
224 September 2001 PC Magazin

P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R

Mit dem A*-Algorithmus pro-
grammieren Sie für Ihre Spiel-
helden einen sicheren Weg

selbst durch sumpfiges Gelände. In PC
Underground 8/01 (ab S. 216) kam die
Basis-Implementation zum Einsatz. In
dieser Ausgabe programmieren Sie eine
optimierte Variante mit weiteren Algo-
rithmen. Der Blick auf die Ästhetik der
A*-Pfade dient keiner philosophischen
Betrachtung über Wahrheit, sondern be-
schreibt pragmatisch: Der schönste Weg
ist auch der schnellste.

Mit dem A*-Algorithmus können Sie
zwar einen beliebigen Pfad für eine Spiel-
figur berechnen. Doch das reicht nicht:
Der Pfad soll den Eindruck vermitteln,
dass er von einem Lebewesen gewählt
wurde. Er muss drei Kriterien erfüllen:
• Er soll gerade werden, also seine Rich-
tung so wenig wie möglich ändern.
• Er soll mehr abgerundet als zackig ver-
laufen.
• Er soll möglichst direkt verlaufen.

■ Gerade Pfade
Die Pfade, die ein A*-Algorithmus be-
rechnet, weisen oft unnötige Richtungs-
änderungen auf (siehe Bild rechts oben).

Es gibt zwei Ansatzpunkte, um Pfade
zu begradigen:
• Die erste Methode verursacht eine
Richtungsänderung zusätzliche Re-
chenzeit (auch Kosten genannt), so dass
der A*-Algorithmus gerade Pfade be-
vorzugt.
• Die andere Variante versucht, den re-
sultierenden Pfad des A*-Algorithmus
zu begradigen.

Es kommt vor, dass zwei Pfade die
gleiche Rechenzeit benötigen, aber einer
realistisch wirkt und der andere eine be-
trunkene Spielfigur vermuten lässt. Der
A*-Algorithmus kann das nicht unter-

scheiden und liefert den Pfad als Ergeb-
nis, den er als erstes findet. Um den A*-
Algorithmus auf dem geraden Pfad zu
halten, erhöhen Sie den Wert der Kos-
tenfunktion bei einer Richtungsände-
rung und führen damit Strafkosten für
Richtungsänderungen ein. Diese Modi-
fikation berücksichtigt nur den Über-
gang von einem Feld zum nächsten. Als
Startwert für Experimente mit Strafkos-
ten wählen Sie zum Beispiel die halben
Kosten einer normalen Bewegung.

In die expandNode(...)-Funktion un-
serer A*-Implementation fügen Sie dazu
Folgendes ein:

...
// 8-Bewegungsrichtungen
// S, SO, O, SO, N, NW, W, SW
static const int xofs[8] =

{ 0, 1, 1, 1, 0, -1, -1, -1 };
static const int yofs[8] =

{ -1, -1, 0, 1, 1, 1, 0, -1 };
// Tabelle mit Strafkosten
int costModify[] =

{ 0, COSTSTRAIGHT*128,
COSTSTRAIGHT*256,

0x7fffff, 0x7fffff, 0x7fffff,
0x7fffff, 0x7fffff };

// liefert Bewegunsrichtung
int getDirIndex(int dx, int dy)
{

for (int dir = 0;
dir < 8; dir ++)

if (xofs[dir] == dx &&
yofs[dir] == dy)return dir;

}

if (isValid(p))
{

// Strafkosten
travCostModify = 0;
// Vorgänger vorhanden ?
if (node->pred)
{

// vorherige Richtung
dirX = p.x() - node->p.x();
dirY = p.y() - node->p.y();
dir = getDirIndex

(dirX, dirY);
// neue Richtung

lastDirX = node->p.x() -
node->pred->p.x();

lastDirY = node->p.y() -
node->pred->p.x();

lastDir = getDirIndex(last-
DirX, lastDirY);

// Abweichung der neuen und
alten Richtung

int rot = lastDir - dir;
if (rot > 4) rot = 8 - rot;
if (rot < -4) rot = 8 +

rot;
rot = abs(rot);
travCostModify = costModify[

rot];
}
...

