PC UNDERGROUND

©»
‘ PRAXIS
y Die Quelltexte sowie die fertig ubersetz-
ten Routinen finden Sie im Verzeichnis
@) p tl m | erun g d es A* _Al g or | t h mus '.fj:,__ Praxis/Programmierung/PC Underground.

und

Der A*-Algorithmus gibt die Wegrichtung vor, doch Sie suchen
. Wahrend der Algorithmus noch das Labyrinth berech-

net, geht der schnellste auf die Zielgerade.

CARSTEN DACHSBACHER

it dem A*-Algorithmus pro-
M grammieren Sie fur Ihre Spiel-
helden einen sicheren Weg
selbst durch sumpfiges Gelande. In PC
Underground 8/01 (ab S. 216) kam die
Basis-Implementation zum Einsatz. In

scheiden und liefert den Pfad als Ergeb-
nis, den er als erstes findet. Um den A*-
Algorithmus auf dem geraden Pfad zu
halten, erhdhen Sie den Wert der Kos-
tenfunktion bei einer Richtungsinde-
rung und fiihren damit Strafkosten fiir
Richtungsédnderungen ein. Diese Modi-
fikation beriicksichtigt nur den Uber-
gang von einem Feld zum néchsten. Als

In die expandNode(...)-Funktion un-
serer A*-Implementation fiigen Sie dazu
Folgendes ein:

/I 8-Bewegungsrichtungen

II'S, SO, O, SO, N, NW, W, SW

static const int xofs[8] =
{0,1,1,1,0,-1,-1,-1}

static const int yofs[8] =
{-1,-1, 0,1,1,1,0,-1};

/I Tabelle mit Strafkosten

dieser Ausgabe programmieren Sie eine Startwert fur Experimente mit Strafkos- int costModify[] =
optimierte Variante mit weiteren Algo- ten wéhlen Sie zum Beispiel die halben CO{S%SCSRSATI(SBLF;@E?T 128,

rithmen. Der Blick auf die Asthetik der
A*-Pfade dient keiner philosophischen
Betrachtung Uber Wahrheit, sondern be-
schreibt pragmatisch: Der schonste Weg
ist auch der schnellste.

Mit dem A*-Algorithmus kénnen Sie
zwar einen beliebigen Pfad fiir eine Spiel-
figur berechnen. Doch das reicht nicht:
Der Pfad soll den Eindruck vermitteln,
dass er von einem Lebewesen gewdhlt
wurde. Er muss drei Kriterien erfillen:
« Er soll gerade werden, also seine Rich-
tung so wenig wie moglich andern.
 Ersoll mehr abgerundet als zackig ver-
laufen.

« Er soll méglichst direkt verlaufen.

Die Pfade, die ein A*-Algorithmus be-
rechnet, weisen oft unnétige Richtungs-
&nderungen auf (siehe Bild rechts oben).

Es gibt zwei Ansatzpunkte, um Pfade
zu begradigen:

e Die erste Methode verursacht eine
Richtungsédnderung zusétzliche Re-
chenzeit (auch Kosten genannt), so dass
der A*-Algorithmus gerade Pfade be-
vorzugt.

= Die andere Variante versucht, den re-
sultierenden Pfad des A*-Algorithmus
zu begradigen.

Es kommt vor, dass zwei Pfade die
gleiche Rechenzeit benétigen, aber einer
realistisch wirkt und der andere eine be-
trunkene Spielfigur vermuten lasst. Der
A*-Algorithmus kann das nicht unter-

224 September 2001 PC Magazin

Kosten einer normalen Bewegung.

EIN UNENTSCHLOSSEN wirkender A*-Pfad
erinnert an den taumelnden Gang eines
Betrunkenen.

MIT DER ERSTEN OPTIMIERUNG geht es
geradewegs ins Ziel.

