
P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R

Für Programmierer und Grafiker,
die 3D-Spielfiguren erschaffen,
mit Texturen versehen und ani-

mieren möchten, ist das 3D-Modelling-
Programm Milkshape geeignet. Model-
lieren Sie zunächst eine Figur, um deren
Daten anschließend in Ihre eigenen
OpenGL-Programme zu importieren.

Beim Programmieren mit Milkshape
3D verwendet der 3D-Grafiker wenige
Polygone: mehrere Hundert, bis zu etwa
Tausend Dreiecke. Das spart Rechen-
zeit.

Sie können für unsere Einführung ei-
ne Testversion von Milkshape 3D unter
dieser URL downloaden: www.swiss-
quake.ch/chumbalum-soft/ms3d1x/ Die
aktuelle Version ist 1.5.7.

Wenn Sie Milkshape 3D starten, sehen
Sie den Hauptbildschirm. Den meisten
Platz nehmen die vier Ansichten des
noch nicht vorhandenen 3D-Modells
ein. Voreingestellt sind die achsenparal-
lelen Ansichten von vorne, rechts und
oben. Das vierte Fenster zeigt die Szene
aus der Perspektive einer frei positio-
nierbaren Kamera. Auf der rechten Seite
sehen Sie die Toolbar, in der Sie fast alle
Befehle finden, mit denen Sie später mo-
dellieren, texturieren und animieren.
Am unteren Bildschirmrand sehen Sie
die Kontrollbuttons für die Animation.

■ Das erste 3D-Modell
Wenn Sie mit Ihrem 3D-Objekt begin-
nen, sollten Sie sich ungefähr vorstellen
können, was Sie modellieren wollen.
Am besten, Sie fertigen einige kleine
Skizzen von verschiedenen Blickwin-
keln an. Damit werden Sie besser zu-
rechtkommen und im Endeffekt meist
auch schneller am Ziel sein.

Für die Skizzen legen Sie die Propor-
tionen fest. Bei der Charaktermodellie-

rung, werden die Modelle meist aus klei-
nen, einfachen geometrischen Objekten
zusammengesetzt. Diese Modelle finden
Sie in Ego-Shootern. Damit geben Sie
die grobe Form vor,
die Sie dann in Feinar-
beit verbessern.

Unser Beispiel soll
den Oberkörper einer
Spielfigur darstellen.
Als einfaches geome-
trisches Objekt be-
ginnen Sie mit einem
Würfel. Wählen Sie
dazu in der Toolbar
unter dem Model-
Tab eine Box Tool
aus. Klicken Sie in die
Front-Ansicht, und
halten Sie den Knopf
gedrückt, um ein
Viereck aufzuziehen.
In der Kameraansicht
sehen Sie einen grauen Würfel. Die Dar-
stellungsparameter einer Ansicht ändern
Sie im Kontextmenü, das Sie über die
rechte Maustaste erreichen. Um eine
Ansicht zu verschieben oder zu skalie-
ren, halten Sie die [Strg]- oder [Shift]-

Taste gedrückt. Be-
wegen Sie die Maus,
während Sie die
Rechte Taste drük-
ken, im entsprechen-
den Fenster.

Aus diesem Würfel
werden Sie den Kör-
per des 3D-Charak-
ters modellieren.
Wählen Sie in der
Toolbar Model/ Sel-
ect. Bei den Select-
Optionen benötigen
Sie die Einträge Face
und Ignore Backfa-
ces. Damit selektieren
Sie per Mausklick

einzelne Dreiecke, wobei Sie von hinten
sichtbare Polygone ignorieren. Wählen
Sie in der Frontansicht die beiden Drei-
ecke.

Mit Toolbar/Extrude können Sie neue
Teile aus einem bestehenden 3D-Modell
herausziehen. Ziehen Sie die markierten
Dreiecke nach außen. Damit erhalten Sie
einen zweiten Würfel, der mit dem ers-
ten verbunden ist. Diesen Vorgang wie-

238 PC Magazin 10/2001

Polygon-Modelle mit Milkshape 3D

Spiel mit Puppen
Legen Sie Ihre eigenen Low-Polygon-3D-Modelle mit Milkshape 3D an, die
Sie texturieren und in eigenen Programmen verwenden. Mit Plug-ins haben
Sie Dateiformate im Griff.