Wenn Sie Strafkosten verteilen, dauert
die Berechnung für die Pfadsuche ent-
sprechend länger. Der Algorithmus
muss mehr Pfade betrachten, um sich für
den besten entscheiden zu können.

Optimierung des A*-Algorithmus

Schnell und schön
Der A*-Algorithmus gibt die Wegrichtung vor, doch Sie suchen Abkürzungen
für Ihre Spielaktoren. Während der Algorithmus noch das Labyrinth berech-
net, geht der schnellste auf die Zielgerade.

AUF CD
Die Quelltexte sowie die fertig übersetz-

ten Routinen finden Sie im Verzeichnis
Praxis/Programmierung/PC Underground.

EIN UNENTSCHLOSSEN wirkender A*-Pfad
erinnert an den taumelnden Gang eines
Betrunkenen.

MIT DER ERSTEN OPTIMIERUNG geht es
geradewegs ins Ziel.

PC Magazin September 2001 225

P C U N D E R G R O U N D
P R A X I S

■ Flüssige Bewegungen

Selbst wenn Sie die Pfade des A*-Algo-
rithmus begradigt haben, so sind die
noch verbleibenden Richtungsänderun-
gen immer noch abrupt (in einem Win-
kel von mindestens 45 Grad). Die Lö-
sung kommt aus der Computergrafik:
Der berechnete Pfad ist eine Folge von
Punkten. Diese Punkte können Sie als
Stützpunkte einer parametrischen Kur-
ve (etwa einer Bézier-Kurve) ansehen.
Bézier-Kurven verlaufen nur durch den
ersten und den letzten Stützpunkt. Da
der A*-Algorithmus Hindernisse auf
der Spielkarte umlaufen soll, muss sich
die Kurve aber möglichst genau am ge-
fundenen Pfad orientieren. Mit den Cat-
mull Rom Splines berechnen Sie einen
abgerundeten Pfad (vgl. Bild unten).

Übergeben Sie der Catmull Rom-For-
mel vier Stützpunkte. Mit einem Para-
meter u, der im Intervall von 0 und 1 ver-
läuft, erhalten Sie eine glatte Kurve zwi-
schen dem zweiten und dritten Punkt:

out = p1 * (-0.5f*u*u*u + u*u -
0.5f*u) +
p2 * (1.5f*u*u*u - 2.5f*u*u +
1.0f) +
p3 * (-1.5f*u*u*u + 2.0f*u*u +
0.5f*u) +
p4 * (-0.5f*u*u*u - 0.5f*u*u);

Wenn u gleich 0 ist, erhalten Sie als Er-
gebnis den Punkt p2, für den Wert 1 er-
halten Sie p4. Für das erste und das letz-
te Kurvensegment Ihres A*-Pfads über-
geben Sie den ersten bzw. den letzten
Stützpunkt des Pfades doppelt. Folgen-
der Code-Ausschnitt zeigt das Zeichnen
des Spline-Pfads:

void interpolatedPosition(float
*x, float *y,

Position *a, Position *b,
Position *c, Position *d,

float u)
{

u3 = u * u * u;
u2 = u * u;
f1 =-0.5f * u3 +u2 - 0.5f * u;
f2 =1.5f * u3 -2.5f * u2+1.0f;
f3 = -1.5f*u3+2.0f*u2+0.5f* u;
f4 = 0.5f * u3 - 0.5f * u2;

*x = a->x()*f1 + b->x()*f2 +
c->x()*f3 + d->x()*f4;

*y = a->y()*f1 + b->y()*f2 +
c->y()*f3 + d->y()*f4;

}
void drawPathCatmullRom(Position
*path, int length)
{

glBegin(GL_LINE_STRIP);
for (i = 0; i < length; i++)
{

for (float u = 0.0f; u <
1.0f; u += 0.01f)

