
226 Juli 2001 PC Magazin

P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R

3D-Hardware-Entwickler bieten
ständig neue Optionen an, die die
3D-Grafik-Programmierer ausfül-

len müssen. Dazu gehört auch das von
moderner Hardware unterstützte
Bumpmapping in OpenGL: ein Verfah-
ren, das den realistischen Eindruck von
3D-Objektoberflächen unterstreicht.
Anders als Texture-Mapping, das auf die
Farbe der Objektoberflächen abzielt,
wird Bumpmapping dazu verwendet,
Unebenheiten der Oberflächenstruktur
zu rendern. Im Bild unten sehen Sie ei-
nen Torus als Drahtgittermodell, textu-
riert und mit Bumpmapping.

Mit Bumpmapping können Sie Beulen
auf der Oberfläche von 3D-Objekten
darstellen. Objekte in einer so hohen
geometrischen Auflösung zu rendern,
um solche Effekte zu erzielen, ist sehr re-
chenzeit- und speicherintensiv. Abgese-
hen davon, sind die Unebenheiten im
Vergleich zur groben geometrischen
Form eines Objekts sehr klein. Nehmen
Sie als Beispiel das 3D-Modell eines
Holztisches. Die Unregelmäßigkeiten
auf der Tischfläche sind klein im Ver-
gleich zur ihrer ebenen Form. Deshalb
liegt es nahe, nicht die Geometriedaten
selbst so fein zu gestalten.

■ Theorie des
Bumpmapping
Der wichtige Punkt beim Bumpmap-
ping ist: Nur die Beleuchtungsberech-
nung lässt die Unebenheiten sehen. Die-
se sind geometrisch nicht im Dreiecks-
netz vorhanden. An den geraden Kanten
eines mit Bumpmapping gerenderten
3D-Objekts sehen Sie, dass dessen Form
selbst nicht verändert wird.

Die Idee des Bumpmapping wurde
1978 von James Blinn entwickelt.
Bumpmapping ist ein rein texturbasie-
rendes Rendering-Verfahren, um Un-
ebenheiten auf Oberflächen durch die
Beleuchtung zu simulieren. Die Un-
ebenheiten werden in einer Graustufen-
textur (Graustufen-Bitmap) als Height-
field angegeben, deren Auswirkung Sie
im Bild sehen.

Der Grafiker schafft nur die Graustu-
fen-Bitmap. Daraus generiert der Pro-
grammierer Daten, wie diese für das ver-
wendete Bumpmapping-Verfahren
nötig sind. Von diesen Verfahren stellen
wir eines vor, dass neuere Hardware wie
die GeForce GPUs von nVidia benötigt.
Anschließend zeigen wir Ihnen einen re-
lativ alten Ansatz, der auf jeder 3D-
Hardware funktioniert.

Die Theorie der Beleuchtungsberech-
nung zeigt, wo das Bumpmapping an-
setzt. Beleuchtung berechnen Sie aus
Formeln, welche Sie mit der Vektor-
rechnung darstellen und verdeutlichen.

Mit einer vereinfach-
ten Formel, berech-
nen Sie diffuse und
spiegelnde Reflexio-
nen. Diese Formel
entstammt dem
Blinn-Beleuchtungs-
modell, das wie das
Phong-Modell empi-
risch ermittelt wurde.
C =

(max(0,(L*N))

+ max (0,(H*N))^n)
x Dl x Dm

Blinn und Phong sind als Grundlagen-
forscher der Grafikprogrammierung
berühmt. Dl ist die Farbe des Lichts, Dm
die Farbe der Oberfläche an der betrach-
teten Stelle. Diese Oberflächenfarbe kann
aus einer Textur ausgelesen sein. Der Po-
tenzwert n bestimmt die Größe der
Glanzlichter. Größere Werte bedeuten

kleinere Glanzlichter der spiegelnden Re-
flexion. Die vorkommenden Vektoren
bezeichnen mit
• L: die einfallende Lichtrichtung, mit

Fortschrittliche Rendertechniken: Bumpmapping

Licht in Echtzeit

AUF CD
Die Quelltexte sowie die fertig übersetz-

ten Routinen finden Sie im Verzeichnis
Praxis/Programmierung/PC Underground.