Ox7fffff, OX7fffff, OX7fffff,
OxTfffff, OXTFffff };
I/ liefert Bewegunsrichtung
int getDirlndex(int dx, int dy)

for (int dir = 0;
dir < 8; dir ++)
if (xofs[dir] == dx &&
yofs[dir] == dy)return dir;

if (isValid(p))
{

/I Strafkosten
travCostModify = 0;

/I Vorganger vorhanden ?
if (node->pred)

{

/' vorherige Richtung

dirX = p.x() - node->p.x();

dirY = p.y() - node->p.y();

dir = getDirlndex

(dirX, dirY);
/I neue Richtung

lastDirX = node->p.x() -
node->pred->p.x();

lastDirY = node->p.y() -
node->pred->p.x();

lastDir = getDirIndex(last-
DirX, lastDirY);

/I Abweichung der neuen und
alten Richtung

int rot = lastDir - dir;

if (rot>4)rot =8 - rot;

if(rot<-4)rot=8+
rot;

rot = abs(rot);

travCostModify = costModify[
rot];

Wenn Sie Strafkosten verteilen, dauert
die Berechnung fir die Pfadsuche ent-
sprechend langer. Der Algorithmus
muss mehr Pfade betrachten, um sich flr
den besten entscheiden zu kénnen.

Selbst wenn Sie die Pfade des A*-Algo-
rithmus begradigt haben, so sind die
noch verbleibenden Richtungsédnderun-
gen immer noch abrupt (in einem Win-
kel von mindestens 45 Grad). Die L06-
sung kommt aus der Computergrafik:
Der berechnete Pfad ist eine Folge von
Punkten. Diese Punkte kdnnen Sie als
Stltzpunkte einer parametrischen Kur-
ve (etwa einer Bézier-Kurve) ansehen.
Bézier-Kurven verlaufen nur durch den
ersten und den letzten Stutzpunkt. Da
der A*-Algorithmus Hindernisse auf
der Spielkarte umlaufen soll, muss sich
die Kurve aber moglichst genau am ge-
fundenen Pfad orientieren. Mit den Cat-
mull Rom Splines berechnen Sie einen
abgerundeten Pfad (vgl. Bild unten).
Ubergeben Sie der Catmull Rom-For-
mel vier Stilitzpunkte. Mit einem Para-
meter u, der im Intervall von 0 und 1 ver-
lauft, erhalten Sie eine glatte Kurve zwi-
schen dem zweiten und dritten Punkt:

MIT CATMULL ROM SPLINES wirken die
Pfade abgerundet und naturlich.

N

DIE PFADANDERUNGEN des A*-Algorith-
mus verbergen Sie mit Catmull Rom Splines.

out = pl * (-0.5f*u*u*u + u*u -
0.5f*u) +

p2 * (1.5f*u*u*u - 2.5f*u*u +
1.0f)+

p3 * (-1.5f*u*u*u + 2.0f*u*u +
0.5f*u) +

p4 * (-0.5f*u*u*u - 0.5f*u*u);

Wenn u gleich 0 ist, erhalten Sie als Er-
gebnis den Punkt p2, fir den Wert 1 er-
halten Sie p4. Fur das erste und das letz-
te Kurvensegment Ihres A*-Pfads Uber-
geben Sie den ersten bzw. den letzten
Stiitzpunkt des Pfades doppelt. Folgen-
der Code-Ausschnitt zeigt das Zeichnen
des Spline-Pfads:

void interpolatedPosition(float
*x, float *y,
Position *a, Position *b,
Position *c, Position *d,
floatu)
{
u3=u*u*u
u2=u*u;
f1 =-0.5f * u3 +u2 - 0.5f * u;
f2 =1.5f * u3 -2.5f * u2+1.0f;
f3 = -1.5f*u3+2.0f*u2+0.5f* u;
f4 = 0.5f * u3 - 0.5f * u2;
*x = a->x()*f1 + b->x()*f2 +
c->x()*f3 + d->x()*f4;
*y = a->y()*fl + b->y()*f2 +
c->y()*f3 + d->y()*f4;

void drawPathCatmullRom(Position
*path, int length)

glBegin(GL_LINE_STRIP);
for (i=0;i<length; i++)

for (float u = 0.0f; u <
1.0f; u += 0.01f)

float x, y;
interpolatedPosition(
&x, &Yy,
&path[max(0,i-1)],
&pathli],
&path[min(i+1,length-1)],
&path[min(i+2,length-1)], u);
glVertex2f(x + 0.5f, y +
0.5f);

