
232 Juni 2001 PC Magazin

P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R

Mit der OpenGL-API haben Sie
in der letzten Ausgabe Land-
schaften gerendert. Im dritten

Teil des Genesis-Projekts erfahren Sie,
wie Sie Ihre Landschaft realistisch ausse-
hen lassen und geschickt texturieren.
Dazu verwenden Sie mehrere Texturie-
rungsschritte. Mit weiteren Algorith-
men zur Sichtbarkeitsberechnung opti-
mieren Sie die Rendergeschwindigkeit.

■ Shadow Map
In der letzten Ausgabe haben Sie die
Landschaft schattiert, indem Sie eine
Textur mit der Helligkeitsinformation
(Fademap) über die ganze Landschaft
gespannt haben. Diese Helligkeitsinfor-
mation hängt von der Beleuchtung der
Landschaft durch eine Lichtquelle – in
unserem Fall die Sonne – und von der
Neigung der Landschaft zur Einfalls-
richtung des Lichts ab.

Diese Helligkeitsinformationen gene-
rieren Sie aus der Heightmap (vgl. Aus-
gabe 5/01, S. 246) mit einem Emboss Fil-
ter. Diesen definieren Sie mit einer Fil-
termatrix. Diese wenden Sie auf Ihr Bild
an, indem Sie die Matrix wie eine Schab-

lone über das Bild legen. Nun multipli-
zieren Sie die Pixelwerte mit den Zahlen
in der Matrix. Die Summe dieser Wert
ergibt die gewünschte Helligkeit in der
Landschaft.

Auch Schatten verstärken den realisti-
schen Eindruck. Auch diese können Sie
aus der Heightmap berechnen. Betrach-
ten Sie die Heightmap mit Ihren

Höheninformationen. Von jedem Pixel,
dessen Höhe Sie kennen, schicken Sie ei-
nen Strahl zur Lichtquelle (Raycasting).

Wenn dieser Strahl einen Teil der
Landschaft schneidet, liegt der zum
Strahl gehörende Pixel der Heightmap
im Schatten. In der Textur, die Sie mit
dem Emboss Filter erzeugen, verdun-
keln Sie die Pixel im Schatten. Diese bei-
den Schritte können Sie direkt nach der
Generierung der Heightmap (siehe Bei-
spielprogramm lsgen, 5/01) erledigen.
Deshalb haben wir den Landschaftgene-
rator aus der letzten Ausgabe um dieses
Feature erweitert.

■ Texturierung ausgereizt
Es gibt zahlreiche Methoden, um Land-
schaften zu texturieren. Welche sie ein-
setzen sollten, hängt von der Zielplatt-
form ab (welche Grafik-Hardware un-
terstützt werden soll), vom Speicherbe-
darf der Texturen, und davon, ob die
Landschaft eher statisch oder dynamisch
sein soll. Dynamisch sind sich ständig
verändernde Landschaften, wie sie in
vielen Computerspielen vorkommen.
Stellen Sie sich zum Beispiel eine Ge-
gend vor, die Arbeiter einebnen, um dort
besser bauen zu können.

Die unten aufgeführten Texturie-
rungsmethoden arbeiten mit drei oder
mehr Texturen, die Sie verknüpfen kön-
nen. Bei einem Texturierungsschritt
spricht man von einem Renderpass.
Neuere Grafikkarten haben zwei oder
mehr Texture Units, mit denen Sie meh-
rere Texturen gleichzeitig rendern und
verknüpfen können.

Im Quellcode lsrender finden Sie zu
jeder Methode die Variante, die nur eine
Texture Unit verwendet, und das Pen-
dant dazu, das zwei Units auslastet. Der
3D-Beschleuniger verwendet immer
den Befehl

glTexEnv[i/f](...)

Bisher haben Sie eine
Textur mit der fol-
genden Option ge-
rendert:
glTexEnvf(GL_
TEXTURE_ENV,
GL_TEXTURE_ENV_
MODE,
GL_MODULATE);
glDisable(GL_
BLEND);

Die vordefinierte
Konstante GL_MO-
DULATE hat festge-
legt, dass Sie jeweils

Genesis-Projekt: Landschaften texturieren/Spezialeffekte

Atmosphäre
undPanorama
Mit unserem Beispielprogramm erforschen Sie
berechnete Landschaften. Lassen Sie sich von
der realistischen Darstellung beeindrucken.

