o-E]

PC UNDERGROUND
PRAXIS

T,

B T
Fortschrittliche Rendertechniken: Bumpmaﬁpim@ =

Licht In

Mit Bumpmapping

‘O —

el Die Quelltexte sowie die fertig ubersetz-

ten Routinen finden Sie im Verzeichnis
Praxis/Programmierung/PC Underground.

von 3D-

Grafiken. Komplexe und detailreiche Oberflachen tauschen Wirklichkeit vor.

CARSTEN DACHSBACHER

D-Hardware-Entwickler bieten
35téndig neue Optionen an, die die

3D-Grafik-Programmierer ausfil-
len missen. Dazu gehort auch das von
moderner Hardware unterstitzte
Bumpmapping in OpenGL: ein Verfah-
ren, das den realistischen Eindruck von
3D-Objektoberflachen unterstreicht.
Anders als Texture-Mapping, das auf die
Farbe der Objektoberflachen abzielt,
wird Bumpmapping dazu verwendet,
Unebenheiten der Oberflachenstruktur
zu rendern. Im Bild unten sehen Sie ei-
nen Torus als Drahtgittermodell, textu-
riert und mit Bumpmapping.

EIN OBJEKT als Drahtgittermodell mit und
ohne Bumpmapping

Mit Bumpmapping kénnen Sie Beulen
auf der Oberflache von 3D-Objekten
darstellen. Objekte in einer so hohen
geometrischen Auflésung zu rendern,
um solche Effekte zu erzielen, ist sehr re-
chenzeit- und speicherintensiv. Abgese-
hen davon, sind die Unebenheiten im
Vergleich zur groben geometrischen
Form eines Objekts sehr klein. Nehmen
Sie als Beispiel das 3D-Modell eines
Holztisches. Die UnregelméfRigkeiten
auf der Tischflache sind klein im Ver-
gleich zur ihrer ebenen Form. Deshalb
liegt es nahe, nicht die Geometriedaten
selbst so fein zu gestalten.

226 Juli 2001 PC Magazin

Normale
Halfwaywvektor

/ BEfaE it

Mit einer vereinfach-
ten Formel, berech-
nen Sie diffuse und
spiegelnde Reflexio-
nen. Diese Formel
entstammt dem
Blinn-Beleuchtungs-
modell, das wie das
Phong-Modell empi-
risch ermittelt wurde.

DIE ZUSAMMENSETZUNG der Oberflachenbeleuchtung

Der wichtige Punkt beim Bumpmap-
ping ist: Nur die Beleuchtungsberech-
nung lasst die Unebenheiten sehen. Die-
se sind geometrisch nicht im Dreiecks-
netz vorhanden. An den geraden Kanten
eines mit Bumpmapping gerenderten
3D-Obijekts sehen Sie, dass dessen Form
selbst nicht verdndert wird.

Die Idee des Bumpmapping wurde
1978 von James Blinn entwickelt.
Bumpmapping ist ein rein texturbasie-
rendes Rendering-Verfahren, um Un-
ebenheiten auf Oberflachen durch die
Beleuchtung zu simulieren. Die Un-
ebenheiten werden in einer Graustufen-
textur (Graustufen-Bitmap) als Height-
field angegeben, deren Auswirkung Sie
im Bild sehen.

Der Grafiker schafft nur die Graustu-
fen-Bitmap. Daraus generiert der Pro-
grammierer Daten, wie diese fiir das ver-
wendete Bumpmapping-Verfahren
noétig sind. VVon diesen Verfahren stellen
wir eines vor, dass neuere Hardware wie
die GeForce GPUs von nVidia bendtigt.
AnschlieBend zeigen wir Ihnen einen re-
lativ alten Ansatz, der auf jeder 3D-
Hardware funktioniert.

Die Theorie der Beleuchtungsberech-
nung zeigt, wo das Bumpmapping an-
setzt. Beleuchtung berechnen Sie aus
Formeln, welche Sie mit der Vektor-
rechnung darstellen und verdeutlichen.