}

Wenn die Rechenzeit bei der Spline-In-
terpolation eine Rolle spielt, gentigt es
auch, fir verschiedene, vorher festgeleg-
te u-Werte die Faktoren f1, f2, f3 und f4
vorzuberechnen und den Pfad nur um
eine begrenzte Anzahl von Zwi-
schenpunkten zu erganzen:

//u=0.0

out = p2

/lu=1.0/3.0

out =-0.0740740*p1 +

0.7777777*p2 +
0.3333333*p3 -

0.0370370*p4

/lu=2.0/3.0

out = -0.0370370%p1 +

0.3333333*p2 +
0.7777777*p3 -

0.0740740*p4

/lu=1.0
out = p3

PC UNDERGROUND
PRAXIS

Den neuen Pfad mit den zusatzlichen
Zwischenpunkten kdnnen Sie einfach
fir Ihre Spielfigur verwenden, indem Sie
sie stiickweise linear bewegen lassen. Die
Anzahl der neuen Punkte ist bei der obi-
gen Rechnung dreimal so hoch wie die
des Ausgangspfads. An geraden Teilen
des Pfads kdnnen Sie kollineare Punkte
(die Punkte, die auf der Verbindungsge-
rade des Vorganger- und des Nachfol-
gerpunktes liegen) wieder entfernen.

Stellen Sie sich ein Gebédude vor, in dem
Sie mit dem A*-Algorithmus einen Pfad
planen wollen. AuRer der Karte, die ein
Gebdudegeschoss in viele Quadrate auf-
teilt, kénnen Sie einen Verbindungsgra-
phen aufbauen. Dazu speichern Sie, wel-
cher Raum von welchem Raum jeweils
durch eine TUr erreichbar ist. Der A*-
Algorithmus kann jede Form von Gra-
phen durchsuchen.

Die hierarchische Pfadsuche erfolgt in
zwei Schritten:

« Im ersten Schritt planen Sie den Pfad
grob,

« im zweiten Schritt berechnen Sie den
Verlauf des Pfads im Detail.

Der erste Schritt besteht also darin, zu
suchen, durch welche Rdume des Ge-
badudes der Pfad fuhrt. Im zweiten
Schritt planen Sie dann auf dem Level
der Spielfelder die Pfade innerhalb eines
Raums zur TUr zum néchsten Raum.

Mit der hierarchischen Pfadsuche spa-
ren Sie sehr viel Rechenzeit, weil Sie den
Suchraum (die GroRe des Graphen, die
der A*-Algorithmus durchsucht) dras-
tisch reduzieren. Leider verlduft der
Pfad wegen der Verbindungsinformati-
on der Raume immer durch die Mitte @

Start Ziel

DER HIERARCHISCHE A*—Algorithmus in
einem Gebaude fuhrt zur einen Tur rein,
zur nachsten hinaus.

PC Magazin September 2001 225

2

PC UNDERGROUND
PRAXIS

der Tdren. Um den optimalen Pfad
durch die Rdume zu finden, missen Sie
mehr Rechenzeit investieren. In Verbin-
dung mit der hierarchischen Pfadsuche
konnen Sie sich das aber leisten: Suchen
Sie auf der zweiten Ebene nicht den Pfad
zur nédchsten Tur, sondern zur Uber-
nachsten. Sie speichern aber nur den Teil
des Pfads, der Sie zur nachsten Tur flihrt,
und verwerfen den Rest.

Die einzelnen Schritte:
» Suchen Sie den besten Pfad durch die
Raume: 1, 2, 3,4
« Suchen Sie den Pfad vom Start zum
Punkt P2.
« Verwerfen Sie den zweiten Teil des
Pfades.
» Suchen Sie den Pfad zum Punkt P3.
« Verwerfen Sie den zweiten Teil des
Pfades.
e Suchen Sie den verbleibenden Pfad
zum Ziel.

