
216 August 2001 PC Magazin

P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R

Lernen Sie den A*-Algorithmus
(gesprochen: A-Stern) kennen.
Dieser Algorithmus findet seit

1968 in der Künstlichen Intelligenz (KI)
und in akademischen Suchsystemen An-
wendung.

Der A*-Algorithmus löst die Grund-
aufgabe der meisten Computerspiele:
Sie planen damit einen Pfad, auf dem sich
eine Spielfigur in Computerspielen be-
wegen soll. In der Spiele-KI neuerer
Computerspiele, vor allem aus dem
Echtzeit-Genre, tritt diese Situation
häufig auf. Meist wird der Weg einer Fi-
gur berechnet, die sich auf einer Spiel-
karte zu einem vom Spieler gewählten
Ziel bewegen soll.

Mit Hilfe des A*-Algorithmus kön-
nen Sie Hindernissen ausweichen.
Außerdem soll die Spielfigur die Gege-
benheiten der Spielterrains bestmöglich
ausnutzen. Der Spielheld soll also einen
schlammigen Sumpf oder einen steilen
Berg vermeiden und lieber auf Straßen
oder freiem Gelände laufen.

■ Grundlagen:
das Zahlenschiebepuzzle
Der A*-Algorithmus ist ein Graph-
Suchalgorithmus. Ein Graph besteht aus
Knoten, die durch Kanten verbunden
sind. Dieser Graph ist implizit definiert,
wie im Folgenden erklärt: Zu einem
Knoten sind die Knoten angegeben, die
durch Kanten direkt erreichbar sind. Ei-
ne explizite Definition würde die Adja-
zenzinformation (die Verbindungsin-
formation) von jedem Knoten zu jedem
anderen speichern. Ein Knoten dieses
Graphs entspricht einem Zustand in un-
serer A*-Suche. Was Sie suchen, spielt
keine Rolle. Es geht nur darum, einen
Lösungsweg darzustellen. Der A*-Al-

gorithmus sucht für Sie den besten Pfad
von einem gegebenen Start- zu einem ge-
wünschten Endzustand. Dabei läuft
er durch den Graphen und untersucht
die Nachbarknoten der besuchten
Zustände.

Ein bekanntes Spiel – und gern vorge-
führtes Beispiel für den A*-Algorithmus
– ist das 8er Zahlenschiebepuzzle. Die-
ses bringt in einem 3 x 3 Feld die Zif-
fern 1 bis 8 unter. Die Ziffern können Sie
verschieben. Der Graph erreicht einen
neuen Zustand, wenn Sie eine Ziffer ver-

schieben. Diesen Lösungsweg des Zu-
standsgraphen zeigt das Bild unten.

Mit dem A*-Algorithmus können Sie
auch den Pfad einer Spielfigur in einer
virtuellen Welt planen. Der aktuelle Zu-
stand entspricht in diesem Fall der mo-
mentanen Position der Spielfigur. Er-
reichbare Zustände entsprechen in die-
sem Beispiel Spielfeldern, die die Figur
durch einen Bewegungszug erreichen
kann.

Der A*-Algorithmus untersucht im-
mer wieder den Zustand, der voraus-

sichtlich zum optimalen Pfad gehört.
Der Algorithmus untersucht dazu die
Knoten des Graphen, die er noch nicht
erforscht hat. Zuerst überprüft er, ob es
sich schon um das Ziel handelt. In die-
sem Fall ist die Suche beendet. Sonst no-
tiert der A*-Algorithmus alle Nachbar-
zustände des gerade untersuchten Zu-
stands, um sie später zu betrachten.

Der A*-Algorithmus speichert zwei
Listen von Zuständen: die Open- und
die Closed-Liste für unerforschte und
erforschte Zustände. Zu Beginn der Su-
che ist die Closed-Liste leer. Die Open-
Liste enthält nur einen Startzustand: die
aktuelle Position der Spielfigur. Der A*-
Algorithmus sucht sich wiederum den
besten Zustand aus der Open-Liste, um
ihn zu untersuchen und entfernt ihn da-
raus. Danach werden alle Nachbarzu-
stände erzeugt. Nun müssen Sie unter-
scheiden: Sind diese Zustände neu, wer-
den sie an die Open-Liste angehängt.