C=
(max(0,(L*N))
+ max (0,(H*N))*n)

x DI x Dm
Blinn und Phong sind als Grundlagen-
forscher der Grafikprogrammierung
berthmt. DI ist die Farbe des Lichts, Dm
die Farbe der Oberflache an der betrach-
teten Stelle. Diese Oberflachenfarbe kann
aus einer Textur ausgelesen sein. Der Po-
tenzwert n bestimmt die GroRe der
Glanzlichter. GrolRere Werte bedeuten

Graustufen

Embossmap

)

hell hell

i

dunkel

EMBOSSING bei Bumpmaps.

kleinere Glanzlichter der spiegelnden Re-
flexion. Die vorkommenden Vektoren
bezeichnen mit

e L: die einfallende Lichtrichtung, mit

* N: die Normale am Oberflachenpunkt
und mit

* H: den so genannten Halfangle Vek-
tor. Letzterer hangt auch von der Positi-
on des Punktes auf der Oberflache und
der Lichtquelle ab.

Wenn Sie sich obige Blinn-Formel ge-
nauer ansehen, fallt auf, dass es zwei We-
ge gibt, die Oberflache nicht entspre-
chend der geometrischen Vorgaben, al-
so nach dem Dreiecksnetz, darzustellen.
* Der erste Ansatzpunkt: Verschieben
Sie die Punkte der Oberflache. Diese
Technik nennt sich Displacement-Map-
ping und funktioniert fiir heutige 3D-
Hardware nicht in Echtzeit.

e Die zweite Variante, das Bump-
mapping, setzt an der Oberflachennor-
malen an.

Fur ein 3D-Objekt verwenden Sie ei-
ne Textur, aus der die Farbwerte Dm fur
die Oberflache gespeichert sind, und ei-
ne oder mehrere Bumpmaps, die die Per-
turbation (die Anderung der Ober-
flachennormalen) enthalt.

Mit den aktuellen 3D-Grafikkarten
lasst sich die Beleuchtung fiir jeden ge-
renderten Pixel in Echtzeit berechnen.

Oberflache Heightfield

madifizierte Oberflache

EINE OBERFLACHE wird durch ein Height-
field verandert.

Fir das Dot Product Bumpmapping
Verfahren benétigen Sie moderne
GPUs. Es basiert auf Bumpmaps, die als
RGB-Texturen gespeichert werden. Die
RGB-Werte eines Texels (zwischen 0
und 255) reprasentieren die x-, y- und z-
Komponenten eines Vektors im Inter-
vall [-1, 1]. Solche Bumpmaps kdnnen
Sie sich aus Heightfields erzeugen lassen.
Sie kdnnen ein Tool von nVidia (inklu-
sive Sourcecode) downloaden, um
RGB-Normal-Maps aus Heightfields
zu generieren. Dieses Werkzeug finden
Sie unter den Developer-Informationen
auf der nVidia-Homepage zum freien

Download: www. nvidia.com. Die Kom-
ponenten der Normalenvektoren wer-
den durch Ableiten des Heightfields be-
rechnet. Die zentrale Operation bei der
Beleuchtungsberechnung des Bump-
mappings und der diffusen Beleuchtung
ist das Skalarprodukt aus der Normalen
und des Vektors vom Oberfldchenpunkt
zur Lichtquelle:

PC UNDERGROUND
PRAXIS

Normalerweise werden die Vektoren so
konstruiert, dass sie in der Tangential-
ebene an der Oberflache liegen.

Nun haben Sie zu jedem Vertex einen
Tangent Space definiert, den Sie fur das
Rendern speichern missen.

Die folgenden Schritte mussen Sie
wahrend der Laufzeit des Programms
erledigen. Interpretieren Sie Ihr Height-
field so, dass die Hoheninformation eine

Verschiebung entlang

N*L
+
y s
7
+z
-X +X
2 =1
y 71

der +z-Achse des
Vektor (3, 2, 1) Tangent Space be-
wirkt.

Sie transformieren
den Vektor zur Licht-
quelle in den Tangent
Space: Wenn Sie lhr

3D-Modell rendern,
generieren Sie auf
dem Matrix-Stack

von OpenGL eine
Reihe von Transfor-
mationen. Sie benoti-
gen die inverse Trans-
formation. Dazu in-

CUBE MAPPING adressiert sechs 2D-Bitmaps mit unnormali-

sierten Vektoren.