Mit Bumpmapping verstärken Sie den realistischen Eindruck von 3D-
Grafiken. Komplexe und detailreiche Oberflächen täuschen Wirklichkeit vor.

EIN OBJEKT als Drahtgittermodell mit und
ohne Bumpmapping

DIE ZUSAMMENSETZUNG der Oberflächenbeleuchtung

EMBOSSING bei Bumpmaps.

PC Magazin Juli 2001 227

P C U N D E R G R O U N D
P R A X I S

• N: die Normale am Oberflächenpunkt
und mit
• H: den so genannten Halfangle Vek-
tor. Letzterer hängt auch von der Positi-
on des Punktes auf der Oberfläche und
der Lichtquelle ab.

Wenn Sie sich obige Blinn-Formel ge-
nauer ansehen, fällt auf, dass es zwei We-
ge gibt, die Oberfläche nicht entspre-
chend der geometrischen Vorgaben, al-
so nach dem Dreiecksnetz, darzustellen.
• Der erste Ansatzpunkt: Verschieben
Sie die Punkte der Oberfläche. Diese
Technik nennt sich Displacement-Map-
ping und funktioniert für heutige 3D-
Hardware nicht in Echtzeit.
• Die zweite Variante, das Bump-
mapping, setzt an der Oberflächennor-
malen an.

Für ein 3D-Objekt verwenden Sie ei-
ne Textur, aus der die Farbwerte Dm für
die Oberfläche gespeichert sind, und ei-
ne oder mehrere Bumpmaps, die die Per-
turbation (die Änderung der Ober-
flächennormalen) enthält.

Mit den aktuellen 3D-Grafikkarten
lässt sich die Beleuchtung für jeden ge-
renderten Pixel in Echtzeit berechnen.

■ Dot Product
Bumpmapping
Für das Dot Product Bumpmapping
Verfahren benötigen Sie moderne
GPUs. Es basiert auf Bumpmaps, die als
RGB-Texturen gespeichert werden. Die
RGB-Werte eines Texels (zwischen 0
und 255) repräsentieren die x-, y- und z-
Komponenten eines Vektors im Inter-
vall [-1, 1]. Solche Bumpmaps können
Sie sich aus Heightfields erzeugen lassen.
Sie können ein Tool von nVidia (inklu-
sive Sourcecode) downloaden, um
RGB-Normal-Maps aus Heightfields
zu generieren. Dieses Werkzeug finden
Sie unter den Developer-Informationen
auf der nVidia-Homepage zum freien

Download: www. nvidia.com. Die Kom-
ponenten der Normalenvektoren wer-
den durch Ableiten des Heightfields be-
rechnet. Die zentrale Operation bei der
Beleuchtungsberechnung des Bump-
mappings und der diffusen Beleuchtung
ist das Skalarprodukt aus der Normalen
und des Vektors vom Oberflächenpunkt
zur Lichtquelle:

N * L

Diese Formel entspricht dem Lambert-
schen Gesetz. Es ist egal, in welchem
Koordinatenraum die beiden Vektoren
angegeben sind, es muss aber beides mal
der selbe sein. Doch welcher Raum soll
das sein und in welchem ist die Norma-
le angegeben? Die Antwort darauf gibt
das Tangent Space Bumpmapping.

Der entscheidende Koordinatenraum
ist der so genannte Tangent Space. Die-
sen dreidimensionalen Raum geben Sie
durch eine 3-x-3-Matrix an, deren drei
Spaltenvektoren den Raum aufspannen.
Sie benötigen für jeden Vertex Ihres 3D-
Modells einen Tangent Space. Die Nor-
male des 3D-Modells am Vertex wählen
Sie als +z-Achse, also als dritten Spalten-
vektor. Durch den Vertex und seine
Normale ist eine Ebene definiert, die sich
tangentiell zur Oberfläche befindet, da-
her der Name Tangent Space.