■ Schnellster Weg aus dem
Labyrinth
Befinden sich Zustände schon in der
Open-Liste, dann wird – falls ein besse-
rer Weg gefunden wurde – die Informa-
tion dort neu gespeichert. Zustände in
der Close-Liste für die der Algorithmus
einen besseren Weg findet, nimmt er aus
dieser Liste und fügt sie neu in die Open-
Liste ein. Denn das könnte einen besse-
ren Weg eröffnen. Das Suchen und Ein-
tragen der Nachbarzustände heißt Ex-
pansion eines Knotens. Wenn die Open-
Liste leer ist, bevor der Endzustand er-
reicht wird, gibt es keinen Pfad vom
Start- zum Endzustand.

Um den besten Zustand zu wählen,
betrachten Sie zunächst die Struktur, um
einen Zustand zu speichern:

class Position
{

private:
int _x, _y;

Der A*-Algorithmus

Schnellster im Ziel
Mit dem A*-Algorithmus suchen Sie in Computerspielen den optimalen
Pfad für Ihre Spielfiguren. Lernen Sie die Methoden der Echtzeit-
Strategiespiele kennen!

AUF CD
Die Quelltexte sowie die fertig übersetz-

ten Routinen finden Sie im Verzeichnis
Praxis/Programmierung/PC Underground.

DAS ZAHLENPUZZLE ist ein Paradebeispiel
für den A*-Algorithmus.

PC Magazin August 2001 217

P C U N D E R G R O U N D
P R A X I S

Position neighbour(const int
d);

...
};

class Node
{

friend class AStar;
private:

int g, h, f;
Node *pred;
int nPred;
Position p;

...
};

Die Klasse Position, verwenden Sie, um
einfacher 2D-Integer-Koordinaten zu
speichern. Die Klasse bietet neben Zu-
griffsmethoden so genannte überladene
Operatoren, um den Umgang mit Koor-
dinaten zu erleichtern. Die Methode

Position::Position neighbour
(const int d)

liefert die Position eines Nachbar-
knotens.

In der Node-Klasse speichern Sie die
Daten eines Zustandes. Die Klasse ent-
hält die aufsummierten Kosten des bes-
ten Wegs vom Startzustand bis zum ak-
tuellen Knoten g und die geschätzten
Restkosten zum Ziel h.

Weiterhin speichern Sie f, die Summe
aus g und h, einen Zeiger auf den Vor-
gänger-Zustand und einen weiteren Zei-
ger auf der verketten Liste der Zustände
*pred. Sie schreiben auch die Zahl der
Vorgänger nPred und die Position des
Knotens in der virtuellen Welt p in den
Arbeitsspeicher. Die Kosten bezeichnen
damit den Aufwand, den die Spielfigur
hätte, wenn sie den betrachteten Weg ge-
hen würde. In einem Knoten sind in g die
Kosten des optimalen Pfads vom Start-
zustand zu diesem Knoten gespeichert.
Dieser Pfad ist nPred Knoten lang. Sie
könnten ihn jederzeit zurückverfolgen,
indem Sie den *pred-Zeigern folgen.

Nun gilt es, die Kosten zu berechnen
oder zu schätzen. Die Kosten vom Start-
zustand bis zum aktuellen Knoten kön-
nen Sie exakt berechnen. Sie benötigen
dazu nur eine Funktion, die Ihnen die
Kosten liefert, wenn Sie Ihre Spielfigur
von einem Feld zum nächsten bewegen
würden. Die Restkosten h müssen Sie
schätzen.

Den restlichen Weg haben Sie noch
nicht untersucht. Den wollen Sie ja erst
berechnen. Der A*-Algorithmus ver-
langt eine optimistische Restkosten-
schätzung. Das bedeutet: Sie müssen die
Restkosten schätzen, der Schätzwert
muss kleiner sein, als die tatsächlichen
Kosten sind. Trivial ist diese Bedingung

erfüllt, wenn Sie die Restkosten immer
auf 0 schätzen.

Der folgende theoretische Ansatz ist
zwar in den Eigenschaften des A*-Al-
gorithmus bewiesen, findet im Rahmen
unserer Anwendung hier jedoch nur ei-
ne Randnotiz: Wenn es einen Pfad vom
Start- zum Endknoten gibt, dann findet
der A*-Algorithmus diesen, selbst wenn
es sich um so genannte unendliche Gra-
phen handelt. Unendliche Graphen sind
bei impliziter Darstellung durchaus
denkbar. In nicht-unendlichen Graphen
terminiert der Algorithmus, wenn es
keinen Pfad gibt.