Die hierarchische Pfadsuche funktio-
niert genauso auf Spielwelten, die nicht
aus Raumen bestehen, sondern aus einer

Optimierung. Weiterhin kénnen Sie den
Algorithmus sowie den Code verbes-
sern. Dazu implementieren Sie eine
Reihe von Funktionen und Kilassen,
die den A*-Algorithmus signifikant
beschleunigen!

Der A*-Algorithmus untersucht Nodes
(Knoten), die er zwischenspeichert. Statt
jedes Mal neu Speicher fiir einen Node
zu allokieren (adressieren), reservieren
Sie von vornherein Speicher fur genu-
gend Nodes. Bei Bedarf nehmen Sie den
Speicher aus der NodeBank. Eine einfa-
che C++-Klasse hierfir sieht so aus:
class NodeBank

#define MAXBANKSIZE (256*256)
private:
intn;
Node *nodebank;
public: NodeBank(): n(0)
{ nodebank =
new Node[MAXBANKSIZE |;}
~NodeBank()
{delete nodebank;}
Node *getNewNode()

SCHON VERKURZTE PFADE mit hierarchischer Wegsuche benétigen den doppelten
Rechenaufwand.

Landkarte: Legen Sie einfach eine grobe
Représentation Ihrer Karte an. Fir eine
Karte mit 256 x 256 Feldern berechnen
Sie eine kleine Version mit 32 x 32 Fel-
dern. Ein Feld auf der kleinen Karte
steht fiir 8 x 8 Spielfelder. Fir die hierar-
chische Pfadsuche ist es egal, ob Sie im
ersten Schritt den VVerbindungsgraph fur
Felder oder fir R4ume verwenden.

if (n < MAXBANKSIZE)
return &nodebank[n++ J;

else

{ kein Speicher mehr !
exit(1);

}

}

Andern Sie die Architektur der A*-Spei-
cherstrukturen. Bisher haben Sie eine

Z\.el
Die benétigte Re-
chenzeit konnen Sie

Ziel Ziel
[]

temp_ Ziel 2

mit der hierarchi-
schen Methode sowie) temp. Ziel 1
mit der Kostenfunk- f

/ /!iklueHe Position

tion beeinflussen. Die

Verkleinerung des
Start

aktuelle Position

Start Start

Suchraums und die
Kostenfunktion sind

ein Ansatzpunkt der ge Wege.

226 September 2001 PC Magazin

DIE HIERARCHISCHE PFADSUCHE spart auf Landkarten unnéti-

Open- und eine Close-Liste gespeichert.
Diese Methode ist sehr anschaulich, aber
nicht optimal fur die Rechenzeit. Fassen
Sie diese beiden Listen zusammen. Um
dennoch unterscheiden zu kdnnen, ob
ein Node open oder closed ist, speichern
Sie zwei Flags in der Node-Klasse. Hier
sehen Sie die fir A* relevanten Daten:

class Node

{ private:
int g,f;
Node *pred;
Position p;

bool inOpen,inClosed;

Diese Nodes speichern Sie in der Mas-
ter-Node-List. Sie benétigen Funktio-
nen, um einen Node anhand einer Posi-
tion p zu suchen. Fur eine schnelle Suche
von Elementen in einer Liste eignet sich
das Hashing. Dabei definieren Sie eine
Hash-Funktion, die zu einer Position ei-
nen Hash-Wert berechnet:

#define HASHFUNC(p) {

((p-x()&255)<<8)|((p-y())&255) }
Den Hash-Wert verwenden Sie als In-
dex in einer Hash-Tabelle. An der Stelle
zum Index speichern Sie den Node:

typedef struct HASHNODEPTR

Node *node;

HASHNODEPTR *next;
JHASHNODE;
HASHNODE *hash = new HASHNODE]
MAXHASHSIZE J;

/I node in Hashtable speichern

int hashcode = HASHFUNC
(node->p);

hash[hashcode]->node = node;

hash[hashcode]->next = NULL;