Sie brauchen noch zwei weitere Vek-
toren, um den Raum aufzuspannen.
Wählen Sie zum Beispiel die +y-Achse
des Modelspace (des Koordinatenrau-
mes, in dem Ihr 3D-Modell definiert
wurde) oder einen Vektor, den Sie durch
die implizite Beschreibung einer Ober-
fläche erhalten. Im Beispielprogramm
finden Sie dafür einen Torus. Der noch
fehlende dritte Vektor ergibt sich aus
dem Kreuzprodukt der beiden anderen.

Normalerweise werden die Vektoren so
konstruiert, dass sie in der Tangential-
ebene an der Oberfläche liegen.

Nun haben Sie zu jedem Vertex einen
Tangent Space definiert, den Sie für das
Rendern speichern müssen.

Die folgenden Schritte müssen Sie
während der Laufzeit des Programms
erledigen. Interpretieren Sie Ihr Height-
field so, dass die Höheninformation eine

Verschiebung entlang
der +z-Achse des
Tangent Space be-
wirkt.

Sie transformieren
den Vektor zur Licht-
quelle in den Tangent
Space: Wenn Sie Ihr
3D-Modell rendern,
generieren Sie auf
dem Matrix-Stack
von OpenGL eine
Reihe von Transfor-
mationen. Sie benöti-
gen die inverse Trans-
formation. Dazu in-
vertieren Sie entwe-
der die resultierende
ModelView-Matrix,
oder Sie erzeugen eine

Matrix mit den einzelnen invertierten
Transformationsschritten in umgekehr-
ter Reihenfolge. Wenn Sie mit dieser in-
versen Matrix die Position der Licht-
quelle in Ihrer 3D-Welt transformieren,
erhalten Sie einen Ortsvektor, der die
Position der Lichtquelle im Modelspace
beschreibt.

Als letzten Schritt berechnen Sie den
Vektor eines jeden Vertex zur Licht-
quelle (in Modelspace-Koordinaten)
durch Subtraktion und transformieren
diesen Vektor L in den Tangent Space.
Die Transformation in den Tangent
Space erfolgt durch das Skalarprodukt
aus dem L-Vektor und jedem der Spal-
tenvektoren.

Beim Rendern eines Dreiecks durch
die 3D-Hardware werden die Normalen
als RGB-Tripels behandelt und linear
perspektivisch korrekt interpoliert. Die
L-Vektoren können sich in unterschied-
lichen Tangent Spaces befinden, denn je-
der Vertex des Dreiecks hat seinen eige-
nen Tangent Space. Die 3D-Hardware
routiert gewissermaßen die L-Vektoren
von einem Raum in den nächsten.

Eine mathematisch korrekte Beleuch-
tungsberechnung müsste diese Vektoren
für jeden Pixel normalisieren, da sich ih-
re Länge bei der linearen Interpolation
der Vektor-Komponenten ändert. q

EINE OBERFLÄCHE wird durch ein Height-
field verändert.

CUBE MAPPING adressiert sechs 2D-Bitmaps mit unnormali-
sierten Vektoren.

228 Juli 2001 PC Magazin

P C U N D E R G R O U N D
P R A X I S

Dafür bietet sich Cube Mapping an:
Das ist eigentlich eine Form des Textu-
re-Mapping, die einen unnormalisierten
Vektor verwendet, um eine Textur zu
adressieren. Diese besteht aus sechs qua-
dratischen 2D-Bitmaps, die wie die
Flächen eines Würfels angeordnet sind.
So sehen Sie, wie ein Vektor einen Pixel
adressiert.

Die Komponente mit dem größten
Betrag und ihr Vorzeichen bestimmen,
welche Seite des Würfels getroffen wird.
Die 2D-Koordinaten auf der Würfelsei-
te erhalten Sie, indem Sie die beiden klei-
neren Komponenten durch die Größte
dividieren. Ein RGB-Tripel, das durch
die Interpolation der Normalen im Tan-
gent Space entsteht, wird als Vektor in-
terpretiert. Dieser Vektor schneidet den
Würfel an einer bestimmten Stelle. Die
Lage des Schnittpunkts ist unabhängig
von der Länge des Vektors, nur die
Richtung ist entscheidend.