Die Monotonie-Bedingung verlangt,
dass die Differenz der Restkosten-
Schätzwerte zweier Knoten kleiner ist
als die tatsächlichen Kosten der Pfade
zwischen den beiden Knoten. Ist diese
Bedingung erfüllt, hat der Algorithmus
zu jedem Knoten, den er zur Expansion
wählt, bereits einen optimalen Pfad ge-
funden. Wenn Sie zwei A*-Algorithmen
A1 und A2 mit den Restkostenschätzun-
gen c1(x) und c2(x) verwenden und c(x)
die tatsächlichen Restkosten bezeichnet,
gilt für jeden Zustand x:

c1(x) < c2(x) < c(x)

Für diese Bedingung gilt, dass A2 besser
als A1 informiert ist. Das hat zur Folge,
dass nach der Terminierung jeder Kno-
ten, der von A2 expandiert wurde, auch
von A1 expandiert wurde. A1 hat
also mindestens so viele Knoten wie

A2 expandiert. Es ist wichtig, die
Zahl der Knoten und die Rechenzeit zu
reduzieren.

■ Die Implementation des
A*-Algorithmus
Nachdem Sie die Grundlagen des A*-
Algorithmus kennen gelernt haben, wa-
gen Sie sich an die Implementation her-
an. Wir stellen Ihnen hier eine Basisim-
plementation vor, die leicht verständ-
lich, aber nicht rechenzeitoptimiert ist.
Bei Punkten, an denen Sie eine Optimie-
rung vornehmen können, weisen wir Sie
an der entsprechenden Stelle darauf hin.
Im Folgenden behandeln wir den Spezi-
alfall, dass wir einen Pfad auf einer Spiel-
welt suchen, deren Karte aus einem re-
gelmäßigen Schachbrett besteht. In einer
Landkarte der Spielewelt speichern Sie,
wie aufwendig es für die Spielfigur ist,
sich darüber zu bewegen.

Die Implementation ist in der AStar-
Klasse verpackt.

class AStar
{private:

Position start, goal;

int lowestOpen;
int lowestCost;
int nodesExpanded;

int nOpen, nClosed;
Node **open;
Node **closed;

Node *goalNode;

Die Member-Variablen der Klassen
speichern außer dem Start- und Ziel-
punkt die Open- und Closed-Listen als
Array. In einer optimierten A*-Suche
würden Sie diese als Priority Queues
speichern. In Priority Queues, die Sie als
binäre Bäume verwalten, geht es schnel-
ler, nach der Node (Knoten) mit den ge-
ringsten Kosten zu suchen. Außerdem
speichern Sie den Index des voraussicht-
lich besten Knotens, seine Kosten und
einen Zeiger auf den Endknoten, sofern
dieser gefunden wurde.

Für die Verwaltung der Open- und
Close-Liste benötigen Sie Methoden,
um Elemente einzufügen, zu suchen
oder zu löschen:

void pushNode(Node **list,
int *count, Node *node)

{
list[(*count)++] = node;

}

int containsNode(Node **list,
int count, Node *me)

{
for (int i =0; i< count; i++)

if (list[i]->p == me->p)
return i;
return -1;

}
void removeNode(Node **list,

int *count, int me)
{

list[me] =list[–(*count)];
}

Für die Kostenberechnung oder -schät-
zung benötigen Sie folgende Funktio-
nen, wobei Sie die Schätzung genauer
untersuchen:

// Kosten als Integerwerte !
#define COSTDIAGONAL 554
// sqrt(2)*100000/255
#define COSTSTRAIGHT 392
// 100000/255
static const int travCost[8] =
{

COSTDIAGONAL, COSTSTRAIGHT,
COSTDIAGONAL, COSTSTRAIGHT,
COSTSTRAIGHT, COSTDIAGONAL,
COSTSTRAIGHT, COSTDIAGONAL
};

// Berechnung: d ist eine der 8
// Richtungen auf der Karte
// (NW,N,NO,W,O,SW,S,SO)
int traversalCost(Position &a,

Position &b, int d)
{

int c = (map[a.x()][a.y()]+
map[b.x()][b.y()]) >1;
return c * travCost[d];

}
// Schätzung q

218 August 2001 PC Magazin

P C U N D E R G R O U N D
P R A X I S

int pathCostEstimate
(Position &s, Position &g)
{

return 0;
}

Beim Start der Suche löschen Sie die
Open- und Close-Liste und erzeugen ei-
nen Startknoten, den Sie in die Open-
Liste eintragen. Außerdem speichern Sie
den Zielknoten:

void init(Position &s,
Position &g)
{

nOpen = nClosed = 0;
Node *startNode = new Node();

startNode->p = s;
startNode->h =

pathCostEstimate(s, g);
startNode->f = startNode->h;
startNode->pred = NULL;
startNode->nPred = 0;

goal = g;

pushNode(open,&nOpen,startNode);
lowestOpen = nOpen - 1;
lowestCost = startNode->f;