{
float x, y;
interpolatedPosition(

&x, &y,
&path[max(0,i-1)],
&path[i],
&path[min(i+1,length-1)],
&path[min(i+2,length-1)], u);

glVertex2f(x + 0.5f, y +
0.5f);

}
}

}

Wenn die Rechenzeit bei der Spline-In-
terpolation eine Rolle spielt, genügt es
auch, für verschiedene, vorher festgeleg-
te u-Werte die Faktoren f1, f2, f3 und f4
vorzuberechnen und den Pfad nur um
eine begrenzte Anzahl von Zwi-
schenpunkten zu ergänzen:

// u = 0.0
out = p2

// u = 1.0/3.0
out = -0.0740740*p1 +
0.7777777*p2 +

0.3333333*p3 -
0.0370370*p4

// u = 2.0/3.0
out = -0.0370370*p1 +
0.3333333*p2 +

0.7777777*p3 -
0.0740740*p4

// u = 1.0
out = p3

Den neuen Pfad mit den zusätzlichen
Zwischenpunkten können Sie einfach
für Ihre Spielfigur verwenden, indem Sie
sie stückweise linear bewegen lassen. Die
Anzahl der neuen Punkte ist bei der obi-
gen Rechnung dreimal so hoch wie die
des Ausgangspfads. An geraden Teilen
des Pfads können Sie kollineare Punkte
(die Punkte, die auf der Verbindungsge-
rade des Vorgänger- und des Nachfol-
gerpunktes liegen) wieder entfernen.

■ Hierarchischer
A*-Algorithmus
Stellen Sie sich ein Gebäude vor, in dem
Sie mit dem A*-Algorithmus einen Pfad
planen wollen. Außer der Karte, die ein
Gebäudegeschoss in viele Quadrate auf-
teilt, können Sie einen Verbindungsgra-
phen aufbauen. Dazu speichern Sie, wel-
cher Raum von welchem Raum jeweils
durch eine Tür erreichbar ist. Der A*-
Algorithmus kann jede Form von Gra-
phen durchsuchen.

Die hierarchische Pfadsuche erfolgt in
zwei Schritten:
• Im ersten Schritt planen Sie den Pfad
grob,
• im zweiten Schritt berechnen Sie den
Verlauf des Pfads im Detail.

Der erste Schritt besteht also darin, zu
suchen, durch welche Räume des Ge-
bäudes der Pfad führt. Im zweiten
Schritt planen Sie dann auf dem Level
der Spielfelder die Pfade innerhalb eines
Raums zur Tür zum nächsten Raum.

Mit der hierarchischen Pfadsuche spa-
ren Sie sehr viel Rechenzeit, weil Sie den
Suchraum (die Größe des Graphen, die
der A*-Algorithmus durchsucht) dras-
tisch reduzieren. Leider verläuft der
Pfad wegen der Verbindungsinformati-
on der Räume immer durch die Mitte qMIT CATMULL ROM SPLINES wirken die

Pfade abgerundet und natürlich.

DIE PFADÄNDERUNGEN des A*-Algorith-
mus verbergen Sie mit Catmull Rom Splines.

DER HIERARCHISCHE A*-Algorithmus in
einem Gebäude führt zur einen Tür rein,
zur nächsten hinaus.

226 September 2001 PC Magazin

P C U N D E R G R O U N D
P R A X I S

der Türen. Um den optimalen Pfad
durch die Räume zu finden, müssen Sie
mehr Rechenzeit investieren. In Verbin-
dung mit der hierarchischen Pfadsuche
können Sie sich das aber leisten: Suchen
Sie auf der zweiten Ebene nicht den Pfad
zur nächsten Tür, sondern zur über-
nächsten. Sie speichern aber nur den Teil
des Pfads, der Sie zur nächsten Tür führt,
und verwerfen den Rest.

Die einzelnen Schritte:
• Suchen Sie den besten Pfad durch die
Räume: 1, 2, 3, 4
• Suchen Sie den Pfad vom Start zum
Punkt P2.
• Verwerfen Sie den zweiten Teil des
Pfades.
• Suchen Sie den Pfad zum Punkt P3.
• Verwerfen Sie den zweiten Teil des
Pfades.
• Suchen Sie den verbleibenden Pfad
zum Ziel.

