
P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R

Um 3D-Welten in Spielen darzu-
stellen, genügt es nicht mehr,
die 3D-Szenen technisch und

künstlerisch ansprechend zu rendern. In
den letzen Jahren begannen Program-
mierer deshalb physikalische Vorgänge
erfolgreich zu simulieren. Meist be-
schränkte sich die Simulation in Com-
puterspielen darauf, starre Körper zu
bewegen und Kollisionen zu berechnen.
Der zweite große Trend zeigte dann, wie
sich große Outdoor-Spielewelten mit
eindrucksvollen Landschaften und
blühender Flora und Fauna rendern
ließen.

Wir widmen uns in dieser Ausgabe
der physikalischen Simulation von Was-
serwellen, in tiefem Wasser, wie Sie es
vom Meer her kennen. Dieses Gebiet
wurde von professionellen Forschern
genau untersucht. Diese Experten sind
nicht als Programmierer oder Grafiker
ausgebildet. Die Profis im Dienst der
Marine berechnen, wie sich Schiffe auf
offener und schwerer See bewähren
müssen.

■ Wellen aus
Sinusschwingungen
Wenn Sie über die Simulation von Wel-
len nachdenken, mag Ihnen ein Poly-
gongitter in den Sinn kommen. Bei die-
sem verschieben Sie die Position der
Vertizes, womit der richtige Anfang ge-
macht ist. Im nächsten Schritt perfektio-
nieren Sie die Bewegung dadurch, dass
Sie die Verschiebung nach oben und un-
ten durch überlagerte Sinusschwingun-
gen steuern und berechnen. Damit ver-
mitteln Sie einen Eindruck, dass es sich
um Wasser handelt,.
Die beiden Forscher Pierson und Mos-
kowitz haben in ihren Untersuchungen

im Jahr 1964 festgestellt, dass sich die Be-
wegung der Wasseroberfläche durch ei-
ne Überlagerung der richtigen Sinus-
schwingungen darstellen lässt. Dazu ha-
ben sie eine ganze Reihe von Windseen
untersucht.

■ Die Pierson-Moskowitz-
Formel
Das Ergebnis ihrer Arbeit war die so-
genannte Pierson-Moskowitz-Formel
(kurz PM-Formel). Mit dieser Formel
können Sie für eine konstante Windge-
schwindigkeit die spektrale Energiever-
teilung eines voll entwickelten Windsees
berechnen. Vollentwickelt bedeutet, Sie
berechnen die Wellen für einen Zeit-
punkt, zu dem der Wind schon so lange
auf das Wasser gewirkt hat, dass sich ei-
ne Art Gleichgewicht gebildet hat zwi-
schen der Interaktion Wind-Wasser.

Die spektrale Energieverteilung be-
sagt, wie stark welche Sinusfrequenz zu
der Wasseroberfläche beiträgt (ihre Am-
plitude). Die PM-Formel berechnet die
Wellen auf der Grundlage des Windes.
Wind ist auch der Hauptverursacher an
Wellen auf dem Meer. Der Wind verur-
sacht auf eine Wasseroberfläche Wellen,
weil sich durch kleine Turbulenzen der
Luftdruck über der Wasseroberfläche
ändert und somit auf sie wirkt.

Die PM-Formel für die Peakfrequenz
(die stärkste Sinusschwingung im Spek-
trum) und die eindimensionale Energie-
verteilung, die sich aus den Versuchen
ergab, sieht wie folgt aus:

Im Bild sehen Sie das mit der Formel
berechnete Spektrum für die Windge-
schwindigkeit, die in 10 Meter Höhe ge-
messen wird, mit einem Wert von:

U(10) = 5m/s

Mit der Dispersionsgleichung für Gravi-
tationswellen in tiefem Wasser können
Sie die Wellenlängen, bzw. den Wellen-
längenbereich mit der meisten Energie,
berechnen. Die Konstante g ist die Erd-
beschleunigung und k=2*pi/lambda die
Wellennummer:

Eine weitere Formel ist das Jonswap-
Spektrum:

Für das Jonswap Modell gibt es noch
eine spezielle Funktion, mit der Sie die
Peakfrequenz berechnen können:

Der Unterschied zwischen den ver-
schiedenen Formeln für die Energiever-
teilung liegt hauptsächlich in der Aus-
prägung des Maximums. Alle diese For-
meln basieren auf Beobachtungen. Des-
halb gibt es unterschiedliche Formeln
für einen Vorgang. Allgemein gilt: Wenn
die Windgeschwindigkeit zunimmt,

246 PC Magazin 12/2001

Physikalische Simulation von Wasserwellen

Alles fließt
Nutzen Sie Forschungsergebnisse aus der Ozeano-
graphie, um Wasserwellen physikalisch zu simu-
lieren. Sie animieren realistische Wellen.

AUF CD 1
Die Quelltexte sowie die fertig übersetzten

Routinen finden Sie im Verzeichnis Praxis/Pro-
grammierung/PC Underground.

DAS PIERSON-MOSKOWITZ-SPEKTRUM
für U(10) = 5 m/s

P C U N D E R G R O U N D
P R A X I S

wird die Peakfrequenz kleiner und die
Wellenlänge größer. Wer dies beobach-
ten konnte, wird sich dieser Faustregel
anschließen. Umgekehrt ist einsichtig,
dass bei Windstille keine Wellen auftre-
ten.