In der Hashnode-Struktur sehen Sie,
dass auRBer dem Node noch ein Zeiger
auf den néchsten Hashnode gespeichert
wird. Der Grund: Es kann bei bestimm-
ten Hash-Funktionen vorkommen, dass
zwei unterschiedliche Positionen den-
selben Hash-Wert besitzen. In diesem
Fall speichern Sie alle Nodes mit dem-
selben Hash-Wert in einer verketteten
Liste, die bei hash[hashcode] beginnt.
Wenn Sie einen Node suchen, verwen-
den Sie folgende Funktion:

Node *getNodeStored(Position p)

int hashcode = HASHFUNC(p);
HASHNODE *node =
&hash[hashcode J;
while (node '= NULL &&
node->node != NULL &&
node->node->p !=p)
node = node->next;
if (node != NULL)
return node->node; else
return NULL;

}
Das Hashing finden Sie in der Klasse
MasterNodeL.ist im Sourcecode zu die-

ser Ausgabe. Wéhrend der A*-Suche be-
notigen Sie Node-Strukturen fir eine
Position. Ist ein Node schon bekannt,
brauchen Sie einen Zeiger auf ihn in der
MasterNodeL.ist. Wenn Sie diesen Node
das erste Mal erreichen, miissen Sie einen
neuen erzeugen. Dazu verwenden Sie ei-
ne Funktion der MasterNodeL.ist:
?lode *getNode(Position p)

/I Node schon in der Liste ?
Node *node =
this->getNodeStored(p);

if(node)
return(node); else

{ /I nein => neue Node
Node *newNode =
nodeBank->getNewNode();
newNode->p = p;
newNode->inOpen = false;
newNode->inClosed = false;
/I und speichern
this->storeNode(newNode);
return(newNode);

Sie speichern alle Nodes zusammen in
der Master Node List und die Open-L.is-
te aus Performance Griinden nochmals
separat in einer Priority Queue. Der A*-
Algorithmus wahlt fiir seine Wegsuche
und die Expansion der Nodes immer
den Node, der voraussichtlich zum op-
timalen Pfad gehort. Das ist der Node in
der Open-Liste mit den niedrigsten Ge-
samtkosten.

Die Open-Liste kann sehr grofd wer-
den, und eine Suche nach dem besten
Node sehr aufwendig sein. Deshalb
speichern Sie die Liste sortiert in einer
Priority Queue. Dadurch, dass Sie die
Sortierung beim Einfiigen und Entfer-
nen von Nodes aufrecht erhalten, redu-
zieren Sie den Suchaufwand deutlich.

Die STL (Standard Template Library)
bietet gentigend Funktionalitat, um die
bendtigten Funktionen zu implementie-

nierte Priority Queue in STL, aber mit
den Funktionen eines Binary Heap
(binarer Speicherplatz) kénnen Sie die
anfallenden Aufgaben erledigen.

Hier sehen Sie einen kleinen Auszug
aus dem Sourcecode, der zeigt, wie Sie
Elemente einfigen, entfernen und
sortieren:

class PriorityQueue

private:
std::vector<Node*> heap;
public:
Node *pop() // O(log n)

/I 1.Node niedrigsten Kosten
Node *node = this->heap.front();
/I 1.node zum ende (N) bewegen
/I sortieren 1 bis N-1 neu
std::pop_heap(this->
heap.begin(),
this->heap.end(),
NodeCompare());
Il letzte Node wegnehmen
/[Heap ist wieder sortiert
this->heap.pop_back();

return(node);

}
void push(Node* node)
/1 O(log n)

/I Node am Ende speichern
/I => Heap ist unsortiert !
this->heap.push_back(node);
/I Element einsortieren !
std::push_heap
(this->heap.begin(),
this->heap.end(),
NodeCompare());
}

h
Die std::push_heap(...)-Funktion sor-
tiert den Heap neu. Dazu benétigt sie
eine Vergleichsfunktion. Diese ver-
gleicht die Gesamtkosten zweier Nodes.
Geben Sie fur STL in einer Klasse Fol-
gendes an:

class NodeCompare
{
public:
bool operator()
(Node *a, Node *b) const
{return(a->f > b->f);}

PC UNDERGROUND
PRAXIS

Fassen Sie die optimierten Routinen in
der A*-Klasse — die Sie im PC-Under-
ground-Beitrag Ausgabe 8/01 S. 216 im-
plementiert haben — zusammen. Damit
erhalten Sie eine optimierte Variante, um
schnell den passenden Pfad zu suchen.
Die zwei modifizierten Funktionen fin-
den Sie im Listing expandnode.

