
P C U N D E R G R O U N D
P R A X I S

11/2001 PC Magazin 221

C A R S T E N D A C H S B A C H E R

Den 3D-Modellen, die Sie in der
letzten Ausgabe von PC Un-
derground (10/01, S. 238) ge-

schaffen haben, fehlt noch ein Knochen-
gerüst. In diesem Beitrag zeigen wir Ih-
nen, wie Sie mit Milkshape Ihre 3D-Mo-
delle mit Hilfe von Knochensystemen
(Bone Systems) realistisch animieren
und in eigene Spiele einbauen.

Beim Modellieren eines humanoiden
Lebewesens bilden Sie ein Knochenske-
lett nach. Dieses enthält nicht so viele
Knochen wie das menschliche Skelett.
Im Egoshooter Unreal Tournament fin-
den Sie ein Skelett, das etwa 40 Knochen
enthält.

Bauen Sie das 3D-Modell (Dreiecke)
auf. Die Form des Modells sollte sich
den Gegebenheiten des möglichst genau
gebildeten Skeletts
anpassen. Gehen Sie
vor, wie in der letzten
Ausgabe beschrieben:
Texturieren Sie das
3D-Modell.

Jedem Vertex des
Modells weisen Sie ei-
nen Knochen zu, mit
dem er assoziiert ist.
Die Bewegung dieses
Knochens wirkt sich
auf den Vertex und
damit assoziierte Ver-
tizes aus. Sie müssen
bei der Animation des
3D-Modells nur das
Skelett animieren, das
Modell passt sich den
Bewegungen an. Sie können so Anima-
tionen, die Sie einmal auf Basis des Ske-
letts angelegt haben, für mehrere 3D-
Modelle verwenden.

Das Skelett ist hierarchisch aufgebaut:
Knochen können anderen Knochen un-

tergeordnet sein. So bewegen sich der
Unterarm und alle daran befestigten
Knochen mit, wenn das Modell den
Oberarm bewegt. Diese Animations-
technik heißt Skeletal Animation. Auf
Grund der Rechen-
leistung heutiger
Hardware hat sie in
nahezu allen moder-
nen Spielen Einzug
gehalten. Ihre Vortei-
le: Sie können Anima-
tionen wiederver-
wenden, verschiedene
Animation überblen-
den und überlagern.

So animieren Sie
zwei Abläufe unter-
schiedlich voneinan-
der: In der ersten Ani-
mation lassen Sie eine
Spielfigur laufen. Die

zweite beschreibt eine Drehung des
Kopfes zur Seite. Die Spielfigur kann ge-
hend den Kopf zur Seite drehen.

Für diese Animationstechnik gibt es
Hardware, die über 30000 Mark kostet.
Diese Motioncapturing-Systeme bauen

grob ein Skelett und versehen eine Per-
son, von der Sie Bewegungen aufzeich-
nen wollen, mit Sensoren oder Marken.
Anschließend zeichnet der Computer
anhand der Sensoren oder Kamerabilder
die Bewegungsabläufe auf und speichert
diese für Ihr Skelett. So erreichen
Studios realistische Bewegungen in
Perfektion.

■ Ein Roboterarm entsteht
Anhand eines Roboterarms erkennen
Sie die hierarchische Animation, und Sie
überschauen die Anzahl der Knochen
(Bones) – in diesem Fall der Armteile.
Der Roboterarm soll komplett drehbar
sein, zwei Armsegmente und eine Greif-
hand besitzen.

Sie benötigen fünf Knochen. Diese
sind in Milkshape 3D durch Joints (Ver-
bindungsstücke/Gelenke) definiert. Ein
Bone beginnt und endet in einem Joint.

Sie legen Joints an, indem Sie im Mo-
del-Tab von Milkshape 3D das Joint-
Tool wählen, und die Joints in den Mo-
delling-Fenstern per Mausklick positio-
nieren. Milkshape 3D erzeugt automa-
tisch einen Bone zwischen einem neu
eingefügten und dem letzten Joint.
Wenn Sie an einem Joint einen zweiten
Bone befestigen wollen, dann wählen Sie
den entsprechenden Joint im Joints-Tab.
Er wird dann rot dargestellt. Die schon
daran befindlichen Bones sind grün zu
erkennen.