Diese Formel entspricht dem Lambert-
schen Gesetz. Es ist egal, in welchem
Koordinatenraum die beiden Vektoren
angegeben sind, es muss aber beides mal
der selbe sein. Doch welcher Raum soll
das sein und in welchem ist die Norma-
le angegeben? Die Antwort darauf gibt
das Tangent Space Bumpmapping.

Der entscheidende Koordinatenraum
ist der so genannte Tangent Space. Die-
sen dreidimensionalen Raum geben Sie
durch eine 3-x-3-Matrix an, deren drei
Spaltenvektoren den Raum aufspannen.
Sie bendtigen fiir jeden Vertex lhres 3D-
Modells einen Tangent Space. Die Nor-
male des 3D-Modells am Vertex wéhlen
Sie als +z-Achse, also als dritten Spalten-
vektor. Durch den Vertex und seine
Normale ist eine Ebene definiert, die sich
tangentiell zur Oberflache befindet, da-
her der Name Tangent Space.

Sie brauchen noch zwei weitere Vek-
toren, um den Raum aufzuspannen.
Wahlen Sie zum Beispiel die +y-Achse
des Modelspace (des Koordinatenrau-
mes, in dem lhr 3D-Modell definiert
wurde) oder einen Vektor, den Sie durch
die implizite Beschreibung einer Ober-
flache erhalten. Im Beispielprogramm
finden Sie daflr einen Torus. Der noch
fehlende dritte Vektor ergibt sich aus
dem Kreuzprodukt der beiden anderen.

vertieren Sie entwe-
der die resultierende
ModelView-Matrix,
oder Sie erzeugen eine
Matrix mit den einzelnen invertierten
Transformationsschritten in umgekehr-
ter Reihenfolge. Wenn Sie mit dieser in-
versen Matrix die Position der Licht-
quelle in Threr 3D-Welt transformieren,
erhalten Sie einen Ortsvektor, der die
Position der Lichtquelle im Modelspace
beschreibt.

Als letzten Schritt berechnen Sie den
Vektor eines jeden Vertex zur Licht-
quelle (in Modelspace-Koordinaten)
durch Subtraktion und transformieren
diesen Vektor L in den Tangent Space.
Die Transformation in den Tangent
Space erfolgt durch das Skalarprodukt
aus dem L-Vektor und jedem der Spal-
tenvektoren.

Beim Rendern eines Dreiecks durch
die 3D-Hardware werden die Normalen
als RGB-Tripels behandelt und linear
perspektivisch korrekt interpoliert. Die
L-Vektoren kénnen sich in unterschied-
lichen Tangent Spaces befinden, denn je-
der Vertex des Dreiecks hat seinen eige-
nen Tangent Space. Die 3D-Hardware
routiert gewissermafen die L-Vektoren
von einem Raum in den néchsten.

Eine mathematisch korrekte Beleuch-
tungsberechnung musste diese Vektoren
fur jeden Pixel normalisieren, da sich ih-
re Lange bei der linearen Interpolation
der Vektor-Komponenten dndert. ©

PC Magazin Juli 2001 227

al.

o-E]

PC UNDERGROUND
PRAXIS

Dafur bietet sich Cube Mapping an:
Das ist eigentlich eine Form des Textu-
re-Mapping, die einen unnormalisierten
Vektor verwendet, um eine Textur zu
adressieren. Diese besteht aus sechs qua-
dratischen 2D-Bitmaps, die wie die
Flachen eines Wirfels angeordnet sind.
So sehen Sie, wie ein Vektor einen Pixel
adressiert.

Die Komponente mit dem groten
Betrag und ihr VVorzeichen bestimmen,
welche Seite des Wurfels getroffen wird.
Die 2D-Koordinaten auf der Wrfelsei-
te erhalten Sie, indem Sie die beiden klei-
neren Komponenten durch die Grof3te
dividieren. Ein RGB-Tripel, das durch
die Interpolation der Normalen im Tan-
gent Space entsteht, wird als Vektor in-
terpretiert. Dieser Vektor schneidet den
Wiirfel an einer bestimmten Stelle. Die
Lage des Schnittpunkts ist unabhéngig
von der Lange des Vektors, nur die
Richtung ist entscheidend.