};

Nun können Sie mit der Suche und der
Expansion der Knoten anfangen:

int searchPath()
{
//noch nodes in der open list?

while (nOpen > 0)
{

// beste node nehmen
Node *node = open[lowestOpen];
removeNode((Node**)open,

&nOpen, lowestOpen);
findLowestCost();

if (node->p == goal)
{

// ziel gefunden !
goalNode = node;
return node->nPred + 1;

} else
{

expandNode(node);
nodesExpanded ++;

}
pushNode(closed,&nClosed,node);

}
// kein weg gefunden !
return -1;
}

Die Expansion der Knoten ist das Kern-
stück des A*-Algorithmus. Zunächst be-
trachten Sie jeden Nachbarknoten, der
auf der Karte liegt und kein unbegehba-
res Spielfeld ist. Sie testen die Begehbar-
keit in der If-Abfrage von isValid():

void expandNode(Node *node)
{

for (int d = 0; d < 8; d++)
{

Position p =
node->p.neighbour(d);

if (isValid(p))
{

Die Kosten bis zu dieser Node können
Sie berechnen und in einer neuen Node
speichern:

int newCost = node->g +

traversalCost(node->p, p, d);

Node *newNode = new Node(
newCost,
pathCostEstimate(p, goal),
node, node->nPred+1, p);

int io, ic, contained = 0, old-
Cost = -1;

Prüfen Sie, ob die neue Node schon in ei-
ner Liste gespeichert ist:

io = containsNode(open, nOpen,
newNode);
ic = containsNode(closed, nClo-
sed, newNode);

if (io != -1 || ic != -1)
{

if (io != -1)
oldCost = open[io]->g; else
oldCost = closed[ic]->g;

}

if (oldCost != -1 &&
oldCost <= newCost)

{
delete newNode;
continue;

} else {

Nur einen neuen, besseren Weg zur ak-
tuellen Node müssen Sie speichern:

if (ic != -1)
removeNode(closed,&nClosed,ic);

if (io != -1)
removeNode(open, &nOpen, io);

pushNode(open,&nOpen,newNode);
findLowestCost();

}
}

}
}

Wenn ein Weg gefunden ist, übertragen
Sie diesen in ein Array aus der Elemen-

ten-Position. Dazu müssen Sie rück-
wärts den Weg vom Zielknoten aus ver-
folgen:

int getPath(Position *p)
{
Position *dst=

&p[goalNode->nPred];
int length =goalNode->nPred + 1;

Node *node = goalNode;

while (1)
{

*dst = node->p;
*dst –;
if (node->pred != NULL)

node = node->pred;
else

break;
};
return length

}

Im Bild oben sehen Sie die Landkarte aus
dem Testprogramm der Heft-CD. Hel-
le Felder sind leichter passierbar, dunkle
schwerer und schwarze Felder gar nicht.
Die roten Pfeile markieren den Weg der
Spielfigur. Die Felder, deren Nodes ex-
pandiert wurden, sind mit einem kleinen
blauen Kästchen gekennzeichnet.

■ Nachbarzustände
Nach der Theorie und der Implementa-
tion des A*-Algorithmus können Sie die
Ästhetik und die Performance der
Wegsuche verbessern.

Eine Karte aus regelmäßigen Feldern
erleichtert die Wahl der Nachfolgekno-
ten, die aus den vier direkt anliegenden
Nachbarfeldern und den vier diagonal
erreichbaren Feldern resultieren. Wenn
Sie die Pfadsuche daran hindern wollen,

ein Feld zu betreten,
schließen Sie dies in
der Funktion expand-
Node(...) aus.

In Computerspie-
len sichert dieses Ver-
fahren, dass kein
Fahrzeug über Was-
ser fährt und kein
Schiff das Wasser ver-
lässt. Wenn Sie einen
beliebigen Graphen
verwenden und kein
regelmäßiges Gitter,
ist es für die Rechen-
zeit wichtig, dass Sie
die Adjazenzinfor-
mation (Nachbar-
schaft- oder Verbin-
dungsinformation)
für jeden Knoten
speichern, denn
Rechnen kostet Zeit
und Geld.UNSER TESTPROGRAMM hat einen Pfad gefunden!