Im nächsten Schritt modellieren Sie
den Roboterarm. Das Beispiel begnügt
sich mit einfachen Zylindern und einer
Kugel, die grob die Form gestalten. Sie
haben nun die Möglichkeit das Ausse-
hen des Roboters nach Ihren Vorstel-
lungen zu verfeinern. q

Animierte Modelle mit Milkshape 3D

Spiel-Szene
Um Spielfiguren zu entwickeln, animieren Sie Ihre
Milkshape-3D-Polygonmodelle mit realistischen
Knochensystemen.

AUF CD 1
Die Quelltexte sowie die fertig übersetz-

ten Routinen finden Sie im Verzeichnis
Praxis/Programmierung/PC Underground.

DAS KNOCHENSKELETT des Ego-Shooters Unreal Tournament

UNSER ROBOTERARM besteht aus fünf Bones und sechs Joints.

P C U N D E R G R O U N D
P R A X I S

222 PC Magazin 11/2001

Weisen Sie den Vertizes der Zylinder
jeweils einen Bone zu. Dazu markieren
Sie die Vertizes mit dem Select-Tool aus
dem Model-Tab. Wählen Sie im Joints-
Tab den Joint und damit alle daran
befestigten (untergeordneten) Bones
aus, und klicken Sie auf den Assign-But-
ton. Beachten Sie folgende Punkte:

•Beginnen Sie in der Hierarchie ganz
oben, und arbeiten Sie sich nach unten
durch. Das vereinfacht die Zuweisun-
gen. Beim Roboterarm fällt die Ent-
scheidung, welche Vertizes welchen
Bones zugeordnet werden sollen, leicht,
weil Sie die 3D-Teile des Arms der Rei-
he nach anlegen. Bei einem Low-Poly-
gon-Modell eines Menschen sind even-
tuell mehrere Versuche nötig, um das
beste Ergebnis zu erzielen. Das 3D-Mo-
dell soll möglichst genau entlang dem
Skelett verlaufen. Weisen Sie alle Verti-
zes zu. Um herauszufinden, welche Sie
noch nicht bearbeitet haben, deselektie-
ren Sie zunächst alle eventuell markier-
ten Vertizes. Wenn Sie auf den Select un-
assigned (SelUnAssigned) Button
klicken, markiert Milkshape 3D alle die-
se Vertices für Sie. Analog bewirkt der
Select Assigned (SelAssigned) Button,
dass alle Vertices, die mit dem gerade ge-
wählten Bone assoziiert sind, sichtbar
werden.

■ Skelett
animieren
Animieren Sie das
Skelett. Aktivieren
Sie im Menü die
Funktion Show
Keyframer. Im unte-
ren Teil des Pro-
grammfensters er-
scheinen eine Zeit-
achse und diverse
Buttons. Mit dem
Anim-Button aktivie-
ren Sie die Animati-
onsmodellierung.

Beim Keyframing
legen Sie die Stellung der Gelenke, also
die Position und Drehung der Joints, nur
für bestimmte Zeitpunkte fest. Die Posi-
tionen und Winkel zwischen den ange-
gebenen Zeitpunkten bestimmt das Ani-
mationsprogramm durch Interpolation.

Mit dem Schieberegler wählen Sie ei-
nen Zeitpunkt (ein Frame), für den Sie ei-
nen Animationsschritt festlegen wollen.
Mit den Optionen Select, Move und Ro-
tate aus dem Model-Tab können Sie den
Roboterarm in jede mögliche Position
bringen. Wenn Ihnen das Resultat zu-
sagt, speichern Sie das Frame mit dem

Menüpunkt Animate/Set Keyframe oder
mit der Tastenkombination [Strg-K].

Wenn Sie alle Keyframes festgelegt
haben, können Sie die fertige Animation
mit dem Play-Button oder durch Bewe-
gung des Schiebereglers auf der Zeitach-
se ansehen und überprüfen. Wenn Sie
Ihre Arbeit als MS3D-Datei speichern,
werden alle Bone- und Keyframing-In-
formationen automatisch mit abgelegt.