AUF CD
Die Quelltexte sowie die fertig übersetzten

Routinen finden Sie im Verzeichnis Praxis/Pro-
grammierung/PC Underground.

MILKSHAPE 3D nach dem Start

DER EXTRUDE-BEFEHL erzeugt weitere Würfel.

P C U N D E R G R O U N D
P R A X I S

derholen Sie, bis Sie vier bis sechs Wür-
fel haben, je nachdem, wie viele Polygo-
ne Sie für die Figur verwenden wollen.

Markieren Sie im Bild die obere Seite
der Würfelreihe, und vervielfältigen Sie
diese mehrmals, um mehrere Würfelrei-
hen zu bekommen. Mit dem Befehl
Toolbar/Scale können Sie die Breite un-
seres noch ziemlich ungestalteten Ober-
körpers an markierten Vertices ändern.
Zunächst erhalten Sie eine grobe Form,
die Sie verfeinern.

Den Arm der Figur erzeugen Sie mit
dem Extrude-Befehl, um der groben
Form Feinschliff zu geben. Damit Sie
sich nicht zweimal die Arbeit machen,
einen Arm zu modellieren, markieren
Sie die Polygone des ersten Arms. Mit
Edit/Duplicate Selection erhalten Sie ei-
ne Kopie des Arms. Diese liegt an der-
selben Position wie das Original und ist
deshalb nicht zu sehen. Spiegeln Sie den
Arm (im Menü unter Vertex/Mirror),
und schieben Sie ihn möglichst genau an
die Schulter.

Um den Arm und den Oberkörper zu
verbinden, markieren Sie jeweils die
zwei Vertices, die Sie verschmelzen wol-
len, und wählen Vertex/Snap together.
Damit bekommen die beiden Vertices
dieselbe Position, sind aber noch ge-
trennt. Nachdem Sie alle Vertices ange-
passt haben, führen Sie den Befehl Ver-

tex/Weld together aus, um die doppelten
Vertices zu eliminieren. Die Hände un-
seres 3D-Modells sind aus separaten
Würfeln aufgebaut. Die Beine modellie-
ren Sie ebenso wie die Arme.

■ Oberflächenmaterial und
Texturen
Die meisten Ego-Shooter kommen mit
wenigen Texturen für die 3D-Charakte-
re aus, meist reicht eine mit 256 x 256 Pi-
xeln. Dadurch werden der Aufwand
beim Rendering und der Textur-Spei-
cherverbrauch gesenkt.

Zunächst gruppieren Sie Ihr 3D-Mo-
dell neu. In der Toolbar unter Groups
finden Sie eine Liste von Polygongrup-
pen, die Sie getrennt selektieren, löschen,
benennen und verstecken können.
Wählen Sie die Gruppen Oberkörper,
Kopf und Arme aus, und wählen Sie Re-
group, um sie zusammenzufassen. Die
Smoothing Groups unten in der Toolbar
fassen die Polygone zusammen, die zu
einer glatten Oberfläche gehören. Falsch
zusammengefasste Polygone machen
sich beim Rendering durch Schattie-
rungsfehler bemerkbar.

Wählen Sie in der Toolbar den Mate-
rial-Tab, und erzeugen Sie mit New neu-
es Material. Wenn Sie alle Polygone aus-
gewählt haben, drücken Sie Assign, um
das neue Material zuzuweisen. Für das
Material können Sie beliebige Ambient-,
Diffuse- und Specular- Farben einstellen.

Texturen heißen bei 3D-Modellen
auch Skins. Um dem Material eine Tex-
tur hinzuzufügen, drücken Sie auf den
oberen der beiden Knöpfe, die mit <no-
ne> beschriftet sind, und wählen eine
Bilddatei aus. Viel Zeit kostet die An-
passung der Textur an die Polygone, al-
so die Festlegung der Texturkoordina-
ten. Wenn Sie ein oder mehrere Dreiecke
auswählen und im Menü unter Window
den Texture Coordinate Editor wählen
(oder [Strg-t] drücken), öffnet sich ein
Fenster. Dort sehen Sie die Textur des
Materials und die Vertices der markier-

ten Polygone. Durch die Verschiebung
der Vertices in der Textur legen Sie die
Texturbereiche fest, die jeweils auf ein
Polygon projiziert (gemappt) werden.
Angesichts der Anzahl der Vertices ist
das sehr aufwendig. Aber gerade die
Texturierung und die exakte Zuweisung
der Koordinaten lässt ein Low-Poly-
gon-Modell wirklich gut aussehen.