Sie kdnnen die Cubemap-Texturen
so vorberechnen, dass an jeder Stelle
ein bestimmtes RGB-Tripel gespei-
chert ist: das RGB-Tripel, das dem
normalisierten Vektor entspricht. Im
Ubrigen werden Cubemaps dazu ver-
wendet, Licht-Reflexionen oder -Re-
fraktionen (Lichtbrechung) darzustel-
len.

Seit 1978 haben Entwickler daran ge-
arbeitet, das von Blinn formulierte
Bumpmapping in 3D-Hardware zu inte-
grieren. In unserem Beispielprogramm
finden Sie die Implementation und Fort-
fihrung der hier gezeigten Verfahren.
Mit dieser VVorarbeit kdnnen Sie zur An-
steuerung der GeForce-Karte Uberge-
hen.

GeForce-, Quadro- und neuere nVidia-
Karten besitzen Register-Combiners.
Damit lasst sich die Farbberechnung fiir
jeden Pixel konfigurieren. Beachten Sie
den Unterschied zwischen Konfigurie-
ren und Programmieren: ersteres ist Ein-
stellen, letzteres freies Gestalten. Dieses
erlauben erst die Pixelshader der neues-
ten Kartengenerationen. Die Register-
Combiners ersetzen, wenn Sie sie akti-
vieren, die Standard-OpenGL-Rende-
ringoptionen. Sie sind deutlich komple-
xer und flexibler. Die Register-Combi-
ners steuern Sie Uber OpenGL Exten-
sions. Diese sind in der neuesten Versi-
on der Datei glext.h definiert, die Sie
auch bei unserem Beispielprogramm
finden. Wie Sie die Funktionen nutzen,
entnehmen Sie dem Beispielprogramm.

228 Juli 2001 PC Magazin

Auf den Entwicklerseiten von nVidia
www.nvidia.com finden Sie die genauen
Spezifikationen und Dokumentationen
aller Features.

Funktion implementieren, die die Auf-

I16sung einer RGB-Normalmap halbiert!

Dazu speichern Sie jeden Pixel der

RGB-Normal in folgender Struktur, die

die Vektor-Komponenten und seine
Lé&nge enthélt:

Heightfield

RGB Normalmap
] e o |

typedef struct

unsigned char nz,
ny, nx, mag;

}

DOT3NORMAL;
DOT3NORMAL bumpmap[
SIZE*SIZE];

nx, ny und nz initiali-
sieren Sie jeweils mit

AUS EINEM HEIGHTFIELD wird eine RGB-Normalmap.

Um eigene Bumpmaps fur Dot-3-
Bumpmapping zu generieren, beginnen
Sie mit einem Heightfield, also einer
Graustufen-Bitmap. Hellere Graustufen
bedeuten, dass die so gekennzeichnete
Oberfldche mehr nach auRen geschoben
wird. Eine solche Bumpmap-Textur

UNSER DOT-3-BUMPMAPPING Programm in Aktion

wandeln Sie mit dem nVidia-Bumpmap-
Tool in eine RGB-Normal Map um:

normalmapgen.exe height.tga

bump.tga
Bevor Sie die Maps in OpenGL laden,
generieren Sie Mipmaps. Das sind nied-
rigere Aufldsungsstufen einer Textur,
um hassliche Effekte beim Rendern zu
vermeiden. In der Textur befinden sich
vorzeichenbehaftete Vektoren, die nur
als RGB-Werte gespeichert sind. Das
weill die gluBuild2DMipmaps(...)-
Funktion von OpenGL nicht, die auto-
matisch Mipmaps generiert. Da diese flr
diesen Zweck unbrauchbar sind, muissen
Sie eigene Mipmaps generieren, also eine