■ Animationen in
eigenen Programmen
Das Beispielprogramm der letzten Aus-
gabe las die Vertex-, Polygon- und Ma-
terial-Informationen von MS3D-Datei-
en aus. Diese Informationen erschienen
in den Dateien immer in der gleichen
Reihenfolge. Ebenso verhält es sich mit
Animationsdaten, die den Materialdaten
folgen. Zuerst finden Sie die Frames per
Second, das in Milkshape 3D ausgewähl-

te Frame und die Ge-
samtzahl der Frames
in der MS3D-Datei:
float fAnimation
FPS;
float fCurrent
Time;
int iTotal
Frames;

Als nächstes finden
Sie den 16-Bit-Wert
unsigned word, der
die Anzahl der Joints
im Skelett angibt:
word nJoints;

Um die Animations-
daten einzulesen, de-
finieren Sie folgende
Strukturen:

typedef struct
{

float time;
float rotation[3];

} MS3D_KEYFRAME_ROT;

typedef struct
{

float time;
float position[3];

} MS3D_KEYFRAME_POS;

typedef struct
{

byte flags;
char name[32];
char parentName[32];
float rotation[3];
float position[3];

word nKeyFramesRot;
word nKeyFramesPos;

MS3D_KEYFRAME_ROT *keyFrames
Rot;

MS3D_KEYFRAME_POS *keyFrames
Pos;
} MS3D_JOINT;

AN EINEM JOINT können Sie mehrere Bones befestigen.

WEISEN SIE allen Vertizes einen Bone zu.

SPIEL-PROJEKTE UND LINKS

Spiel Link Genre
Die Germanen www.bigbytesoftware.de 3D-Strategie
Operation Red Falcon www.operationredfalcon.com Halflife Mod
SCS www.nirwana-games-development.4d2.de Weltraum Shooter
Takatis www.poke53280.de.vu 2D Shoot’Em’Up
Tank Hunter www.stefanzerbst.de Ego Shooter
VVL Extreme www.cwr-spiele.de Ego Shooter
Weststorm www.banshee-interactive.de 3D-Shooter
DUSMANIA2001 www.xenoage.de/dusmania2001/ Berichte zur DUS
Hobby-Spieleentwickler www.untergrund-spiele.4players.de Portal

P C U N D E R G R O U N D
P R A X I S

11/2001 PC Magazin 223

Die Strukturen MS3D_KEYFRAME_
ROT und MS3D_KEYFRAME_POS
enthalten die Rotation oder Position ei-
nes Joints für ein Keyframe. Diese Wer-
te werden in einem Array der MS3D_
JOINT-Struktur gespeichert. Diese
Struktur enthält außer Flags deren Na-
men und den Namen des in der Hierar-
chie höheren Joints (parentName).
Außerdem sind die initiale Position und
Rotation gespeichert. Die Daten lesen
Sie in der Reihenfolge, die Sie in der
MS3D_JOINT-Struktur finden, aus der
MS3D-Datei aus.

■ Erste Positionierung
der Bones
Nachdem Sie alle Daten aus der MS3D-
Datei gelesen haben, müssen Sie die Ver-
tizes entsprechend der initialen Position
und Rotation der zugehörigen Bones
transformieren. Auf Grund der zusam-
mengesetzten Rotation und Translation
(Verschiebung) und des hierarchischen
Aufbaus der Animation setzen Sie Matri-
zen ein. Speichern Sie für jeden Bone meh-
rere Matrizen. Diese umfassen die Zwi-
schenergebnisse, die relative Transforma-
tion eines Bones sowie die absolute:

typedef float MATRIX[4][4];

typedef struct
{

MATRIX mRelative;

MATRIX mAbsolute;
MATRIX mRelativeFinal;
MATRIX mFinal;

} BONE;

pBone = new BONE[nJoints];

Die initiale Positionierung berechnen
Sie für jeden Bone. Die folgende Routi-
ne geht davon aus, dass in der Bone-Lis-
te die Hierarchie absteigend ist. Das
heißt, entweder ist ein Joint Beginn eines
Knochens, oder das in der Hierarchie
nächsthöhere Joint, mit dem es einen
Bone bildet, ist vorher in der Liste ent-
halten.