Die hierarchische Pfadsuche funktio-
niert genauso auf Spielwelten, die nicht
aus Räumen bestehen, sondern aus einer

Landkarte: Legen Sie einfach eine grobe
Repräsentation Ihrer Karte an. Für eine
Karte mit 256 x 256 Feldern berechnen
Sie eine kleine Version mit 32 x 32 Fel-
dern. Ein Feld auf der kleinen Karte
steht für 8 x 8 Spielfelder. Für die hierar-
chische Pfadsuche ist es egal, ob Sie im
ersten Schritt den Verbindungsgraph für
Felder oder für Räume verwenden.

■ Rechenzeit-
Optimierungen
Die benötigte Re-
chenzeit können Sie
mit der hierarchi-
schen Methode sowie
mit der Kostenfunk-
tion beeinflussen. Die
Verkleinerung des
Suchraums und die
Kostenfunktion sind
ein Ansatzpunkt der

Optimierung. Weiterhin können Sie den
Algorithmus sowie den Code verbes-
sern. Dazu implementieren Sie eine
Reihe von Funktionen und Klassen,
die den A*-Algorithmus signifikant
beschleunigen!

■ Pre-Allocating Memory
Der A*-Algorithmus untersucht Nodes
(Knoten), die er zwischenspeichert. Statt
jedes Mal neu Speicher für einen Node
zu allokieren (adressieren), reservieren
Sie von vornherein Speicher für genü-
gend Nodes. Bei Bedarf nehmen Sie den
Speicher aus der NodeBank. Eine einfa-
che C++-Klasse hierfür sieht so aus:

class NodeBank
{

#define MAXBANKSIZE (256*256)
private:

int n;
Node *nodebank;

public: NodeBank(): n(0)
{ nodebank =

new Node[MAXBANKSIZE];}
~NodeBank()
{delete nodebank;}
Node *getNewNode()

{
if (n < MAXBANKSIZE)

return &nodebank[n++];
else
{ kein Speicher mehr !

exit(1);
}

}
};

■ Die Master Node List

Ändern Sie die Architektur der A*-Spei-
cherstrukturen. Bisher haben Sie eine

Open- und eine Close-Liste gespeichert.
Diese Methode ist sehr anschaulich, aber
nicht optimal für die Rechenzeit. Fassen
Sie diese beiden Listen zusammen. Um
dennoch unterscheiden zu können, ob
ein Node open oder closed ist, speichern
Sie zwei Flags in der Node-Klasse. Hier
sehen Sie die für A* relevanten Daten:

class Node
{ private:

int g, f;
Node *pred;
Position p;
bool inOpen,inClosed;

... };

Diese Nodes speichern Sie in der Mas-
ter-Node-List. Sie benötigen Funktio-
nen, um einen Node anhand einer Posi-
tion p zu suchen. Für eine schnelle Suche
von Elementen in einer Liste eignet sich
das Hashing. Dabei definieren Sie eine
Hash-Funktion, die zu einer Position ei-
nen Hash-Wert berechnet:

#define HASHFUNC(p) {
((p.x()&255)<<8)|((p.y())&255) }

Den Hash-Wert verwenden Sie als In-
dex in einer Hash-Tabelle. An der Stelle
zum Index speichern Sie den Node:

typedef struct HASHNODEPTR

{
Node *node;
HASHNODEPTR *next;

}HASHNODE;
HASHNODE *hash = new HASHNODE[
MAXHASHSIZE];
...
// node in Hashtable speichern
int hashcode = HASHFUNC

(node->p);
hash[hashcode]->node = node;
hash[hashcode]->next = NULL;