AUF CD
Die Quelltexte sowie die fertig übersetzten

Routinen finden Sie im Verzeichnis Praxis/
Programmierung/PC Underground.

Unser Genesis-Projekt gliedert sich in folgende
drei Teile, die Sie von den OpenGL-Grundlagen bis
zum Einsatz praxistauglicher Algorithmen führen.

Teil 1: Landschaften rendern mit OpenGL
Teil 2: Eigene Landschaftsdaten generieren
Teil 3: Methoden des Landschafts-Texturierens
und Spezialeffekte

DAS GENESIS-PROJEKT

SIE VERWENDEN den zweidimensionalen
Emboss-Filter, um die Beleuchtung zu
berechnen.

MIT RAYCASTING berechnen Sie die Schatten auf der Land-
schaft.

PC Magazin Juni 2001 233

P C U N D E R G R O U N D
P R A X I S

die Farb- und Alphawerte des bereits ge-
renderten Bildes und die der aktuellen
Textur multiplizieren. Im Beispielpro-
gramm des letzten Teils wurde die
Grundfarbe der Landschaft mit der
Fademap multipliziert, wodurch der Be-
leuchtungseffekt entstand. Wenn Sie die
Schatten und Schattierung der Land-
schaft beibehalten wollen, benötigen
Sie also einen Renderpass allein für
diesen Effekt.

Bereichern Sie Landschaften mit
Detailmaps. Diese Texturen enthalten
zufällige Grauwerte. Detailmaps müs-
sen seamless sein: Sie müssen sie neben-
einander legen können, ohne dass die
Ränder sichtbar sind.

Die Detailmap im Bild oben Mitte
wird nicht über die ganze Landschaft ge-
streckt, sondern sehr oft wiederholt. Sie
ist also in viel höherer Auflösung zu se-
hen als die Fademap. Die Grauwerte der
Detailmap verwenden Sie, um die Farb-
werte abzudunkeln. Dazu überblenden
Sie Texturen (Texture Blending) und
zeichnen die Landschaftspolygone ein
zweites Mal, nachdem Sie folgende Ren-
derstates gesetzt haben:

glTexEnvf(GL_TEXTURE_ENV,
GL_TEXTURE_ENV_MODE,
GL_MODULATE);
glEnable(GL_BLEND);
glBlendFunc(GL_ZERO, GL_SRC_
COLOR);

Für die Funktion glBlendFunc(...) be-
stimmen verschiedene Parameter, wie
die Farbwerte verknüpft werden. Der
erste Parameter bezieht sich auf das, was
anschließend gerendert wird. Der zwei-
te bestimmt, wie sich das Gerenderte
auswirkt. Im obigen Beispiel multipli-
zieren Sie Farbwerte miteinander
(GL_MODULATE) und übernehmen
das Ergebnis (GL_SRC_COLOR). Die

Farbwerte der Detailmap sind nur für
die Multiplikation wichtig (GL_ZE-
RO). Detailmaps beeindrucken mit ei-
ner viel höheren Texturauflösung. Ihr
Einsatz lohnt sich damit immer, wenn es
um eine realistische Darstellung geht.

Diese Variante verwendet nur eine
Texture Unit, so dass Sie alle Polygone
doppelt zeichnen müssen. Damit Sie auf
die Funktionen zugreifen können, die
Sie für mehrere Units benötigen, müssen
Sie die OpenGL Extensions importieren.
Zuerst binden Sie den OpenGL-Exten-
sion-String ein, der alle Erweiterungen
aufzählt, die Ihre Grafikkarte unter-
stützt:

char *extensions;
extensions = strdup
((char*)glGetString

(GL_EXTENSIONS));
for (int i = 0;
i < strlen(extensions); i ++)

if (extensions[i] == ‘ ‘)
extensions[i] = ‘\n’;

Wenn die beiden Schlüsselwörter
GL_ARB_multitexture und GL_EXT_
texture_env_combine, die mehrere Tex-
ture Units unterstützen, in diesem String
enthalten sind, importieren Sie die
Funktionen wie folgt:

