimensionalen.

Sie beginnen im ersten Schritt mit ei-
ner Linie AB im oberen Teil des Bildes.
Unterteilen Sie die Linie in der Mitte am
Punkt C, und addieren Sie zur Hohe des
neuen Punkts einen Zufallswert zwi-
schen -dh und +dh, wie dies der mittlere

DIE GRAFIK verdeutlicht den Midpoint-
Displacement-Algorithmus im Eindimen-
sionalen.

Teil des Bildes zeigt. In den weiteren
Schritten verringern Sie dh, indem Sie dh
mit pow(2.0, -roughness) multiplizieren
und die neuen Liniensegmente unterteilen.
Mit der roughness-Konstante steuern
Sie, wie rauh und detailreich die Land-
schaft wird. Beim Wert 1 wird der Spiel-
raum fir die zuféllige H6henénderung
in jedem lIterationsschritt halbiert. Fir
Werte Uber 1 haben die ersten Iteratio-
nen groReren Einfluss auf die Form der
Landschaft, und Sie generieren grofie
Hugel und Berge. Bei Werten unter 1
haben die spateren Iterationsschritte
groferes Gewicht, und Sie erhalten eher
chaotische Daten. Wie die Werte das Er-
gebnis beeinflussen, sehen Sie im folgen-
den Bild fir die Werte 4, 1 und 0.25.
Um solche Bilder zu berechnen, mus-
sen Sie den Algorithmus ins Zweidi-
mensionale Ubertragen. Hier beginnen

PC UNDERGROUND
PRAXIS

Sie nicht mit einer Linie, sondern mit ei-
nem Quadrat. Bei einem Quadrat mus-
sen Sie funf Mittelpunkte berechnen:
vier an den Kanten zwischen den Eck-
punkten und einen in der Mitte.

Mit dem Diamond Step berechnen Sie
den Punkt in der Mitte des Quadrats. Sie
beginnen mit dem Quadrat ABCD. Die
Hohe des Punkts E in der Mitte erhalten
Sie durch Mittelung der Héhen bei A, B,
C, D und dem Addieren eines Zufalls-
werts. Die Mittelpunkte auf den Kanten
berechnen Sie durch die Eckpunkte des
Quadrats und der Quadratmittelpunkte
der beiden anliegenden Quadrate. Die-
sen Square Step zeigt das folgende Bild.

A B

C D

A B
E

C D

E = 0.25*(A+B+C+D) + random

MIT DEM DIAMOND STEP berechnen Sie
Midpoint Displacement in 2D.

Der Particle-Deposition-Algorithmus
eignet sich dazu, vul-
kanische Landschaf-
ten nachzubilden. Sie
programmieren eine
Art Partikelfallsys-
tem. Sie beginnen mit
einem leeren Height-
field. An einer Stelle

DIE HEIGHTMAPS aus dem vorigen Bild
hat ein FIR-Filter modifiziert.

VERSCHIEDENE ROUGHNESS-WERTE (4, 1, 0.25) beeinflussen

Form und Detail der Landschaft.

lassen Sie eine Reihe
von Partikeln fal- ©

PC Magazin Mai 2001 247

k]

PC UNDERGROUND
PRAXIS

C

E = (H+F+A+B)*0.25 + random
D = (A+C+G+F)*0.25 + random

DER SQUARE STEP ist die zweite Opera-
tion des 2D-Midpoint-Displacement.

len. Der erste bleibt am Boden liegen,
wie der obere Teil des unteren Bildes
zeigt. Der zweite trifft auf den ersten auf
und flielt weiter, bis er zur Ruhe
kommt, wenn es keinen Nachbarpunkt
im Heightfield gibt, der eine geringere
Hohe aufweist (Bild Mitte).

Lassen Sie einige Partikel fallen, wobei
Sie von Zeit zu Zeit den Ort variieren,
bis Sie einen Vulkankegel erhalten. Die
Form der Landschaft beeinflussen Sie
durch die Zahl der Partikel und der An-
derung des Ursprungsort der Partikel.

