o

PC UNDERGROUND
PRAXIS

Der A*-Algorithmus

Strategiespiele kennen!

CARSTEN DACHSBACHER

ernen Sie den A*-Algorithmus
L(gesprochen: A-Stern) kennen.

Dieser Algorithmus findet seit
1968 in der Kunstlichen Intelligenz (K1)
und in akademischen Suchsystemen An-
wendung.

Der A*-Algorithmus 16st die Grund-
aufgabe der meisten Computerspiele:
Sie planen damit einen Pfad, auf dem sich
eine Spielfigur in Computerspielen be-
wegen soll. In der Spiele-KI neuerer
Computerspiele, vor allem aus dem
Echtzeit-Genre, tritt diese Situation
héufig auf. Meist wird der Weg einer Fi-
gur berechnet, die sich auf einer Spiel-
karte zu einem vom Spieler gewahlten
Ziel bewegen soll.

Mit Hilfe des A*-Algorithmus kon-
nen Sie Hindernissen ausweichen.
Auferdem soll die Spielfigur die Gege-
benheiten der Spielterrains bestmdglich
ausnutzen. Der Spielheld soll also einen
schlammigen Sumpf oder einen steilen
Berg vermeiden und lieber auf StraRen
oder freiem Gelénde laufen.

Der A*-Algorithmus ist ein Graph-
Suchalgorithmus. Ein Graph besteht aus
Knoten, die durch Kanten verbunden
sind. Dieser Graph ist implizit definiert,
wie im Folgenden erklart: Zu einem
Knoten sind die Knoten angegeben, die
durch Kanten direkt erreichbar sind. Ei-
ne explizite Definition wirde die Adja-
zenzinformation (die Verbindungsin-
formation) von jedem Knoten zu jedem
anderen speichern. Ein Knoten dieses
Graphs entspricht einem Zustand in un-
serer A*-Suche. Was Sie suchen, spielt
keine Rolle. Es geht nur darum, einen
Losungsweg darzustellen. Der A*-Al-

216 August 2001 PC Magazin

ds—%—

Die Quelltexte sowie die fertig Ubersetz-
ten Routinen finden Sie im Verzeichnis
Praxis/Programmierung/PC Underground.

Mit dem A*-Algorithmus suchen Sie in Computerspielen den
. Lernen Sie die Methoden der Echtzeit-

gorithmus sucht fur Sie den besten Pfad
von einem gegebenen Start- zu einem ge-
wunschten Endzustand. Dabei lauft
er durch den Graphen und untersucht
die Nachbarknoten der besuchten
Zusténde.

Ein bekanntes Spiel — und gern vorge-
fuhrtes Beispiel fur den A*-Algorithmus
— ist das 8er Zahlenschiebepuzzle. Die-
ses bringt in einem 3 x 3 Feld die Zif-
fern 1 bis 8 unter. Die Ziffern kdnnen Sie
verschieben. Der Graph erreicht einen
neuen Zustand, wenn Sie eine Ziffer ver-

gegeben
283

1

I
11
oo w

3 123
76

Zielknoten

-
o 0

DAS ZAHLENPUZZLE ist ein Paradebeispiel
far den A*-Algorithmus.

schieben. Diesen Losungsweg des Zu-
standsgraphen zeigt das Bild unten.

Mit dem A*-Algorithmus kénnen Sie
auch den Pfad einer Spielfigur in einer
virtuellen Welt planen. Der aktuelle Zu-
stand entspricht in diesem Fall der mo-
mentanen Position der Spielfigur. Er-
reichbare Zustdnde entsprechen in die-
sem Beispiel Spielfeldern, die die Figur
durch einen Bewegungszug erreichen
kann.

Der A*-Algorithmus untersucht im-
mer wieder den Zustand, der voraus-

sichtlich zum optimalen Pfad gehort.
Der Algorithmus untersucht dazu die
Knoten des Graphen, die er noch nicht
erforscht hat. Zuerst Uberpruft er, ob es
sich schon um das Ziel handelt. In die-
sem Fall ist die Suche beendet. Sonst no-
tiert der A*-Algorithmus alle Nachbar-
zustdnde des gerade untersuchten Zu-
stands, um sie spéter zu betrachten.

Der A*-Algorithmus speichert zwei
Listen von Zustanden: die Open- und
die Closed-Liste fur unerforschte und
erforschte Zustdnde. Zu Beginn der Su-
che ist die Closed-Liste leer. Die Open-
Liste enthalt nur einen Startzustand: die
aktuelle Position der Spielfigur. Der A*-
Algorithmus sucht sich wiederum den
besten Zustand aus der Open-Liste, um
ihn zu untersuchen und entfernt ihn da-
raus. Danach werden alle Nachbarzu-
stande erzeugt. Nun mussen Sie unter-
scheiden: Sind diese Zustande neu, wer-
den sie an die Open-Liste angehéngt.