den RGB-Werten,
mag mit dem Wert
255. Bei der Halbie-
rung der Auflésung fassen Sie vier be-
nachbarte Pixel, die in einem Quadrat
angeordnet sind, zu einem neuen zusam-
men. Die Komponenten der VVektoren a,
b, ¢ und d mussen Sie vom Wertebereich
[0,255] auf der Intervallskala [-1,1] ver-
schieben und skalieren. Die Werte inner-
halb des Intervalls multiplizieren Sie mit
der Lange des urspriinglichen Vektors
und summieren sie
auf. Damit erhalten
Sie einen neuen Vek-
tor, den Sie erneut
normalisieren und als
RGB-Tripel in der
neuen Mipmap-Stufe
speichern. Zusétzlich
speichern Sie vorher
seine L&nge in mag.
Der Code fiir einen
Pixel sieht so aus:

/la,b,c,d:Texel
/lin bumpmap(]

/I angeordnet als

/lab
/lcd
DOT3NORMAL
a, b,cd
DOT3NORMAL neu;

VERTEX n;

n.x=

(a.nx/127-1)

*a.mag/255;

n.x+=

(b.nx/127-1)

*b.mag/255;

n.x+=(c.nx/127-1)*c.mag/255;
n.x+=(d.nx/127-1)*d.mag/255;

Im= lengthVector(n);
normVector(n);
neu.nx = 128 + 127 * n.x;

neu.mag =min(255,255*+*0.25);

Die so berechneten Mipmap-Stufen
Ubergeben Sie mit glTexImage2D(...)
an OpenGL. Wenn Sie alles zusam-
menfassen und mit den Implementie-

rungsdetails ausstatten, erhalten Sie un-
ser fertiges Dot-3-Bumpmapping-Pro-
gramm.

Nun gibt es noch ein sehr altes, anderes
Verfahren, um Bumpmapping darzu-
stellen. Das Emboss-Bumpmapping ist

UNSER BEISPIELPROGRAMM flr Emboss-Bumpmapping

auf jeder 3D-Karte einsetzbar. Durch
diesen Fakt lieBen sich schon manche
3D-Kartenhersteller zur Behauptung
verleiten, ihre 3D-Karten wirden
Bumpmapping in der Hardware unter-
stutzen. Diese Methode ist mit den Em-
bossfiltern in Bildbearbeitungspro-
grammen verwandt. In bestimmten
Féllen sind beim Emboss-Bumpmap-
ping Darstellungsartefakte durch
Unterabtastung zu sehen, die als un-
scharfe Bewegungen erscheinen. Wenn
Sie unser Beispielprogramm dazu aus-
probieren, werden Sie sehen, dass sich
der Einsatz aber auf jeden Fall lohnen
kann.

Das Verfahren lasst nur die Approxi-
mation der diffusen Beleuchtungskom-
ponente zu, womit sich die vorige For-
mel fUr die Beleuchtungsberechnung auf
folgende Terme reduziert:

C = ((L*N)) x DI x Dm
Diese Formel hat gewaltig gegentiber
der Blinn’schen-Ausgangsformel an
Komplexitét verloren: Es fehlen nicht
nur die Rechenoperationen, sondern
auch der Halfangle-Vektor, den Sie fur
das Dot-3-Bumpmapping benétigten.
Die Bumpmap, die wir fir das Emboss-
Bumpmapping einsetzen, ist eine
Hoheninformation (Heightfield/Grau-
stufen-Bitmap): Wie das erste Bild zeig-
te, représentiert ein Pixel in der Bump-
map eine Hohenverschiebung auf der
Oberflache.

Wir betrachten das Verfahren
zunachst im Eindimensionalen, also mit
einer Zahlenreihe, die einen Hohenver-
lauf darstellt. Wenn lhnen die erste Ab-
leitung einer Folge von Hohenwerten
vorliegt, entspricht diese der Steigung
am entsprechenden Oberflachenpunkt.
Diese Steigung m wird verwendet, um
einen Basisfaktor Fd
fur die diffuse Be-
leuchtung zu erhéhen
oder zu erniedrigen.
Die Summe (Fd+m)
approximiert den
Term (L*N).