Sie können die Cubemap-Texturen
so vorberechnen, dass an jeder Stelle
ein bestimmtes RGB-Tripel gespei-
chert ist: das RGB-Tripel, das dem
normalisierten Vektor entspricht. Im
übrigen werden Cubemaps dazu ver-
wendet, Licht-Reflexionen oder -Re-
fraktionen (Lichtbrechung) darzustel-
len.

Seit 1978 haben Entwickler daran ge-
arbeitet, das von Blinn formulierte
Bumpmapping in 3D-Hardware zu inte-
grieren. In unserem Beispielprogramm
finden Sie die Implementation und Fort-
führung der hier gezeigten Verfahren.
Mit dieser Vorarbeit können Sie zur An-
steuerung der GeForce-Karte überge-
hen.

■ Register Combiners
GeForce-, Quadro- und neuere nVidia-
Karten besitzen Register-Combiners.
Damit lässt sich die Farbberechnung für
jeden Pixel konfigurieren. Beachten Sie
den Unterschied zwischen Konfigurie-
ren und Programmieren: ersteres ist Ein-
stellen, letzteres freies Gestalten. Dieses
erlauben erst die Pixelshader der neues-
ten Kartengenerationen. Die Register-
Combiners ersetzen, wenn Sie sie akti-
vieren, die Standard-OpenGL-Rende-
ringoptionen. Sie sind deutlich komple-
xer und flexibler. Die Register-Combi-
ners steuern Sie über OpenGL Exten-
sions. Diese sind in der neuesten Versi-
on der Datei glext.h definiert, die Sie
auch bei unserem Beispielprogramm
finden. Wie Sie die Funktionen nutzen,
entnehmen Sie dem Beispielprogramm.

Auf den Entwicklerseiten von nVidia
www.nvidia.com finden Sie die genauen
Spezifikationen und Dokumentationen
aller Features.

■ Dot-3-Bumpmap-Texturen
Um eigene Bumpmaps für Dot-3-
Bumpmapping zu generieren, beginnen
Sie mit einem Heightfield, also einer
Graustufen-Bitmap. Hellere Graustufen
bedeuten, dass die so gekennzeichnete
Oberfläche mehr nach außen geschoben
wird. Eine solche Bumpmap-Textur

wandeln Sie mit dem nVidia-Bumpmap-
Tool in eine RGB-Normal Map um:

normalmapgen.exe height.tga
bump.tga

Bevor Sie die Maps in OpenGL laden,
generieren Sie Mipmaps. Das sind nied-
rigere Auflösungsstufen einer Textur,
um hässliche Effekte beim Rendern zu
vermeiden. In der Textur befinden sich
vorzeichenbehaftete Vektoren, die nur
als RGB-Werte gespeichert sind. Das
weiß die gluBuild2DMipmaps(...)-
Funktion von OpenGL nicht, die auto-
matisch Mipmaps generiert. Da diese für
diesen Zweck unbrauchbar sind, müssen
Sie eigene Mipmaps generieren, also eine

Funktion implementieren, die die Auf-
lösung einer RGB-Normalmap halbiert!
Dazu speichern Sie jeden Pixel der
RGB-Normal in folgender Struktur, die
die Vektor-Komponenten und seine

Länge enthält:
typedef struct
{

unsigned char nz,
ny, nx, mag;
}
DOT3NORMAL;
DOT3NORMAL bumpmap[
SIZE*SIZE];

nx, ny und nz initiali-
sieren Sie jeweils mit
den RGB-Werten,
mag mit dem Wert
255. Bei der Halbie-

rung der Auflösung fassen Sie vier be-
nachbarte Pixel, die in einem Quadrat
angeordnet sind, zu einem neuen zusam-
men. Die Komponenten der Vektoren a,
b, c und d müssen Sie vom Wertebereich
[0,255] auf der Intervallskala [-1,1] ver-
schieben und skalieren. Die Werte inner-
halb des Intervalls multiplizieren Sie mit
der Länge des ursprünglichen Vektors

und summieren sie
auf. Damit erhalten
Sie einen neuen Vek-
tor, den Sie erneut
normalisieren und als
RGB-Tripel in der
neuen Mipmap-Stufe
speichern. Zusätzlich
speichern Sie vorher
seine Länge in mag.
Der Code für einen
Pixel sieht so aus:

//a,b,c,d:Texel
//in bumpmap[]

// angeordnet als
//a b
//c d
DOT3NORMAL
a, b, c, d
DOT3NORMAL neu;

VERTEX n;
n.x=
(a.nx/127-1)
*a.mag/255;
n.x+=
(b.nx/127-1)
*b.mag/255;
n.x+=(c.nx/127-1)*c.mag/255;
n.x+=(d.nx/127-1)*d.mag/255;
...
l = lengthVector(n);
normVector(n);
neu.nx = 128 + 127 * n.x;
...
neu.mag =min(255,255*l*0.25);

Die so berechneten Mipmap-Stufen
übergeben Sie mit glTexImage2D(...)
an OpenGL. Wenn Sie alles zusam-
menfassen und mit den Implementie-

AUS EINEM HEIGHTFIELD wird eine RGB-Normalmap.

UNSER DOT-3-BUMPMAPPING Programm in Aktion

PC Magazin Juli 2001 229

P C U N D E R G R O U N D
P R A X I S

rungsdetails ausstatten, erhalten Sie un-
ser fertiges Dot-3-Bumpmapping-Pro-
gramm.

■ Emboss-Bumpmapping
Nun gibt es noch ein sehr altes, anderes
Verfahren, um Bumpmapping darzu-
stellen. Das Emboss-Bumpmapping ist

auf jeder 3D-Karte einsetzbar. Durch
diesen Fakt ließen sich schon manche
3D-Kartenhersteller zur Behauptung
verleiten, ihre 3D-Karten würden
Bumpmapping in der Hardware unter-
stützen. Diese Methode ist mit den Em-
bossfiltern in Bildbearbeitungspro-
grammen verwandt. In bestimmten
Fällen sind beim Emboss-Bumpmap-
ping Darstellungsartefakte durch
Unterabtastung zu sehen, die als un-
scharfe Bewegungen erscheinen. Wenn
Sie unser Beispielprogramm dazu aus-
probieren, werden Sie sehen, dass sich
der Einsatz aber auf jeden Fall lohnen
kann.

Das Verfahren lässt nur die Approxi-
mation der diffusen Beleuchtungskom-
ponente zu, womit sich die vorige For-
mel für die Beleuchtungsberechnung auf
folgende Terme reduziert:

C = ((L*N)) x Dl x Dm

Diese Formel hat gewaltig gegenüber
der Blinn’schen-Ausgangsformel an
Komplexität verloren: Es fehlen nicht
nur die Rechenoperationen, sondern
auch der Halfangle-Vektor, den Sie für
das Dot-3-Bumpmapping benötigten.
Die Bumpmap, die wir für das Emboss-
Bumpmapping einsetzen, ist eine
Höheninformation (Heightfield/Grau-
stufen-Bitmap): Wie das erste Bild zeig-
te, repräsentiert ein Pixel in der Bump-
map eine Höhenverschiebung auf der
Oberfläche.

Wir betrachten das Verfahren
zunächst im Eindimensionalen, also mit
einer Zahlenreihe, die einen Höhenver-
lauf darstellt. Wenn Ihnen die erste Ab-
leitung einer Folge von Höhenwerten
vorliegt, entspricht diese der Steigung
am entsprechenden Oberflächenpunkt.
Diese Steigung m wird verwendet, um

einen Basisfaktor Fd
für die diffuse Be-
leuchtung zu erhöhen
oder zu erniedrigen.
Die Summe (Fd+m)
approximiert den
Term (L*N).