Befinden sich Zustdnde schon in der
Open-Liste, dann wird — falls ein besse-
rer Weg gefunden wurde — die Informa-
tion dort neu gespeichert. Zustande in
der Close-Liste fur die der Algorithmus
einen besseren Weg findet, nimmt er aus
dieser Liste und fugt sie neu in die Open-
Liste ein. Denn das kdnnte einen besse-
ren Weg er6ffnen. Das Suchen und Ein-
tragen der Nachbarzustande heifl3t Ex-
pansion eines Knotens. Wenn die Open-
Liste leer ist, bevor der Endzustand er-
reicht wird, gibt es keinen Pfad vom
Start- zum Endzustand.

Um den besten Zustand zu wéhlen,
betrachten Sie zunachst die Struktur, um

einen Zustand zu speichern:
class Position

t
private:
int_x, _y;

Position neighbour(const int

d);
I
class Node
friend class AStar;
private:
int g, hf
Node *pred;
int nPred;
Position p;
I

Die Klasse Position, verwenden Sie, um
einfacher 2D-Integer-Koordinaten zu
speichern. Die Klasse bietet neben Zu-
griffsmethoden so genannte tberladene
Operatoren, um den Umgang mit Koor-
dinaten zu erleichtern. Die Methode

Position::Position neighbour

(constintd)
liefert die Position eines Nachbar-
knotens.

In der Node-Klasse speichern Sie die
Daten eines Zustandes. Die Klasse ent-
hélt die aufsummierten Kosten des bes-
ten Wegs vom Startzustand bis zum ak-
tuellen Knoten g und die geschatzten
Restkosten zum Ziel h.

Weiterhin speichern Sie f, die Summe
aus g und h, einen Zeiger auf den Vor-
ganger-Zustand und einen weiteren Zei-
ger auf der verketten Liste der Zustande
*pred. Sie schreiben auch die Zahl der
Vorgénger nPred und die Position des
Knotens in der virtuellen Welt p in den
Arbeitsspeicher. Die Kosten bezeichnen
damit den Aufwand, den die Spielfigur
hétte, wenn sie den betrachteten Weg ge-
henwiirde. In einem Knotensind in g die
Kosten des optimalen Pfads vom Start-
zustand zu diesem Knoten gespeichert.
Dieser Pfad ist nPred Knoten lang. Sie
koénnten ihn jederzeit zuriickverfolgen,
indem Sie den *pred-Zeigern folgen.

Nun gilt es, die Kosten zu berechnen
oder zu schatzen. Die Kosten vom Start-
zustand bis zum aktuellen Knoten kdn-
nen Sie exakt berechnen. Sie bendtigen
dazu nur eine Funktion, die lhnen die
Kosten liefert, wenn Sie lhre Spielfigur
von einem Feld zum néchsten bewegen
wirden. Die Restkosten h mussen Sie
schétzen.

Den restlichen Weg haben Sie noch
nicht untersucht. Den wollen Sie ja erst
berechnen. Der A*-Algorithmus ver-
langt eine optimistische Restkosten-
schédtzung. Das bedeutet: Sie missen die
Restkosten schatzen, der Schéatzwert
muss kleiner sein, als die tatsachlichen
Kosten sind. Trivial ist diese Bedingung

erfullt, wenn Sie die Restkosten immer
auf 0 schatzen.
Der folgende theoretische Ansatz ist
zwar in den Eigenschaften des A*-Al-
gorithmus bewiesen, findet im Rahmen
unserer Anwendung hier jedoch nur ei-
ne Randnotiz: Wenn es einen Pfad vom
Start- zum Endknoten gibt, dann findet
der A*-Algorithmus diesen, selbst wenn
es sich um so genannte unendliche Gra-
phen handelt. Unendliche Graphen sind
bei impliziter Darstellung durchaus
denkbar. In nicht-unendlichen Graphen
terminiert der Algorithmus, wenn es
keinen Pfad gibt.
Die Monotonie-Bedingung verlangt,
dass die Differenz der Restkosten-
Schétzwerte zweier Knoten Kleiner ist
als die tatsachlichen Kosten der Pfade
zwischen den beiden Knoten. Ist diese
Bedingung erfillt, hat der Algorithmus
zu jedem Knoten, den er zur Expansion
wahlt, bereits einen optimalen Pfad ge-
funden. Wenn Sie zwei A*-Algorithmen
Alund A2 mit den Restkostenschatzun-
gen c¢1(x) und c2(x) verwenden und c(x)
die tatsachlichen Restkosten bezeichnet,
gilt fir jeden Zustand x:
c1(x) < c2(x) < c(x)
Fir diese Bedingung gilt, dass A2 besser
als Al informiert ist. Das hat zur Folge,
dass nach der Terminierung jeder Kno-
ten, der von A2 expandiert wurde, auch
von Al expandiert wurde. Al hat
also mindestens so viele Knoten wie