Für jeden Joint berechnen Sie die Ro-
tationsmatrix (createRotationMatrix(...))
und fügen die Translation hinzu, die sich
bei einer 4x4-Matrix in der rechten Spal-
te befindet. Die Matrixroutinen finden
Sie in der Datei matrix.h und in fast jeder
mathematischen Formelsammlung:

for (i = 0; i < nJoints; i++)
{
MS3D_JOINT *bone = &pJoint[i];

createRotationMatrix(
pBone[i].mRelative,
bone->rotation[0]);

// Translation
pBone[i].mRelative[0][3]=

bone->pos[0];
pBone[i].mRelative[1][3]=

bone->pos[1];
pBone[i].mRelative[2][3]=

bone->pos[2];

Jetzt suchen Sie den in der Hierarchie
nächsthöheren Joint. Beginnt mit dem

aktuellen Joint ein Knochenstrang, wer-
den Sie keinen Parent Bone finden, wo-
mit Sie die oben berechnete Transforma-
tionsmatrix speichern. Wenn Sie einen
Parent Bone finden, müssen Sie dessen
Transformationsmatrix mit der Matrix
des aktuellen Bones multiplizieren und
speichern:

// nächsthöheren Joint suchen
nParentBone = -1;
for (int j = 0; j < nJoints;

j++)
if (strcmp(pJoint[j].name,
bone->parentName) == 0)

{
nParentBone = j;
break;

}

if (nParentBone != -1)
{

// Parent Bone gefunden
pBone[i].mAbsolute =

pBone[i].mRelative *
pBone[nParentBone].mAbsolute);
pBone[i].mFinal =

pBone[i].mAbsolute;
} else
{

// kein Parent Bone
pBone[i].mAbsolute =

pBone[i].mRelative;
pBone[i].mFinal =

pBone[i].mRelative;
}

}

Transformieren Sie alle Vertizes mit der
inversen Transformationsmatrix des as-
soziierten Bones. Es ist nicht notwendig,
aufwändige mathematische Verfahren
zur Matrixinversion anzuwenden, da q

Am 27. und 28.07.2001 traf sich die Szene
der deutschen Hobby-Spieleentwickler
zum dritten Mal zur so genannten DUSma-
nia in Freudental bei Stuttgart. DUS steht für
Deutsche Untergrund Spiele. Unter den et-
wa 100 Gästen waren hauptsächlich Hobby-
programmierer, -grafiker und -musiker so-
wie einige wenige kommerzielle Spiele-
entwickler.
Diskussionsrunden beschäftig-
ten sich mit Themen wie Neue
Spiele, neue Konzepte, Distri-
butionsmöglichkeit Internet
und lizenzierte gegen selbst
entwickelte Engines. Am
Abend fanden Projektvorstel-
lungen verschiedener Teams
statt, die ihre Spiele auf einer
Großleinwand dem Publikum
vorstellten. Interessant dürfte
für die Hobbyentwickler die
Präsenz von professionellen
Teams wie Davilex oder Vulpi-
ne gewesen sein.
Vier Projekte machten deut-
lich, mit welchem Engagement

die Hobbyentwickler ans Werk gehen.
Dennoch gibt es qualitative Unterschiede
zu den weltweit vermarkteten, kommerzi-
ellen Projekten:
• Das Echtzeit-Strategiespiel Die Verbote-
ne Welt von Sechsta Sinn ist eine Art Com-
mand&Conquer-Klon im typischen Isogra-
fik-Stil. Es war das qualitativ beste Spiel auf

der DUS. Screenshots und Demos können
Sie von der Webseite www.
sechstasinn.de laden.
• Eisenfaust lautet der Titel eines 2D-
Shoot’em-up von Not’A’Tric. Der Projekt-
leiter plant, die erste Episode des Spiels als
Freeware im Internet unter www.
notatric.de anzubieten.