Wenn die Lava abgekihlt ist, bricht
die Spitze des Kegels ein. Diesen Effekt
kodnnen Sie nachbilden. Dazu suchen Sie
den hdchsten Punkt eines Kegels. Alle

—L O——-7=_1

DER PARTICLE-DEPOSITION-ALGORITH-
MUS lasst Lava flieRen.

248 Mai 2001 PC Magazin

Punkte in der Umgebung, deren Hohe
nicht zu stark von der des Gipfels ab-
weicht (dazu definieren Sie eine Kons-
tante), spiegeln Sie an der Kraterlinie.

Wenn Sie an dieser Stelle angelangt sind,
liegt eine Heightmap vor, aus der Sie Po-
lygondaten erzeugen mussen, um die
Landschaft mit OpenGL darzustellen.
Zum Rendern der Landschaft eignen
sich von den OpenGL-Render-Primiti-
ven besonders die Triangle Strips, die Sie

T

DIE GRAFIK symbolisiert, wie Sie Vulkan-
krater anlegen.

in der letzten Ausgabe kennengelernt
haben. 3D-Beschleuniger kdnnen diese
besonders schnell zeichnen. Zuerst defi-
nieren Sie eine Struktur, in der Sie die
Daten fur jeden Vertex speichern:

typedef struct
{

/I Texturkoordinaten

float texCoord[2 J;

/I Farbwerte

float color[3 7;

/I Vertexposition

float vertex[3 J;
}INTERLEAVEDVERTEX;
INTERLEAVEDVERTEX *pVertex;

Nun generieren Sie die Vertizes fur die
Triangle Strips aus der Heightmap der
GroRe SIZE x SIZE, die im Array ter-
rain gespeichert ist:

/I SIZE: GroRe der Heightmap

unsigned char terrain

[SIZE * SIZE |;
pVertex = new INTERLEAVEDVERTEX
[SIZE*SIZE*2*3];

INTERLEAVEDVERTEX *p = pVertex;

/I Macro

#define addVertex(x, y)\

{\

height=

terrain[(x)+(y)*SIZE]; \

p->vertex[0] = x - SIZE/2;)\

p->vertex[1] =y - SIZE/2;)\

p->vertex[2] = height;\

p->color[..] = ...;\

p->texCoord[0] = (x)/SIZE;\

p->texCoord[1] = (y)/SIZE;\

p ++; \

nVertices ++; \

}
/I Vertexdaten
for (intj=0;
j<SIZE-1; j+=1)
for (inti=0;
i< SIZE-1; i+=1)

addVertex(i, j+RESOLUTION);
addVertex(i, j);
}

Zeichnen Sie die Daten mit den bekann-
ten OpenGL-Befehlen:

glBegin(GL_TRIANGLE_STRIP);

for (i=0;i<SIZE; i++)

INTERLEAVEDVERTEX *p =
&pVertex[i * (SIZE*2-2)];

for (j=0;

j < SIZE*2; j++)

{
glTexCoord2fv(&p->texCoord[0]);
glColor3fv(&p->color[0]);
glVertex3fv(&p->vertex[0]);
p++

}
}
glEnd();

Die Befehle verbrauchen jedoch Perfor-
mance. Bei einer GroRe der Heightmap
von 256 x 256 Pixeln haben Sie es mit ei-
ner Anzahl von 131 072 Dreiecke zu tun.
Allein der Overhead, der durch das Auf-
rufen der Funktionen (mal 3 = 393 216
Aufrufe) entsteht, ist beachtlich. Opti-
mieren Sie deshalb die Ubertragung der
Vertexdaten zu OpenGL.