Als nächstes ap-
proximieren Sie die
Steigung. Lesen Sie
die Höhe H0 des
Oberflächenpunktes
aus der entsprechen-
de Stelle der Height-
map, was später die
3D-Hardware für Sie
erledigen wird. Lesen
Sie die Höhe erneut
aus, wobei Sie die

Bumpmap ein kleines Stückchen in
Richtung der Lichtquelle verschieben,
und Sie erhalten H1. Rechnen Sie diese
Verschiebung aus. Die Differenz aus H0
und H1 ergibt: m = H1 - H0.

Die Textur verschieben Sie, indem Sie
die Texturkoordinaten modifizieren. Die
Modifikation berechnen Sie wieder im
Tangent Space. Dazu transformieren Sie
die Lichtquelle in den Modelspace. Bil-
den Sie die Skalarprodukte des Vektors
von einem Vertex zur Lichtquelle und der

Tangente sowie der Binormalen des Tan-
gent Space. Damit erhalten Sie zwei Ver-
schiebungswerte, die Sie zur ursprüngli-
chen Texture-Koordinaten addieren.

Wenn Sie die Texturen und Bump-
maps in OpenGL geladen haben, führen
Sie das Emboss-Bumpmapping in drei

Renderpasses durch. Diese Variante
funktioniert auf jeder OpenGL-Hard-
ware, die Texture-Mapping unterstützt.
• Im ersten Renderpass verwenden Sie
die Bumpmap-Textur mit den Original-
Texturkoordinaten und deaktivieren die
OpenGL-Beleuchtungsberechnung
und das Blending.

glBindTexture
(GL_TEXTURE_2D, bumpTex);
glDisable

(GL_BLEND);
glDisable

(GL_LIGHTING);
renderObject();

• Im zweiten Schritt erhalten Sie die 3D-
Objekte mit fertiger Beleuchtung, jedoch
ohne Farbe. Dazu wählen Sie die inver-
tierte Bumpmap-Texture, Blending mit
GL_ONE/GL_ ONE und den berech-
neten verschobenen Texturkoordinaten:

glBindTexture
(GL_TEXTURE_2D, invBumpTex);
glBlendFunc

(GL_ONE, GL_ONE);
glDepthFunc

(GL_LEQUAL);
glEnable

(GL_BLEND);
renderObjectEmboss();

• Im dritten Renderpass kommt Farbe
durch die Farbtextur und die OpenGL-
Beleuchtung ins Spiel. Dazu verwenden
Sie folgende Einstellungen:

glBindTexture
(GL_TEXTURE_2D, textureMap);
glBlendFunc

(GL_DST_COLOR,
GL_SRC_COLOR);
glEnable

(GL_LIGHTING);
renderObject();

Probieren Sie die High-End-Rendertech-
niken aus. Wenn Sie Ihre 3D-Grafik mit
den Bumpmapping-Features ausstatten,
werden Sie feststellen, wie realistisch bis-
her flache, künstlich anmutende 3D-Ob-
jekte auf den Betrachter wirken können.

Um die mathematische Arbeit von
James Blinn zu studieren, verweisen wir
auf die nachfolgenden Literaturangaben.
Diese Grundlagen für die Berechnung
von 3D-Räumen wurden erst in den letz-
ten Jahren gelegt. Die komplexe mathe-
matische Materie ist noch nicht vollstän-
dig erforscht. s E T

UNSER BEISPIELPROGRAMM für Emboss-Bumpmapping

Literatur:

Mark J. Kilgard;, A Practical and Robust Bump-map-
ping Technique for Today’s GPUs, Developer Infor-
mation: www.nvidia.com

James Blinn, Simulation of Wrinkled Surfaces, Com-
puter Graphics (Proc. Siggraph ‘78), August 1978,
Seite 286ff

Tomas Möller, Eric Haines, Real-Time Rendering,
AK Peters Ltd, ISBN 1-56-881-101-2, 102 Mark, 482
Seiten, 1999

DDIIEE RRGGBB--WWEERRTTEE in den sechs 2D-Texturen
der Cubemap repräsentieren normalisier-
te Vektoren.