• Vom Strategiespiel Acrophy
von Lama Cru waren ein kurzer
Trailer und eine angespielte De-
moversion zu sehen. Das Test-
Projekt finden Sie auf der Web-
site www.lama-ware.de DarkBa-
sic ist ein Basic-Compiler mit
eingebauter DirectX-Unterstüt-
zung. Damit sollen Hobbypro-
grammierer leichter mit 3D-
Hardware umgehen und einfa-
cher Spiele und Demos ent-
wickeln können. Informationen
zu DarkBasic und damit pro-
grammierten Spielen wie Dark
land im Stil von Marble Madness
finden Sie unter www.
colorarts.de/.

BERICHT VON DER DUSMANIA 2001

IN DEN ROUNDTABLES wurden aktuelle Themen der Spiele-
entwickler diskutiert.

P C U N D E R G R O U N D
P R A X I S

224 PC Magazin 11/2001

es sich beim Rotationsteil um eine or-
thogonale 3x3-Matrix handelt. Bei dieser
ist die transponierte Matrix gleich der in-
versen. Die Verschiebung können Sie in-
vertieren, indem Sie vor der Rotation die
Verschiebung negiert anwenden:

for (int j = 0;
j <nVertices; j++)
{
MS3D_VERTEX *pV = &pVertex[j];

if (pV->boneId != -1)
{

MATRIX *a = &pBone
[pV->boneId].mAbsolute;

pV->vertex[0] -= a[0][3];
pV->vertex[1] -= a[1][3];
pV->vertex[2] -= a[2][3];

invrotate(temp, pBone
[pV->boneId].mAbsolute,

pV->vertex);
pV->vertex = temp;

}
}

■ Animationframe
berechnen
Berechnen Sie die Transformationsma-
trizen für ein bestimmtes Animations-
Frame. Dabei gehen Sie in etwa so vor
wie bei der Initialisierung. Zunächst ha-
ben Sie ein Frame, also eine Zeit, ange-
geben. Behandeln Sie wieder einen Joint
nach dem anderen. Für jeden Joint haben
Sie die Arrays

MS3D_KEYFRAME_ROT *keyFrames
Rot;

MS3D_KEYFRAME_POS *keyFrames
Pos;

gespeichert, in denen die Zeitpunkte,
die Rotations- oder Positionsinforma-
tionen abgelegt sind. Suchen Sie für

jeden Joint jeweils die nächsten Keyfra-
me-Informationen, die vor und nach
dem gewünschten Frame liegt. Da-
durch haben Sie ein Zeitintervall gege-
ben und können die Werte interpolie-
ren, wie Sie sie an Hand der Positions-
berechnung sehen:

MS3D_KEYFRAME_POS
*pLastPositionKey = NULL,
*pThisPositionKey = NULL;

for (j = 0; j <
nPositionKeyCount; j++)

{
pPositionKey =

&bone->keyFramesPos[j];

if (pPositionKey->time >=
frame)

{
pThisPositionKey = pPositionKey;

break;
}

pLastPositionKey = pPositionKey;
}

// Position interpolieren
d = pThisPositionKey->

time - pLastPositionKey->time;
s = (frame -

pLastPositionKey->time) / d;

vPos = pLastPositionKey->
position +

(pThisPositionKey->position -
pLastPositionKey->position) *s;

Mit der berechneten Rotation und Trans-
lation erzeugen Sie wieder die relative
Transformationsmatrix. Wenn der gera-
de betrachtete Joint an einem hierarchisch
höher angesiedelten Joint befestigt ist,
berücksichtigen Sie wieder dessen Trans-
formation, genau wie bei der Initialisie-
rung. Zuletzt wenden Sie die berechneten
Transformationen auf die Vertizes an: Sie

erhalten genau die
Animation, die Sie
vorher in Milkshape
3D angelegt haben!

Um bei der Anima-
tion die korrekte Be-
leuchtung der 3D-
Objekte zu gewähr-
leisten, müssen Sie die
Normalen transfor-
mieren. Wenden Sie
nur die Rotation auf
die Normalenvekto-
ren an, nicht die
Translation: Verwen-
den Sie in matrix.h die
Funktion rotate(...)
und nicht trans-
form(...). s E TUNSER EIGENER Milkshape-3D-Animationsplayer