PC Magazin August 2001 219

P C U N D E R G R O U N D
P R A X I S

■ Die Kostenfunktion

Die Kostenfunktion repräsentiert für ei-
nen Pfad vom Start- zum Endknoten
den Wert, der minimiert werden soll.
Das kann die Entfernung, Reisezeit oder
verbrauchter Treibstoff sein. Sie können
auch andere Faktoren einbringen.
Denkbar wären Aufschläge für schlecht
passierbares Terrain.
Je nach Typ der Spielfigur (Aktortyp) in
Ihrem Spiel sollten Sie die Aufschläge
variieren. Fahrzeuge bewegen sich auf
Straßen deutlich schneller als querbeet,
wohingegen der Unterschied für Infan-
trie nicht entscheidend ist. Die Kosten
können von der Bewegungsrichtung ab-
hängen. Bergauf ist teurer als bergab.
Mit der Kostenfunktion beeinflussen Sie
also nicht nur die Rechenzeit, sondern
auch die Ästhetik des gefundenen Pfades
und den Realismus. Die folgende einfa-
che Kostenfunktion berücksichtigt die
Richtung der Bewegung nicht, dafür das
Terrain mit Start- und Endposition:

int traversalCost

(Position &a, Position &b,

int d)
{

int c =(map[a.x()][a.y()] +
map[b.x()][b.y()]) >1;

return c * travCost[d];
}

■ Die Kostenschätzung
Die Schätzung der Restkosten ist ein
weiterer zeitkritischer Punkt bei der
Pfadsuche mit dem
A*-Algorithmus. Die
Restkosten optimis-
tisch auf Null zu
schätzen, ist an hier
optimal: Die Rechen-
zeit ist auch Null.

In Folge müssen Sie
dafür sehr viel mehr
Knoten expandieren
als bei einer etwas
sinnvolleren Schät-
zung: Verwenden Sie
besser den euklidi-
schen Abstand, den
sie mit den minimalen
Bewegungskosten
multiplizieren. Diese
Schätzung liefert
schon deutlich besse-
re Ergebnisse.

Da der Abstand
nicht kürzer sein
kann als die Fluglinie,
ist das auch eine opti-

mistische Schätzung.
Eine einfache Kos-
tenschätzfunktion ist
der euklidische Ab-
stand zweier Knoten
unter Berücksichtung
der Begehbarkeit der
Landschaft:

int

pathCostEstimate
(Position &s,
Position &g)
{

int c = (map[
s.x()][s.y()]+

map[g.x()][g.y()]) > 1;

return max
(abs(s.x()- g.x()),
abs(s.y() - g.y()))*

COSTSTRAIGHT*c;

// triviale variante
return 0;

}

Anhand der Zahl der expandierten Kno-
ten in den beiden vorigen Bildern sehen
Sie die Auswirkungen verschiedener
Kostenschätzungen. Diese beweisen,
wie unterschiedlich die Zahl der expan-
dierten Knoten sein kann.

■ Schwächen des
A*-Algorithmus
Der A*-Algorithmus kann auf großen
Spielkarten sehr viel Speicher verbrau-
chen, wenn Hunderte oder Tausende
von Nodes expandiert werden. Er
nimmt die CPU stark in Beschlag.

Besonders schlecht ist der A*-Algo-
rithmus in Fällen, in denen kein Weg
existiert, da er dann jede vom Startkno-
ten aus erreichbare Position expandiert.
Um in diesem Fall Rechenzeit zu sparen,

analysieren Sie vorab Ihre Spielfeldkar-
te. Dies können Sie manuell oder algo-
rithmisch tun. Speichern Sie das Ergeb-
nis, wenn es überhaupt einen Pfad zwi-
schen zwei Feldern gibt.

Daneben gibt es einige Ansatzpunkte
den A*-Algorithmus schneller zu ma-
chen. Sie können die Geschwindigkeit
durch bessere Expansion der Knoten
und der Restkostenschätzung erhöhen.
Die Ästhetik können Sie durch Aus-
schließen von Knoten, die Glättung des
resultierenden Pfades oder Verwendung
von Splines für die tatsächlichen Wege
verbessern. s E T

LLiitteerraattuurr::

Russel, Stuart und Norvig, Peter, Artificial Intelli-
gence: A Modern Approach, Prentice Hall, 1995

Nilsson, Nils J., Artificial Intelligence: A New Syn-
thesis. Morgan Kaufmann, 1998

DIE OPTIMISTISCHE Restkostenschätzung Null expandiert zu
viele Knoten.

DIE RESTKOSTENSCHÄTZUNG NULL und der euklidische
Abstand im freien Gelände im direkten Vergleich.

DER A*-ALGORITHMUS findet auch Wege
durch ein Labyrinth.