■ Milkshape-3D-Daten
Wenn Sie keine eigenen 3D-Modelle er-
zeugen wollen, können Sie Milkshape
3D nutzen, um zahlreiche Formate wie
MD2, MD3, MDL, 3D-Studio, Light-
wave, Autocad DXF ins eigene MS3D-
Format zu konvertieren. Das MS3D-
Format von Milkshape 3D ist sehr ein-
fach aufgebaut, lässt sich komfortabel la-
den und in OpenGL darstellen. Als Fra-
mework für die OpenGL- Darstellung
verwenden Sie den OpenGL-Startup,
den Sie aus den letzten PC-Under-

ground-Ausgaben kennen. Dessen Auf-
bau müssen Sie aber nicht im Kopf ha-
ben, um ihn anzuwenden.

Im MS3D-Dateiformat sind für Sie
zunächst fünf Strukturen interessant:

,,1 Am Beginn einer MS3D-Datei be-
findet sich der Header. Die ID muss
MS3D000000 sein, die Versionsnummer
3:

typedef struct
{

char id[10];
int version;

} MS3D_HEADER;

Anschließend folgt ein 16-Bit-Inter-
rupt-Aufruf (unsigned int), der die An-
zahl der Vertices des 3D-Objekts angibt.
Entsprechend oft finden Sie folgende
Struktur in der Datei, die die Vertexda-
ten enthält:

typedef struct
{

byte flags;
float vertex[3];
char boneId;
byte refCount;

} MS3D_VERTEX; q

10/2001 PC Magazin 239

NUN VERVIELFÄLTIGEN SIE die obere
Seite der Würfelreihe.

NACH GETANER FEINARBEIT kann sich das
Ergebnis sehen lassen.

JETZT KLEBEN SIE den kopierten Arm an.

DIESE BEIDEN VERTICES müssen Sie ver-
schmelzen.

P C U N D E R G R O U N D
P R A X I S

In der MS3D_VERTEX-Struktur sind
unter anderem die drei Floatwerte inter-
essant, die die Koordinaten des Vertexes
enthalten.

Es folgt wieder ein unsigned int (16
Bit), in dem die Anzahl der Dreiecke ge-
speichert ist. Entsprechend lesen Sie fol-
gende Struktur aus:

typedef struct
{

word flags;
word vertexIndices[3];
float vertexNormals[3][3];
float s[3];
float t[3];
byte smoothingGroup;
byte groupIndex;

} MS3D_TRIANGLE;

Wichtig sind hier die vertexIndices, die
Indizes der Dreieckspunkte in der Ver-
texliste, die dazugehörigen Normalen
und die Texturkoordinaten (s und t).

Für die Smoothing Groups lesen Sie
zuerst wieder die Anzahl aus und dann
entsprechend oft die dazugehörige
Struktur. Achten Sie darauf, dass die
Smoothing Groups eine variierende An-
zahl von Dreiecken enthalten (nTri-
angles und *triangleIndices):

typedef struct
{

byte flags;
char name[32];
word nTriangles;
word *triangleIndices;
char materialIndex;

} MS3D_GROUP;

Zuletzt folgen die Materialdefinitionen.
In der Struktur sind alle Daten enthalten,
die Sie in Milkshape in der Toolbar/Ma-
terial einstellen können. Zusätzlich fin-
den Sie in der Struktur einen Zeiger auf
ein PCUTexture-Objekt, um in der
MS3D-Laderoutine die Texture-Bit-
maps zu laden.

typedef struct

{
char name[32];
float ambient[4];
float diffuse[4];
float specular[4];
float emissive[4];
float shininess;
float transparency;
char mode;
char texture[128];
char alphamap[128];

PCUTexture *textureMap;
} MS3D_MATERIAL;