A2 expandiert. Es ist wichtig, die
Zahl der Knoten und die Rechenzeit zu
reduzieren.

Nachdem Sie die Grundlagen des A*-
Algorithmus kennen gelernt haben, wa-
gen Sie sich an die Implementation her-
an. Wir stellen Thnen hier eine Basisim-
plementation vor, die leicht verstdnd-
lich, aber nicht rechenzeitoptimiert ist.
Bei Punkten, an denen Sie eine Optimie-
rung vornehmen kénnen, weisen wir Sie
an der entsprechenden Stelle darauf hin.
Im Folgenden behandeln wir den Spezi-
alfall, dass wir einen Pfad auf einer Spiel-
welt suchen, deren Karte aus einem re-
gelméRigen Schachbrett besteht. In einer
Landkarte der Spielewelt speichern Sie,
wie aufwendig es fir die Spielfigur ist,
sich darliber zu bewegen.

Die Implementation ist in der AStar-
Klasse verpackt.

class AStar
{private:

PC UNDERGROUND
PRAXIS

Position start, goal;

int lowestOpen;
int lowestCost;
int nodesExpanded;

int nOpen, nClosed;
Node **open;
Node **closed;

Node *goalNode;

Die Member-Variablen der Klassen
speichern auRer dem Start- und Ziel-
punkt die Open- und Closed-Listen als
Array. In einer optimierten A*-Suche
wirden Sie diese als Priority Queues
speichern. In Priority Queues, die Sie als
bindre Baume verwalten, geht es schnel-
ler, nach der Node (Knoten) mit den ge-
ringsten Kosten zu suchen. Auferdem
speichern Sie den Index des voraussicht-
lich besten Knotens, seine Kosten und
einen Zeiger auf den Endknoten, sofern
dieser gefunden wurde.

Fir die Verwaltung der Open- und
Close-Liste bendétigen Sie Methoden,
um Elemente einzufligen, zu suchen
oder zu l8schen:

void pushNode(Node **list,
int *count, Node *node)

list[(*count)++] = node;

int containsNode(Node **list,
int count, Node *me)

for (inti=0; i< count; i++)
if (list[i]->p ==me->p)
return i;
return -1;

void removeNode(Node **list,
int *count, int me)

listf me] =list[—(*count)];

Fir die Kostenberechnung oder -schét-
zung benotigen Sie folgende Funktio-
nen, wobei Sie die Schatzung genauer
untersuchen:

/I Kosten als Integerwerte !
#define COSTDIAGONAL 554
/1 sqrt(2)*100000/255

#define COSTSTRAIGHT 392
// 100000/255

static const int travCost[8] =

COSTDIAGONAL, COSTSTRAIGHT,
COSTDIAGONAL, COSTSTRAIGHT,
COSTSTRAIGHT, COSTDIAGONAL,
COSTSTRAIGHT, COSTDIAGONAL

/I Berechnung: d ist eine der 8

/I Richtungen auf der Karte

/I (NW,N,NO,W,0,SW,S,S0)

int traversalCost(Position &a,
Position &b, intd)

int ¢ = (map[a.x(][a.y(l+
map[b.x()][b.y() 1) >1;
return ¢ * travCost[d];

}
/I Schatzung (>

PC Magazin August 2001 217

al.

o-E]

PC UNDERGROUND
PRAXIS

int pathCostEstimate
(Position &s, Position &g)
{

return O;

Beim Start der Suche loschen Sie die
Open- und Close-Liste und erzeugen ei-
nen Startknoten, den Sie in die Open-
Liste eintragen. AufRerdem speichern Sie
den Zielknoten:
void init(Position &s,
Position &g)

nOpen = nClosed = 0;

Node *startNode = new Node();
startNode->p =s;
startNode->h =

pathCostEstimate(s, g);

startNode->f = startNode->h;
startNode->pred = NULL;
startNode->nPred = 0;

goal =g;

pushNode(open,&nOpen,startNode);
lowestOpen = nOpen - 1;
lowestCost = startNode->f;
h
Nun kdnnen Sie mit der Suche und der
Expansion der Knoten anfangen:

int searchPath()