// Konstanten Definitionen:
#include „glext.h“
PFNGLMULTITEXCOORD2FARBPROC

glMultiTexCoord2fARB = NULL;
PFNGLACTIVETEXTUREARBPROC

glActiveTextureARB = NULL;

if (strstr(extensions,
„GL_ARB_multitexture“) &&

strstr(extensions,
„GL_EXT_texture_env_combine“))

{
// anzahl der texture units:
glGetIntegerv
(GL_MAX_TEXTURE_UNITS_ARB,

&maxTexelUnits);
glMultiTexCoord2fARB =
(PFNGLMULTITEXCOORD2FARBPROC)

wglGetProcAddress
(„glMultiTexCoord2fARB“);
glActiveTextureARB =
(PFNGLACTIVETEXTUREARBPROC)

wglGetProcAddress
(„glActiveTextureARB“);
...

}

Mit den neuen Funktionen können Sie
zwei Texturen gleichzeitig wählen und
jedem Vertex zwei Sätze von Texturko-
ordinaten im Immediate Mode zuwei-
sen:

// texture unit #0 wählen
glActiveTextureARB(

GL_TEXTURE0_ARB);
glEnable(GL_TEXTURE_2D);
fadeMap.select();
// texture unit #1 wählen
glActiveTextureARB(

GL_TEXTURE1_ARB);
glEnable(GL_TEXTURE_2D);
detailMap.select();
// UV Koordinaten
glMultiTexCoord2fARB(

GL_TEXTURE0_ARB, 0.0, 1.0);
glMultiTexCoord2fARB(

GL_TEXTURE1_ARB, 0.5, 0.8);
// und Zeichnen...

Im Streaming Mode, den Sie in der letz-
ten Ausgabe kennengelernt haben, set-
zen Sie die Pointer (Zeiger) auf die Tex-
turkoordinaten-Streams:

glClientActiveTextureARB(
GL_TEXTURE0_ARB);

glEnableClientState(
GL_TEXTURE_COORD_ARRAY);

glTexCoordPointer(
2,GL_FLOAT,0,pTexCoordStream);

glClientActiveTextureARB(
GL_TEXTURE1_ARB);

glEnableClientState(
GL_TEXTURE_COORD_ARRAY);

glTexCoordPointer(
2,GL_FLOAT,0,pTexCoordStream2);

Die Online-Hilfe listet die Konstanten
der Blending-Modi und Literatur zu
OpenGL auf.

■ Techniken des
Texturierens
Nachdem Sie das Handwerkzeug des
Multitexturing erarbeitet haben, können
Sie mit den folgenden Techniken Land-
schaften texturieren:
• Die einfachste: Spannen Sie eine sehr
große Textur über die ganze Landschaft
– ähnlich wie bei der Fademap. Wenn Sie
die Landschafts-Polygone näher be-
trachten, sehen Sie sehr schnell, dass ei-
ne detailreiche Textur, die noch Wege
oder Straßen abbilden soll, eine sehr ho-
he Auflösung benötigt. Diese kann von
1024 x 1024 Pixeln bis zu 8192 x 8192 Pi-
xeln reichen.

Diese Methode hat einen hohen Spei-
cherbedarf und ist daher für moderne
Grafikkarten konzipiert, die Textur-
kompression unterstützen. Selbst große
Speicher sind mit 8192 x 8192 =
67 108 864 Pixeln schnell gefüllt. Eine
solche große Textur können Sie in ei- q

WEIL DIE TEXTUREN ohne Rand aneinan-
der passen, können Sie jede Kachel ein-
zeln färben.

EINE DETAILMAP beschert zusätzlichen
Realismus.

234 Juni 2001 PC Magazin

P C U N D E R G R O U N D
P R A X I S

nem Bildbearbeitungsprogramm anle-
gen. Für diese Technik würden Sie mit
einem oder zwei Renderpasses auskom-
men, wenn Sie zusätzlich Detailmaps
einsetzen wollen.
• Eine ältere, oft verwendete Methode
arbeitet mit einem Satz kleinerer Textu-
ren. Diese Texturen stellen jeweils einen
Landschaftstyp dar.

Unterteilen Sie eine Landschaft in Fel-
der. Im Beispielprogramm der letzten
Ausgabe haben Sie aus der Heightmap
Triangle-Strips generiert. Jeweils zwei
Dreiecke ergeben ein Quadrat (Land-
schaftsfeld). Weisen Sie jedem Feld eine
Textur zu. Sie benötigen nicht nur Tex-
turen für jeden Landschaftstyp, sondern
auch für Übergänge, etwa von Sand-
nach Felsboden. Damit vervielfacht sich
die Anzahl der Texturen.