In der Hashnode-Struktur sehen Sie,
dass außer dem Node noch ein Zeiger
auf den nächsten Hashnode gespeichert
wird. Der Grund: Es kann bei bestimm-
ten Hash-Funktionen vorkommen, dass
zwei unterschiedliche Positionen den-
selben Hash-Wert besitzen. In diesem
Fall speichern Sie alle Nodes mit dem-
selben Hash-Wert in einer verketteten
Liste, die bei hash[hashcode] beginnt.
Wenn Sie einen Node suchen, verwen-
den Sie folgende Funktion:

Node *getNodeStored(Position p)
{

int hashcode = HASHFUNC(p);
HASHNODE *node =

&hash[hashcode];
while (node != NULL &&

node->node != NULL &&
node->node->p != p)

node = node->next;
if (node != NULL)

return node->node; else
return NULL;

}

Das Hashing finden Sie in der Klasse
MasterNodeList im Sourcecode zu die-

SCHÖN VERKÜRZTE PFADE mit hierarchischer Wegsuche benötigen den doppelten
Rechenaufwand.

DIE HIERARCHISCHE PFADSUCHE spart auf Landkarten unnöti-
ge Wege.

PC Magazin September 2001 227

P C U N D E R G R O U N D
P R A X I S

ser Ausgabe. Während der A*-Suche be-
nötigen Sie Node-Strukturen für eine
Position. Ist ein Node schon bekannt,
brauchen Sie einen Zeiger auf ihn in der
MasterNodeList. Wenn Sie diesen Node
das erste Mal erreichen, müssen Sie einen
neuen erzeugen. Dazu verwenden Sie ei-
ne Funktion der MasterNodeList:

Node *getNode(Position p)
{

// Node schon in der Liste ?
Node *node =

this->getNodeStored(p);
if(node)

return(node); else
{ // nein => neue Node

Node *newNode =
nodeBank->getNewNode();
newNode->p = p;
newNode->inOpen = false;
newNode->inClosed = false;
// und speichern
this->storeNode(newNode);
return(newNode);

}
}

■ Priority Queues

Sie speichern alle Nodes zusammen in
der Master Node List und die Open-Lis-
te aus Performance Gründen nochmals
separat in einer Priority Queue. Der A*-
Algorithmus wählt für seine Wegsuche
und die Expansion der Nodes immer
den Node, der voraussichtlich zum op-
timalen Pfad gehört. Das ist der Node in
der Open-Liste mit den niedrigsten Ge-
samtkosten.

Die Open-Liste kann sehr groß wer-
den, und eine Suche nach dem besten
Node sehr aufwendig sein. Deshalb
speichern Sie die Liste sortiert in einer
Priority Queue. Dadurch, dass Sie die
Sortierung beim Einfügen und Entfer-
nen von Nodes aufrecht erhalten, redu-
zieren Sie den Suchaufwand deutlich.

Die STL (Standard Template Library)
bietet genügend Funktionalität, um die
benötigten Funktionen zu implementie-
ren. Es gibt keine verwendbare vordefi-

nierte Priority Queue in STL, aber mit
den Funktionen eines Binary Heap
(binärer Speicherplatz) können Sie die
anfallenden Aufgaben erledigen.

Hier sehen Sie einen kleinen Auszug
aus dem Sourcecode, der zeigt, wie Sie
Elemente einfügen, entfernen und
sortieren:

class PriorityQueue
{

private:
std::vector<Node*> heap;

public:
Node *pop() // O(log n)

{
// 1.Node niedrigsten Kosten
Node *node = this->heap.front();

// 1.node zum ende (N) bewegen
// sortieren 1 bis N-1 neu

std::pop_heap(this->
heap.begin(),

this->heap.end(),
NodeCompare());

// letzte Node wegnehmen
//Heap ist wieder sortiert

this->heap.pop_back();

return(node);
}

void push(Node* node)
// O(log n)

{
// Node am Ende speichern
// => Heap ist unsortiert !

this->heap.push_back(node);
// Element einsortieren !
std::push_heap

(this->heap.begin(),
this->heap.end(),
NodeCompare());
}

...
};