/Inoch nodes in der open list?
while (nOpen >0)

/I beste node nehmen

Node *node = open[lowestOpen];

removeNode((Node**)open,
&nOpen, lowestOpen);

findLowestCost();

if (node->p == goal)

/I ziel gefunden !

goalNode = node;

return node->nPred + 1;
} else

expandNode(node);
nodesExpanded ++;

pushNode(closed,&nClosed,node);

/I kein weg gefunden !
return -1;

Die Expansion der Knoten ist das Kern-
stiick des A*-Algorithmus. Zunéchst be-
trachten Sie jeden Nachbarknoten, der
auf der Karte liegt und kein unbegehba-
res Spielfeld ist. Sie testen die Begehbar-
keit in der If-Abfrage von isValid():

void expandNode(Node *node)
for (intd=0; d<8; d++)

Position p =
node->p.neighbour(d);

if (isValid(p))
{

Die Kosten bis zu dieser Node kénnen
Sie berechnen und in einer neuen Node
speichern:

218 August 2001 PC Magazin

int newCost = node->g +
traversalCost(node->p, p, d);

Node *newNode = new Node(
newCost,
pathCostEstimate(p, goal),
node, node->nPred+1, p);

int io, ic, contained = 0, old-
Cost=-1;
Priifen Sie, ob die neue Node schon in ei-
ner Liste gespeichert ist:
io = containsNode(open, nOpen,
newNode);

ic = containsNode(closed, nClo-
sed, newNode);

if (io1=-1lic!=-1)

if (io!=-1)
oldCost = open[io]->g; else
oldCost = closed[ic]->g;

if (oldCost !=-1 &&
oldCost <= newCost)

delete newNode;
continue;
}else {

Nur einen neuen, besseren Weg zur ak-
tuellen Node mussen Sie speichern:
if (ic!=-1)
removeNode(closed,&nClosed,ic);

if (io!=-1)
removeNode(open, &nOpen, i0);

pushNode(open,&nOpen,newNode);
findLowestCost();

}
}
}
}
Wenn ein Weg gefunden ist, Ubertragen

Sie diesen in ein Array aus der Elemen-

ten-Position. Dazu mussen Sie rick-
waérts den Weg vom Zielknoten aus ver-
folgen:

int getPath(Position *p)

Position *dst=

&p[goalNode->nPred];
int length =goalNode->nPred + 1;

Node *node = goalNode;
while (1)
*dst = node->p;
*dst —;
if (node->pred '= NULL)
node = node->pred;

else
break;

return length

Im Bild oben sehen Sie die Landkarte aus
dem Testprogramm der Heft-CD. Hel-
le Felder sind leichter passierbar, dunkle
schwerer und schwarze Felder gar nicht.
Die roten Pfeile markieren den Weg der
Spielfigur. Die Felder, deren Nodes ex-
pandiert wurden, sind mit einem kleinen
blauen Késtchen gekennzeichnet.

Nach der Theorie und der Implementa-
tion des A*-Algorithmus kdnnen Sie die
Asthetik und die Performance der
Wegsuche verbessern.

Eine Karte aus regelméfRigen Feldern
erleichtert die Wahl der Nachfolgekno-
ten, die aus den vier direkt anliegenden
Nachbarfeldern und den vier diagonal
erreichbaren Feldern resultieren. Wenn
Sie die Pfadsuche daran hindern wollen,

ein Feld zu betreten,

PE; PC Underground: A* - Pathfinding Beispielprogramm i

BT schlieBen Sie dies in

F=<r===i=]

der Funktion expand-

Node(...) aus.

In Computerspie-

len sichert dieses Ver-

fahren, dass kein

Fahrzeug Uber Was-

ser fahrt und kein

Schiff das Wasser ver-

lasst. Wenn Sie einen

beliebigen Graphen

verwenden und kein

regelmaiiges Gitter,

ist es fUr die Rechen-

zeit wichtig, dass Sie

die Adjazenzinfor-

mation (Nachbar-

schaft- oder Verbin-

dungsinformation)

UNSER TESTPROGRAMM hat einen Pfad gefunden!

fur jeden Knoten
speichern, denn
Rechnen kostet Zeit
und Geld.