Für dieses Verfahren spricht der gerin-
ge Speicherverbrauch. Obwohl Sie viele
Texturen benötigen, sind diese relativ
klein. Schon Texturen mit einer Auflö-
sung von 32 x 32 bis zu 64 x 64 Pixeln er-
geben beachtliche Landschaften. Dabei
ergibt sich ein geschätzter Speicherver-
brauch von 300 x 64 x 64 = 1 228 800 Pi-
xeln; das sind ungefähr 1,8 Prozent von
dem der vorherigen Methode.
• Die dritte Variante benötigt für jeden
Landschaftstyp nur eine Textur, mit der
Sie die Landschaftsfelder texturieren
können. Diese Texturen müssen seam-
less sein.

Weisen Sie jedem Landschaftsfeld
zwei Landschaftstexturen zu. Eine wei-
tere Textur spannen Sie über die ganze
Landschaft. Hierfür genügt eine relativ
niedrige Auflösung. Diese dritte Textur
enthält die Information, wie die zwei vo-
herigen Texturen überblenden. Diese
Methode sehen Sie am Beispiel im Bild.

Sie können mit wenig Aufwand und
wenig Texturspeicher sehr schöne

Übergänge zwischen Landschaftsregio-
nen erzeugen. Die im Bild angedeuteten
Multiplikations- und Additionsschritte
erledigt die Grafik-Hardware. Setzen
Sie die verschiedenen Texturen und die
Texture Units so geschickt ein, dass Sie
mit möglichst wenig Renderpasses aus-
kommen.

Das fängt schon bei der Organisation
der Daten an. Nehmen wir an, Sie wol-
len die Fademap, die Blendmap und
zwei Landschaftstexturen miteinander
verknüpfen. Mit einem Bildbearbei-
tungsprogramm basteln Sie eine 32-Bit-
Textur, deren RGB- (Farb-) Kanäle die
Fademap enthalten. In den Alpha-Kanal
der Textur kopieren Sie die Blendmap
für die Landschaft. Sie rendern dann wie
folgt, wobei das Beispiel von einer Tex-
ture Unit ausgeht:

// 32 Bit Textur
blendMap.select();
glTexEnvf(GL_TEXTURE_ENV,

GL_TEXTURE_ENV_MODE, GL_MODULA-
TE);
glDisable(GL_BLEND);
renderStream(pTexCoordStream);

// erster Landschaftstyp
basisMap1.select();
glEnable(GL_BLEND);
glBlendFunc(GL_DST_ALPHA,

GL_SRC_COLOR);
renderStream(pTexCoordStream2);

// zweiter Landschaftstyp
basisMap2.select();
glBlendFunc(GL_ONE_MINUS_DST_AL-
PHA,

GL_DST_COLOR);
renderStream(pTexCoordStream2);

■ Wolken am Himmel
Mit diesen Rendering- und Texturie-
rungs-Tricks lassen sich Landschaften
sehr realistisch darstellen. Um den noch
fehlenden Himmel darzustellen, können
Sie eine sehr große Halbkugel wie eine
Glocke über Ihre Landschaft platzieren.
Dieser Halbkugel verpassen Sie eine

Textur, auf der Wol-
ken und/oder Sonne
zu sehen sind (Sky-
domes). Statt einer
Halbkugel können
Sie auch einen Zylin-
der verwenden, wenn
der Kamerablickwin-
kel so eingeschränkt
ist, dass der Betrach-
ter nicht sehr steil
nach oben sehen
kann.

Für diese beiden
Varianten lassen sich
Texturen mit Fotos,
Bildbearbeitungspro-

grammen oder dem Midpoint Displace-
ment Algorithmus (Heft 5/01, S.247, sie-
he gleichlautende Zwischenüberschrift).

Noch eleganter sind Skyboxes. Die
Theorie dahinter: Ein Betrachter befin-
det sich an einem festen Punkt. Von die-
sem Punkt aus machen Sie sechs Fotos
mit 90 Grad Öffnungswinkel in jeweils
beide Richtungen des 3D-Koordinaten-
systems. Wenn Sie diese Fotos als Tex-
turen auf einen Würfel kleben und die
Kamera in der Mitte des Würfels plat-
zieren, können Sie in jede Richtung
blicken und werden stets eine korrekte
Perspektive haben.