Verwenden Sie Interleaved Arrays. Diese
enthalten Vertex-, Farb- und Texturda-
ten des 3D-Objekts oder der 3D-Land-
schaft. In diesem Array kdnnen Sie auch
andere Daten speichern, die mit dem
Rendering nichts zu tun haben. Dazu tei-
len Sie OpenGL mit, wie viele Bytes die-
se in Anspruch nehmen. Mit folgenden
Zeilen zeichnen Sie die Landschaft:

glinterleavedArrays

(GL_T2F_C3F_V3F, 0, pVertex);

for (inti=0;
i < SIZE-1; i++)
glDrawArrays(GL_TRIANGLE_STRIP,
i * (SIZE*2-2), SIZE*2-2);

Der Parameter GL_T2F C3F_V3F ist
eine OpenGL-Konstante, die den Auf-
bau der Struktur im Array beschreibt.
Dieser Aufbau entspricht unserem IN-
TERLEAVEDVERTEX. Der zweite
Parameter glinterleavedArrays ist der
Stride-Wert (die Gro6fRe der zusétzlichen
gespeicherten Daten in Bytes). Wenn Sie
Sie die Vertex-, Textur- und Farbdaten
jeweils in einem Array ohne weitere Da-
ten speichern, spricht man von Streams.
Diese konnen noch schneller von
OpenGL bearbeitet werden. Bereiten
Sie die Streaming-Daten fur die Land-
schaft wéahrend der Initialisierung vor:

float *pTexCoordStream = new...;
float *pColorStream = new...;
float *pVertexStream = new...;
p = pVertex;
for (i=0;
i < nVertices; i++, p++)

memcpy(&pTexCoordStream[i * 2],
&p->texCoord[0],
2 * sizeof(float));
memcpy(&pColorStream[i * 3],
&p->color[0],
3 * sizeof(float));
memcpy(&pVertexStream[i * 3],
&p->
vertex[0], 3 * sizeof(float));

}

Teilen Sie OpenGL mit, dass Sie Strea-
ming-Daten verwenden wollen:

glEnableClientState
(GL_COLOR_ARRAY);
glEnableClientState
(GL_VERTEX_ARRAY);
glEnableClientState
(GL_TEXTURE_COORD_ARRAY);
/IPointer auf die Arrays setzen
glVertexPointer
(3, GL_FLOAT, 0, pVertexStream);
glTexCoordPointer
(2, GL_FLOAT,0,pTexCoordStream);
glColorPointer
(3, GL_FLOAT, 0, pColorStream);

/l'und Zeichnen
for (inti=0;
i < SIZE-1; i++)
glDrawArrays(GL_TRIANGLE_STRIP,
i * (SIZE*2-2), SIZE*2-2);

glFlush();
/I Streaming wieder abschalten
glDisableClientState

(GL_COLOR_ARRAY);
glDisableClientState

(GL_VERTEX_ARRAY);
glDisableClientState

(GL_TEXTURE_COORD_ARRAY);

Auch dass die Daten der Landschaft sta-
tisch sind, kénnen Sie OpenGL mittei-
len. Damit optimieren Sie die Daten fiir
den Treiber oder kopieren die Daten in
den eigenen Speicher der Grafikkarte,
falls diese Optionen untersttitzt werden.
Bei den dazu benétigten Funktionen
handelt es sich um OpenGL-Extensions
(Erweiterungen), die nicht immer in
OpenGL vorhanden waren. Deren
Existenz in einem OpenGL-Treiber
missen Sie abfragen. Dazu versuchen
Sie, die Adresse der bendtigten Funktio-
nen im Speicher zu bekommen:

typedef void
(APIENTRY *LOCKARRAYS_PROC)
(int first, int count);
typedef void
(APIENTRY *UNLOCKARRAYS_PROC)
(void);
LOCKARRAYS_PROC pfLockArrays;
UNLOCKARRAYS_PROC
pfUnlockArrays;
pfLockArrays = (LOCKARRAYS_PROC)
wglGetProcAddress
(.glLockArraysEXT");
pfUnlockArrays =
(UNLOCKARRAYS_PROC)
wglGetProcAddress
(,9lUnlockArraysEXT");
if (!pfLockArrays ||