Als néchstes ap-
proximieren Sie die
Steigung. Lesen Sie
die Hohe HO des
Oberflachenpunktes
aus der entsprechen-
de Stelle der Height-
map, was spater die
3D-Hardware fur Sie
erledigen wird. Lesen
Sie die Hohe erneut
aus, wobei Sie die
Bumpmap ein kleines Stiickchen in
Richtung der Lichtquelle verschieben,
und Sie erhalten H1. Rechnen Sie diese
Verschiebungaus. Die Differenz aus HO
und H1 ergibt: m = H1 - HO.

Die Textur verschieben Sie, indem Sie
die Texturkoordinaten modifizieren. Die
Modifikation berechnen Sie wieder im
Tangent Space. Dazu transformieren Sie
die Lichtquelle in den Modelspace. Bil-
den Sie die Skalarprodukte des Vektors
von einem Vertex zur Lichtquelle und der

F
T

DIE RGB-WERTE in den sechs 2D-Texturen
der Cubemap reprasentieren normalisier-
te Vektoren.

Tangente sowie der Binormalen des Tan-
gent Space. Damit erhalten Sie zwei Ver-
schiebungswerte, die Sie zur urspriingli-
chen Texture-Koordinaten addieren.
Wenn Sie die Texturen und Bump-
maps in OpenGL geladen haben, fihren
Sie das Emboss-Bumpmapping in drei

PC UNDERGROUND
PRAXIS

Renderpasses durch. Diese Variante
funktioniert auf jeder OpenGL-Hard-
ware, die Texture-Mapping unterstiitzt.
« Im ersten Renderpass verwenden Sie
die Bumpmap-Textur mit den Original-
Texturkoordinaten und deaktivieren die
OpenGL-Beleuchtungsberechnung
und das Blending.

glBindTexture

(GL_TEXTURE_2D, bumpTex);

glDisable

(GL_BLEND);
glDisable
(GL_LIGHTING);

renderObject();
< Im zweiten Schritt erhalten Sie die 3D-
Objekte mit fertiger Beleuchtung, jedoch
ohne Farbe. Dazu wéhlen Sie die inver-
tierte Bumpmap-Texture, Blending mit
GL_ONE/GL_ ONE und den berech-
neten verschobenen Texturkoordinaten:

glBindTexture
(GL_TEXTURE_2D, invBumpTex);
glBlendFunc
(GL_ONE, GL_ONE);
glDepthFunc
(GL_LEQUAL);
glEnable
(GL_BLEND);
renderObjectEmboss();
e Im dritten Renderpass kommt Farbe
durch die Farbtextur und die OpenGL-
Beleuchtung ins Spiel. Dazu verwenden
Sie folgende Einstellungen:
glBindTexture
(GL_TEXTURE_2D, textureMap);
glBlendFunc
(GL_DST_COLOR,
GL_SRC_COLOR);
glEnable
(GL_LIGHTING);
renderObject();

Probieren Sie die High-End-Rendertech-
niken aus. Wenn Sie lhre 3D-Grafik mit
den Bumpmapping-Features ausstatten,
werden Sie feststellen, wie realistisch bis-
her flache, kiinstlich anmutende 3D-Ob-
jekte auf den Betrachter wirken kénnen.

Um die mathematische Arbeit von
James Blinn zu studieren, verweisen wir
auf die nachfolgenden Literaturangaben.
Diese Grundlagen fir die Berechnung
von 3D-Raumen wurden erst in den letz-
ten Jahren gelegt. Die komplexe mathe-
matische Materie ist noch nicht vollstan-
dig erforscht. ET

Literatur:

Mark J. Kilgard;, A Practical and Robust Bump-map-
ping Technique for Today’s GPUs, Developer Infor-
mation: www.nvidia.com

James Blinn, Simulation of Wrinkled Surfaces, Com-
puter Graphics (Proc. Siggraph ‘78), August 1978,
Seite 286ff

Tomas Maller, Eric Haines, Real-Time Rendering,

AK Peters Ltd, ISBN 1-56-881-101-2, 102 Mark, 482
Seiten, 1999

PC Magazin Juli 2001 229

E«@