Da der Betrachter bei unserer Land-
schaftsdarstellung nicht an einer Stelle
stehen bleibt, stimmt die Theorie nicht
mehr ganz. Sie trifft aber für sehr weit
entfernte Objekte wie Sonne und Wol-
ken zu.

Entsprechende Texturen zu erzeugen,
ist kompliziert, da Sie eine Verzerrung
an den Ecken berücksichtigen müssen.
Benutzen Sie das Zeichenprogramm
Skypaint, das Sie unter www.skypaint.
com laden können. Um fertige Skybox-
Texturen zu genieren, nutzen Sie das
kommerzielle Programm Bryce 3D.

■ Atmosphärische Effekte
Um in einer 3D-Anwendung atmos-
phärische Effekte in Echtzeit darzustel-
len, nutzen Sie das so genannte Fogging.
Dabei werden die Farbwerte beim Ren-
dering abhängig von ihrer Entfernung
zum Betrachter mit einer vorher festge-
legten Farbe gemischt und können leicht
Nebeleffekte erzeugen.

Um diesen Effekt zu erreichen, fügen
Sie folgende Codezeilen in Ihr Pro-
gramm ein:

glEnable(GL_FOG);
glFogi(GL_FOG_MODE, GL_EXP2);
glFogf(GL_FOG_DENSITY, 0.01f);
GLfloat fogColor[3]=

{ 1.0f, 1.0f, 1.0f };
glFogfv(GL_FOG_COLOR,fogColor);

■ Renderspeed
Wenn Sie Ihre Grafikkarte mit den Da-
ten der bisher vorgestellten Rendertricks
belasten, kann es zu einer Performance-
Krise kommen. Immerhin haben Sie es
mit bis zu 256 x 256 x 2 = 131 072 Drei-
ecken bei bis zu drei Renderpasses zu
tun, also 393 216 gezeichneten Drei-
ecken. Es gilt daher, mit einem einfachen
Algorithmus wirkungsvoll zu interve-
nieren. Trotz optimierter Datenstruktu-
ren ist es sinnvoll, eine gewisse Voraus-
wahl zu treffen, welche Teile der Land-
schaft sichtbar sein können.

SIE ERKENNEN keine Grenzen in der Landschaftstexturierung,
wenn Sie die Überblendtechnik verwenden.

die Entgegengesetzte. Mit dem Skalar-
produkt können Sie feststellen, auf wel-
cher Seite sich ein Vertex befindet. Da-
mit können Sie auch berechnen, ob eine
Bounding Box das Viewing Frustum
schneidet, komplett umfasst oder voll-
ständig außerhalb liegt. Nur in den er-
sten beiden Fällen müssen die Dreiecke
des Sektors gerendert werden. Je nach
Kameraposition und Blickwinkel lassen
sich damit bis zu 98 Prozent der Drei-
ecke von vornherein ausschließen.
Wenn Sie eine Panorama-Ansicht der
Landschaft genießen wollen, werden Sie
mit diesem Algorithmus nicht viel Eins-
parung feststellen. Aber bei geläufigen
Ansichten wie in Computerspielen ist
die Einsparung enorm. s E T

Zuerst sollten Sie die Landschaft un-
terteilen. Damit sich die Triangle-Strips
noch rentieren, sollten diese Teile nicht
zu klein sein. Erfahrungswerte optimie-
ren Sie mit Experimenten. Es hat sich be-
währt, die Landschaft mit 256 x 256 Fel-
dern in 16 x 16 Sektoren zu 16 x 16 x 2
Dreiecke zu unterteilen. Für jeden dieser
Sektoren berechnen Sie eine Bounding
Box: ein möglichst kleiner Quader, der
alle Dreiecke des Sektors enthält.

Am einfachsten lassen sich Axis
Aligned Bounding Boxes berechnen. Da-
bei handelt es sich um Quader, deren
Kanten parallel zu den Koordinatenach-
sen verlaufen. Die Eckpunkte der Qua-
ders erhalten Sie, indem Sie die minima-
len und maximalen x-, y- und z-Koordi-
naten aller Vertizes eines Sektors be-
stimmen und darauf die Eckpunkte kon-
struieren. Den Sourcecode dazu finden
Sie in clipper.h auf der Heft-CD.