Die std::push_heap(...)-Funktion sor-
tiert den Heap neu. Dazu benötigt sie
eine Vergleichsfunktion. Diese ver-
gleicht die Gesamtkosten zweier Nodes.
Geben Sie für STL in einer Klasse Fol-
gendes an:

class NodeCompare
{

public:
bool operator()

(Node *a, Node *b) const
{return(a->f > b->f);}

};

Fassen Sie die optimierten Routinen in
der A*-Klasse – die Sie im PC-Under-
ground-Beitrag Ausgabe 8/01 S. 216 im-
plementiert haben – zusammen. Damit
erhalten Sie eine optimierte Variante, um
schnell den passenden Pfad zu suchen.
Die zwei modifizierten Funktionen fin-
den Sie im Listing expandnode.

Damit haben Sie alles eingebaut, was
Sie für eine A*-Pfadsuche in einem
Computerspiel benötigen. Wichtig ist
noch, die Pfade rechtzeitig zu berech-
nen. In einem Computerspiel muss der
Spieler sofort eine Reaktion einer Spiel-
figur feststellen, wenn er einen Befehl er-
teilt. Manchmal wird die benötigte Zeit
für die Wegsuche mit einem Soundeffekt
als Befehlsbestätigung kaschiert. Gleich-
zeitig müssen Sie in einem Computer-
spiel darauf achten, dass Sie nicht zu viel
zusammenhängende Rechenzeit bei der
Wegsuche verbrauchen, da sonst das
Spiel kurze Zeit still steht. Sie organisie-
ren dazu die Berechnung und teilen sie
auf. In den folgenden Literaturangaben
finden Sie interessante empfehlenswerte
Links, die nicht mit weiterführenden In-
formationen sparen. s E T

Literatur:

Russel, Stuart und Norvig, Peter, Artificial Intelli-
gence: A Modern Approach, Prentice Hall, 1995

Nilsson, Nils J., Artificial Intelligence: A New Syn-
thesis. Morgan Kaufmann, 1998

Nelson, Mark, Priority Queues and the STL, Dr.
Dobbs Journal Januar 1996, oder www.dogma.net/
markn/articles/pq_stl/priority.htm

Heyes-Jones, Justin, A* Algorithm Tutorial, oder

www.gamedev.net/reference/programming/ai/
article690.asp

Patel, Amit J., Amit’s Thoughts on Pathfinding, oder

http://theory.standford.edu/~amitp/GamePro
gramming

Sout, Bryan W., Smart Moves: Intelligent Path-Fin-
ding, oder www.gamasutra.com/features/
19990212/sm_01.htm

ExpandNode

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

void expandNode(Node *node)
{ for (d=0; d<8; d++)
{ p = node->p. neighbour(d);
if (isValid(p))
{ // nicht die Node durchsuchen von der wir kommen !
if(node->pred == NULL | | node->pred->p ! = p)
{ Node newNode;
newNode. p = p; newNode. pred = node;
newNode. g = node->g +
traversalCost(node->p, p, d);

newNode. f = newNode. g + pathCostEstimate(p, goal);
pNode = masterNodeList->getNode(newNode. p);
// prÅfen, ob sich die neue Node lohnt

if(! (pNode->inOpen && newNode. f > pNode->f) &&
! (pNode->inClosed && newNode. f > pNode->f))

{ // ja ! entweder neu oder update!
pNode = newNode; pNode->inClosed = false;
if(pNode->inOpen)
// Update
pqueue->updateNode(pNode); else

21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:

{ // in die OpenList
pqueue->push(pNode); pNode->inOpen = true;

} } } } } }
int searchPath()
{ while(! pqueue->isEmpty())
{ // beste Node holen
Node *node = pqueue->pop();

if(node->p == goal)
{ // Ziel gefunden ?
goalNode = node;
return node->nPred + 1; }

expandNode(node);
// node in die Closed Liste
node->inClosed = true; }

// kein Pfad gefunden
return -1;

}

ExpandNode führt vor, wie Sie mit optimierten Routinen im
A*-Algorithmus schneller ans Ziel kommen.