IpfUnlockArrays)
{ /* nicht unterstitzt! */ }

Werden die beiden Funktionen unter-
stltzt, teilen Sie OpenGL mit, dass Sie
Streaming-Daten ver-

1

PC UNDERGROUND
PRAXIS

(GL_TEXTURE_2D, 3,
texture->sizeX,
texture->sizeY,
GL_RGB, GL_UNSIGNED_BYTE,
texture->data);

wenden wollen, und
sperren (,,locken®)
die Streams mit;

(*pfLockArrays)
(0, nVertices

)i

Zeichnen Sie mit
glDrawArrays. Am
Programmende he-

ben Sie die Sperre auf
und schalten das Stre-
aming ab:

(*pfUnlockAr-

rays)();

Die Farbwerte be-
stimmen Sie durch die
Hohe der Landschaft.
Die Beleuchtungsef-
fekte auf der Land-
schaft entstehen durch eine Textur, die
Sie entweder mit Paintshop Pro oder
Photoshop anlegen. Wenden Sie einen
Emboss-Filter auf die Heightmap (Bild
rechts) an.

Ubergeben Sie die Texturkoordinaten
der Landschaft mit den anderen Daten
an OpenGL. Lassen Sie sich zunéchst
eine ID geben, die lhre Textur in Zu-
kunft eindeutig identifiziert:

int ID;
glGenTextures(1, &ID);

Besucher.

Nun wahlen Sie die Textur aus:
glBindTexture
(GL_TEXTURE_2D, ID);
Bei OpenGL gibt es eine Reihe von Pa-
rametern, die das Texture Mapping be-
einflussen —etwa ob sich die Textur wie-
derholen soll, wie sie vergroRert oder
verkleinert dargestellt werden soll.Ar-
beiten Sie mit folgenden Einstellungen:
glTexParameterf(GL_TEXTURE_2D,
GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D,
GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D,
GL_TEXTURE_MAG_FILTER,
GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D,

GL_TEXTURE_MIN_FILTER,
GL_LINEAR_MIPMAP_NEAREST);

Welche Tricks Ihnen die Funktion gl-
TexParameterf erdffnet, entnehmen Sie
der Online- oder jeder OpenGL-Doku-
mentation. Im néchsten Schritt laden Sie
eine Bitmap im bmp-Format und Uber-

geben sie an OpenGL.:
AUX_RGBImageRec *texture;
texture = auxDIBImageLoad
(,texture.bmp*);
gluBuild2DMipmaps

L, PC Underground: DpenGL Landschaftsrendering

EINE GENERIERTE LANDSCHAFT in 3D-Darstellung wartet auf

Der letzte Befehl Gibergibt die Daten und
verkleinert die Textur-Versionen. Schal-
ten Sie das Texturieren an- und aus:

glEnable(GL_TEXTURE_2D);
glDisable(GL_TEXTURE_2D);

DIE TEXTUR zeigt Licht- und Schatten-
effekte zur Landschaft aus dem ersten
Bild.

Alle Texturfunktionen, die Sie fir unser
Beispielprogramm benétigen, finden Sie
in der Wrapper-Klasse PCUTexture.
Dort verwenden Sie das Texture Map-
ping, um die Lichtverhaltnisse auf der
Landschaft darzustellen. ET/TR

Literatur

Jackie Neider u.a.: OpenGL Programming Guide:
The Official Guide to Learning OpenGL, Release 1
A. L. Barabasi und H. E. Stanley: Fractal Concepts in
Surface Growth, Cambridge University Press, 1995
Robert Krten: Generating Realistic Terrain, Dr.
Dobbs Journal (July 1994)

PC Magazin Mai 2001 249