Die gelesenen Daten speichern Sie am
besten zusammen in einer Klasse, die Sie
im Sourcecode zu dieser Ausgabe fin-
den:

class MS3DObject
{
private:

word nVertices;
word nTriangles;
word nGroups;
word nMaterials;

MS3D_HEADER header;
MS3D_VERTEX *pVertex;
MS3D_TRIANGLE *pTriangle;
MS3D_GROUP *pGroup;
MS3D_MATERIAL *pMaterial;

public:
MS3DObject();
~MS3DObject();

int loadObject
(char *path, char *name);
void renderObject();

};

■ MS3D mit OpenGL
rendern

Die Daten aus den MS3D-Dateien sind
prädestiniert, um sie mit OpenGL zu
rendern. Die Materialparameter können
Sie direkt an OpenGL weitergeben.
Rendern Sie die Groups nacheinander.

Setzen Sie jeweils die entsprechenden
Materialparameter und gegebenenfalls
die Textur. Zeichnen Sie alle Dreiecke
der Group, indem Sie die Normalen,
Texturkoordinaten und Vertexkoordi-
naten übermitteln:

void MS3DObject::renderObject()
{

for (int i = 0; i <nGroups;
i++>)

{
// Materialparameter
int m = pGroup[i].materialIn-
dex;

glMaterialfv(GL_FRONT_AND_BACK,
GL_AMBIENT,pMaterial[m].am-

bient);
glMaterialfv(GL_FRONT_AND_BACK,

GL_DIFFUSE,pMaterial[m].diffuse
);
glMaterialfv(GL_FRONT_AND_BACK,

GL_SPECULAR,pMaterial[m].specu-
lar);
glMaterialfv(GL_FRONT_AND_BACK,

GL_SHININESS,
&pMaterial[m].shininess);

glMaterialfv(GL_FRONT_AND_BACK,
GL_EMISSION,
pMaterial[m].emissive);

if (pMaterial[m].textureMap)
pMaterial[m].textureMap->sel-

ect();

glBegin(GL_TRIANGLES);

for
(j=0;j<pGroup[i].nTriangles;j++)
{

idx = pGroup[i].triangleIndi-
ces[j];

MS3D_TRIANGLE
*tri=&pTriangle[idx];

for (k=0;k<3;k++)
{

glNormal3fv(
tri->vertexNormals[k]);

glTexCoord2f(
tri->s[k],tri->t[k]);

glVertex3fv(
pVertex[tri-

>vertexIndices[k]].vertex);
}

}
glEnd();
}

}

Damit die Materialparameter, die Sie an
OpenGL übergeben, korrekt dargestellt
werden, schalten Sie mit glEnable(
GL_LIGHTING) die OpenGL-Be-
leuchtungsberechnung an und definie-
ren noch eine Lichtquelle:

glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);

GLfloat ldiffuse[]={1,1,1,1};
GLfloat lambient[]={0.1f,0.1f,

0.1f,1.0f};

glLightfv(GL_LIGHT0, GL_AMBIENT,
lambient);
glLightfv(GL_LIGHT0, GL_DIFFUSE,
ldiffuse);
glLightfv(GL_LIGHT0, GL_SPECU-
LAR,ldiffuse);

GLfloat lpositi-
on[4]={30,30,30,0};
glLightfv(GL_LIGHT0, GL_POSITI-
ON, lposition);

Im Bild sehen Sie unser Beispielprogramm
zusammen mit dem 3D-Modell, das Sie im
ersten Teil des Artikels gestalten konnten.

240 PC Magazin 10/2001

MIT DEM TEXTURECOORDINATE-EDITOR
passen Sie die Textur an.

EIN SKIN ist eine Textur für einen 3D-Cha-
rakter.

P C U N D E R G R O U N D
P R A X I S

Wenn Sie weitere 3D-Objekte anlegen
wollen, empfehlen wir Ihnen Tutorials zu
Milkshape 3D. Eine gute Sammlung von
Links zu diesem Thema finden Sie unter
www.swissquake.ch/ chumbalum-soft/
ms3d1x/tutorials.html Weitere freie Test-
modelle, die Sie unter Umständen noch
mit Milkshape 3D konvertieren müssen,
finden Sie unter www.3dcafe.com oder
wenn Sie mit Suchmaschinen zum Beispiel
nach md2 model suchen.