Damit haben Sie alles eingebaut, was
Sie fir eine A*-Pfadsuche in einem
Computerspiel bendétigen. Wichtig ist
noch, die Pfade rechtzeitig zu berech-
nen. In einem Computerspiel muss der
Spieler sofort eine Reaktion einer Spiel-
figur feststellen, wenn er einen Befehl er-
teilt. Manchmal wird die benétigte Zeit
fir die Wegsuche mit einem Soundeffekt
als Befehlsbestatigung kaschiert. Gleich-
zeitig missen Sie in einem Computer-
spiel darauf achten, dass Sie nicht zu viel
zusammenhéngende Rechenzeit bei der
Wegsuche verbrauchen, da sonst das
Spiel kurze Zeit still steht. Sie organisie-
ren dazu die Berechnung und teilen sie
auf. In den folgenden Literaturangaben
finden Sie interessante empfehlenswerte
Links, die nicht mit weiterfiihrenden In-
formationen sparen. ET

Literatur:

Russel, Stuart und Norvig, Peter, Artificial Intelli-
gence: A Modern Approach, Prentice Hall, 1995
Nilsson, Nils J., Artificial Intelligence: A New Syn-
thesis. Morgan Kaufmann, 1998

Nelson, Mark, Priority Queues and the STL, Dr.
Dobbs Journal Januar 1996, oder www.dogma.net/
markn/articles/pq_stl/priority.htm

Heyes-Jones, Justin, A* Algorithm Tutorial, oder
www.gamedev.net/reference/programming/ai/
article690.asp

Patel, Amit J., Amit’s Thoughts on Pathfinding, oder
http://theory.standford.edu/~amitp/GamePro
gramming

Sout, Bryan W., Smart Moves: Intelligent Path-Fin-
ding, oder www.gamasutra.com/features/

ren. Es gibt keine verwendbare vordefi- h 19990212/sm_01.htm
. 213 { /I in die CpenList
22 pqueue- >push(pNode); pNode->i nCpen = true;
1: void expandNode(Node *node) 23: }rr1Y}
2: { for (d=0; d<8; d++) 24: int searchPath()
3: { p = node- >p. nei ghbour (d); 25: { while(!pqueue->i sEnpty())
43 if (isvalid(p)) 26: { // beste Node hol en
53 { // nicht die Node durchsuchen von der wir kommen ! 273 Node *node = pqueue- >pop();
6: if(node->pred == NULL || node->pred->p I=p) 28 if(node->p == goal)
7: { Node newNode; 29: { Il Ziel gefunden ?
8: newNode. p = p; newNode.pred = node; 30: goal Node = node;
2 newNode. g = node->g + 31: return node->nPred + 1; }
10: traversal Cost (node->p, p, d); 32: expandNode(node);
11: newNode. f = newNode. g + pat hCostEstimate(p, goal); 33: I/ node in die dosed Liste
12: pNode = nast er NodeLi st - >get Node(newNode.p); 34: node- >i nd osed = true; }
13: /I prufen, ob sich die neue Node | ohnt 35: [/l kein Pfad gefunden
14: if(!(pNode->i n(pen &2 newNode.f > pNode->f) &% 36: return -1;
15: ! (pNode- >i nd osed &2 newhbde. f > pNode->f)) 37: }
16: { /I ja'! entweder neu oder update!
17: pNode = newNbde; pNode->i nd osed = fal se;
igi" ;; (l.gzb?e- >i nCpen) ExpandNode fiihrt vor, wie Sie mit optimierten Routinen im
] ate * . .
20- pqueue- >updat eNode(phode); el se A*-Algorithmus schneller ans Ziel kommen.

PC Magazin September 2001 227

D¢