Die Kostenfunktion représentiert fur ei-
nen Pfad vom Start- zum Endknoten
den Wert, der minimiert werden soll.
Das kann die Entfernung, Reisezeit oder
verbrauchter Treibstoff sein. Sie kdnnen
auch andere Faktoren einbringen.
Denkbar wéren Aufschlage fiir schlecht
passierbares Terrain.

Je nach Typ der Spielfigur (Aktortyp) in
Ihrem Spiel sollten Sie die Aufschldge
variieren. Fahrzeuge bewegen sich auf
StraBen deutlich schneller als querbeet,
wohingegen der Unterschied fur Infan-
trie nicht entscheidend ist. Die Kosten
kdnnen von der Bewegungsrichtung ab-
héngen. Bergauf ist teurer als bergab.
Mit der Kostenfunktion beeinflussen Sie
also nicht nur die Rechenzeit, sondern
auch die Asthetik des gefundenen Pfades
und den Realismus. Die folgende einfa-
che Kostenfunktion berticksichtigt die
Richtung der Bewegung nicht, daftir das
Terrain mit Start- und Endposition:

int traversalCost
(Position &a, Position &b,
intd)

int c =(map[a.x()][a.y()] +
map[b.x() [b.y(Q]) >1;

return ¢ * travCost[d];

}

Die Schdtzung der Restkosten ist ein
weiterer zeitkritischer Punkt bei der
Pfadsuche mit dem
A*-Algorithmus. Die

PC UNDERGROUND
PRAXIS

mistische Schéatzung.
Eine einfache Kos-
tenschatzfunktion ist
der euklidische Ab-
stand zweier Knoten
unter Bertcksichtung
der Begehbarkeit der
Landschaft:

int

pathCostEstimate
(Position &s,

Position &g)
{

int c = (map[
s.x() I[s.y() I+
map[gx()][g.y01)>1;

return max
(abs(s.x()- 9.x()),

abs(s.y() - 9.y0))*
COSTSTRAIGHT*c;

/I triviale variante
return O;

}

Anhand der Zahl der expandierten Kno-
ten in den beiden vorigen Bildern sehen
Sie die Auswirkungen verschiedener
Kostenschatzungen. Diese beweisen,
wie unterschiedlich die Zahl der expan-
dierten Knoten sein kann.

Der A*-Algorithmus kann auf grofl3en
Spielkarten sehr viel Speicher verbrau-
chen, wenn Hunderte oder Tausende
von Nodes expandiert werden. Er
nimmt die CPU stark in Beschlag.

_iolx|

Restkosten optimis-

tisch auf Null zu

schatzen, ist an hier

e . s =

optimal: Die Rechen-

zeit ist auch Null.

In Folge missen Sie

daftir sehr viel mehr

Knoten expandieren

als bei einer etwas

sinnvolleren Schat-
zung: Verwenden Sie

besser den euklidi-

schen Abstand, den

sie mit den minimalen

Bewegungskosten

multiplizieren. Diese

Schatzung liefert

schon deutlich besse-

re Ergebnisse.

Da der Abstand

nicht kirzer sein
kann als die Fluglinie,

ist das auch eine opti- viele Knoten.

DIE OPTIMISTISCHE Restkostenschatzung Null expandiert zu

DIE RESTKOSTENSCHATZUNG NULL und der euklidische
Abstand im freien Gelande im direkten Vergleich.

Besonders schlecht ist der A*-Algo-
rithmus in Féllen, in denen kein Weg
existiert, da er dann jede vom Startkno-
ten aus erreichbare Position expandiert.
Um in diesem Fall Rechenzeit zu sparen,

al.

P T

DER A*ALGORITHMUS findet auch Wege
durch ein Labyrinth.

analysieren Sie vorab lhre Spielfeldkar-
te. Dies kénnen Sie manuell oder algo-
rithmisch tun. Speichern Sie das Ergeb-
nis, wenn es Uberhaupt einen Pfad zwi-
schen zwei Feldern gibt.

Daneben gibt es einige Ansatzpunkte
den A*-Algorithmus schneller zu ma-
chen. Sie kdnnen die Geschwindigkeit
durch bessere Expansion der Knoten
und der Restkostenschatzung erhdhen.
Die Asthetik kénnen Sie durch Aus-
schlieRen von Knoten, die Glattung des
resultierenden Pfades oder Verwendung
von Splines fur die tatsachlichen Wege
verbessern. ET

Literatur:

Russel, Stuart und Norvig, Peter, Artificial Intelli-
gence: A Modern Approach, Prentice Hall, 1995
Nilsson, Nils J., Artificial Intelligence: A New Syn-
thesis. Morgan Kaufmann, 1998

PC Magazin August 2001 219