■ Plug-ins für Milkshape 3D
Milkshape 3D unterstützt viele Datei-
formate. Sie können Daten an Milk-
shape 3D auch übergeben, indem Sie Ihr
eigenes Plug-in in Form einer DLL-Da-
tei schreiben. Wenn Sie es ins Milk-
shape-3D-Programmverzeichnis kopie-
ren, können Sie es vom Hauptmenü aus
aufrufen und laden. Eigene Plug-ins

programmieren Sie mit den Libraries,
die Sie im SDK (Software Developer

Kit) finden. Das SDK können
Sie zusammen mit Milkshape
3D downloaden. Legen Sie dazu
in Ihrem C++-Compiler ein
DLL-Projekt an. Linken Sie die
msModelLibd.lib aus dem SDK
dazu, und binden Sie die Header
msPlugInImpl.h und msLib.h
ein. Schreiben Sie ein Plug-in,
das nur Informationen über ein
3D-Modell in einer Windows-
MessageBox ausgibt. Dies de-
monstriert, wie Sie auf die Mo-
delldaten für ein Export-/Im-
port-Plug-in zugreifen.

Der Aufbau der Plug-in-
DLLs ist immer gleich: Sie
benötigen einen DLLMain
Entry Point, den jede DLL un-
ter Windows besitzen muss. Um die
DLL zu einem Milkshape-Plug-in zu
machen, müssen Sie folgende Klasse im-
plementieren:

class cPlugIn : public cMsPlugIn
{

char szTitle[64];

public:
cPlugIn ();
virtual ~cPlugIn ();

public:
int GetType ();
const char * GetTitle ();
int

Execute (msModel* pModel);
};

Die Methode GetType() liefert zwei
Funktionen: Export oder Import. Auf

diese Funktionen
greifen Sie in der
DLL unter cMsPlug
In::e TypeExport
oder cMsPlug In::e
TypeImport zurück.

Die Methode Get-
Title() liefert den Titel
des Plug-ins zurück,
der im Hauptmenü
angezeigt wird. Die
Execute()-Methode
enthält einen Zeiger
auf ein msModel
(Milkshape-3D-Mo-
dell), in dem alle Da-
ten gespeichert sind.
Auf diese Daten kön-
nen Sie mit Funktio-
nen aus den Library-
Dateien zugreifen.
Das kleine Beispiel
soll Daten nur in eine
MessageBox expor-

tieren. Dazu implementieren Sie die
Execute()Methode:

int cPlugIn::Execute
(msModel *pModel)
{

// sicherheitsabfragen:
if (!pModel)

return -1;

if (msModel_GetMeshCount(pMo-
del)==0)

{
// kein modell vorhanden
return 0;

}

anzahl_frames =
msModel_GetTotalFrames(pModel

);
akt_frame =

msModel_GetFrame(pModel);
anzahl_meshes =

msModel_GetMeshCount(pModel
);

for (i=0;i<anzahl_meshes;i++)
{

msMesh *pMesh =
msModel_GetMeshAt(pModel,

i);

anzahl_vertices[i] =

msMesh_GetVertexCount(pMesh);
anzahl_triangles[i] =

msMesh_GetTriangleCount(pMesh);
);

// ausgabe zusammenbauen als
string

...

MessageBox(NULL, text, "PCU
Modell Info", MB_OK);

// wichtig: wieder freigeben:
msModel_Destroy (pModel);

return 0;
}

Analog bietet die Library auch Funktio-
nen, um Daten zu schreiben oder um be-
liebige Datei-Formate zu importieren.
Sie können damit sogar eigene Tools, die
3D-Daten generieren oder automatisch
modifizieren, direkt einbinden. s E T

Nähere Informationen zu diesem Beitrag finden Sie
auf der Website www.dachsbacher.de/pcu

10/2001 PC Magazin 241

DAS BEISPIELPROGRAMM stellt unser 3D-
Modell in OpenGL dar.

UNSER KLEINES BEISPIEL-PLUG-IN informiert Sie über das
3D-Modell.

DEM WÜRFEL verpassen Sie ungefähr die Form eines
Oberkörpers.