Der von der Kamera sichtbare Bereich
ist ein Pyramidenstumpf im Raum (der

so genannte Viewing
Frustum), den sechs
Begrenzungsebenen
einschließen. Wenn
die Bounding Box
diesen Viewing Frus-
tum nicht schneidet,
sind die Dreiecke des
zugehörigen Land-
schaftssektors nicht
sichtbar. Somit kön-
nen Sie eine Vielzahl
von Dreiecken vom
Rendering aussch-

ließen, die nicht zur Grafikkarte ge-
schickt werden müssen.

Doch wie bekommen Sie die Informa-
tion über den Viewing Frustum, und wie
stellen Sie fest, ob eine Bounding Box
diesen schneidet? Glücklicherweise
lässt sich der Viewing Frustum aus der
Transformation, die ein Vertex durch
die Modelview- und die Projektionsma-
trix erfährt, rekon-
struieren. Die ent-
sprechende Routine
buildFrustum(), die
Ihnen die Ebenen-
gleichungen der Be-
grenzungsebenen be-
rechnet, finden Sie
auch in clipper.h.

Per Definition der
Ebenengleichung teilt
eine Ebene den Raum
in zwei Hälften: In ei-
ne zeigt die Normale,
die andere Hälfte ist

Literatur:

Jackie Neider, Tom Davis, Mason Woo, OpenGL
Programming Guide: The Official Guide to Learning
OpenGL, Release 1

MIT FOGGING modellieren Sie atmosphärische Effekte.

IN UNSEREM LANDSCHAFTSRENDERER steuern Sie mit den
Cursortasten die Kamera.

P C U N D E R G R O U N D
P R A X I S

sucht:

Programmierer/in
/ Online-Redakteur/in

Ihr Profil:
s Sie haben gute PC-Kenntnisse.
s Sie beherrschen mindestens zwei Programmiersprachen (am besten PHP und Perl).
s Sie können eigenverantwortlich und exakt arbeiten.
s Ihre Stärken sind Kontaktfreudigkeit, Kreativität und Einsatzbereitschaft.
s eine abgeschlossene Ausbildung ist nicht erforderlich.

Ihre Aufgaben:
s Sie entwickeln mit PHP, Perl, HTML und JavaScript die Technik des Online-Auftritt weiter.
s Sie betreuen technisch und inhaltlich die bestehenden Auftritte und Webseiten.
s Sie arbeiten sich in neue Techniken ein und entwickeln eigene Ideen zu fertigen

Webseiten.

Machen Sie Ihr Hobby zum Beruf! Als Redakteur haben Sie
ständig mit den neuesten Produkten (Hardware und Soft-
ware) zu tun, arbeiten in einem hoch motivierten Team
und lernen ständig Neues. Dieser „Job“ hält einen immer in
Atem und wird nicht langweilig.

Bitte schicken Sie Ihre vollständigen Bewerbungsunterlagen an

WEKA Computerzeitschriften-Verlag GmbH,
Redaktion PC Magazin,
z. Hdn. Frau Schill-Fiedler,
Gruber Straße 46a,
85586 Poing

oder per E-Mail an dschillfiedler@wekanet.de
Telefon: (0 81 21) 95 14 31

Die WEKA Firmengruppe ist
mit einem Jahresumsatz von
700 Mio. Mark und
ca. 3000 Mitarbeitern einer
der größten Anbieter von
Fachinformationen in

Deutschland. Der WEKA Computerzeit-
schriften-Verlag ist eine WEKA-
Tochter und publiziert bekannte Titel
wie PC Magazin, PCgo!, Internet
Magazin und Banking Online.

Zur Weiterentwicklung der Online-Auftritte von PC Magazin, PCgo! und Internet Magazin sucht die
WEKA Computerzeitschriften Verlag GmbH ab sofort für den Standort Poing bei München eine/n

Wir bieten Ihnen:
s ein junges, kreatives und motiviertes Team
s offene Kommunikation, in der Ihre Meinung und Ihre Ideen zählen
s einen sicheren Arbeitsplatz mit Eigenverantwortung und vielen Entwicklungschancen.