■ Die Richtung der
Sinuswellen
Mit den Formeln, die wir Ihnen bisher
vorgestellt haben, können Sie die Am-
plitude der Sinusschwingungen für eine
Wasseroberfläche in Abhängigkeit von
der Windstärke berechnen. Für die Dar-
stellung der Wasseroberfläche reicht
diese Information nicht aus. Sie benöti-
gen noch das Wissen über die Richtung,
in der eine Sinuswelle läuft, also die
Richtungsverteilung. Diese ist natürlich
abhängig von der Windrichtung. Diese
Verteilung können Sie mit der Formel
von Mitsuyasu bestimmen. Diese be-
rechnet die Energie, die eine Welle der

Frequenz f hat, die im Winkel Theta zur
Windrichtung läuft:

Für die Formel benötigen Sie folgen-
de Fallunterscheidungen:

Die Gamma-Funktion ist wie folgt
definiert:

Aus den genannten Formeln und der
PM-Formel (oder einer ande-
ren Frequenz-Energie-Verteilungs-
funktion) erhalten Sie dann die zwei-

dimensionale Energieverteilungsfunk-
tion:

In Bild sehen Sie eine dieser Energie-
verteilungen als 3D-Diagramm.

■ Die Berechnung
der Amplitude
Aus der zweidimensionalen Energiever-
teilungsfunktion können Sie die Ampli-
tude berechnen. Dazu müssen Sie fol-
gende Berechnungen durchführen:

Die Ableitung von dk/df (sprich dk
nach df) berechnen Sie aus der Disper-
sionsgleichung:

Jetzt lösen Sie die obige Gleichung
nach F(k) auf

und setzen Sie in

ein. Bei dem Omega Term handelt es
sich um einen Korrekturterm, dessen
mathematische Notwendigkeit für un-

sere Anwendung nicht konkret berech-
net wird. Durch weitere Vereinfachung
und Auflösung, erhalten Sie für die Am-
plitude folgende Formel

Nun haben Sie die endgültige Formel,
die Ihnen die Amplitude zu einer Sinus-
schwingung auf der Wasseroberfläche
berechnet.

■ Vereinfachung für
Echtzeit 3D-Grafik
Das berechnete Spektrum und die Ener-
gieverteilung sind kontinuierlich. Das
bedeutet, dass die Ergebnisse die Ener-
gieverteilung für unendlich viele überla-
gerte Sinuswellen jeglicher Frequenz
und Richtung darstellen. Auch wenn der
Bereich der Funktionen eingeschränkt
ist, in denen sie bedeutend größer als
Null sind (sichtbarer Beitrag zum geren-
derten Bild), sind im entsprechenden
Bereich immer noch unendlich viele Fre-
quenzen und Richtungen enthalten.

Verwenden Sie ein Polygongitter, des-
sen Vertizes Sie verschieben, um die
Wellenbewegung darzustellen. Die An-
zahl der Sinuswellen, die Sie in der Be-
rechung überlagern, wird aber deutlich
durch die Größe des Gitters und der ver-
fügbaren Rechenzeit eingeschränkt. Su-
chen Sie sich in der Vorberechnungs-
phase eine zufällige Frequenz und eine
zufällige Richtung der Welle aus. Mit
Hilfe der obigen Formeln können Sie die
Amplitude dieser Welle berechnen.
Wenn die Amplitude einen – von Ihnen
gewählten – Grenzwert nicht über-

schreitet, also zu
schwach ist, um im
Bild sichtbar zu sein,
verwerfen Sie die Zu-
fallswerte und gene-
rieren eine neue Wel-
le. Sie speichern also
nur die Sinuswellen,
die stark genug sind.
Für den visuellen Ein-
druck genügen etwa
16 bis 32 dieser ausge-
wählten Wellen.

■ Die Imple-
mentation

Nachdem Sie die Windgeschwindigkeit
und Windrichtung festgelegt haben, be-
rechnen Sie zunächst die Peakfrequenz:

const float wind q

12/2001 PC Magazin 247

DIE ZWEIDIMENSIONALE Energieverteilung

P C U N D E R G R O U N D
P R A X I S

Speed = 5.5f;

const float wind
Direction = 0.0f;
const float gravity = 9.81f;

float freqPeak = 0.13f * gravity
/ windSpeed;

Zur Berechnung der Amplitude verwen-
den Sie folgende Funktionen für die
Richtungs- und frequenzabhängige-En-
ergieverteilung:

float directionEnergy(float f,
float theta)
{
float temp = cos(theta * 0.5f);

temp *= temp;

float s_sm, sm;
if (f >= freqPeak)
{

s_sm = pow(f/freqPeak, -2.5f);
sm = 9.77f;

} else
{
s_sm = pow(f/freqPeak, 5.0f);

sm = 6.97f;
}

float s = s_sm * sm;
return gamma(s+1) * pow
(temp, s) /
(2.0*sqrt(M_PI)*gamma(s+0.5));
}

float energy1DFreq(float f)
{

return alpha * gravity2 /
(pow(2.0f*M_PI, 4) * pow(f, 5)) *
exp(-5.0/4.0*pow((f/freqPeak),-
4.0));
}

float energy2DFreqAngle(float f,
float theta)
{

return energy1DFreq(f) *
directionEnergy(f, theta);

}

Mit den gerade beschriebenen Funktio-
nen können Sie die Amplitude einer
Welle wie folgt berechnen:

float waveAmplitude(float f,
float theta, float k)
{

float omega = 10.0f;
return sqrt(energy2DFreqAngle(

f, theta) *
gravity * M_PI * M_PI /
(k * f * omega));

}

Als nächstes erzeugen Sie die einzelnen
Wellen und berechnen deren Parameter.
Die Parameter speichern Sie für jede
Welle in einer Struktur:

typedef struct
{

// Richtung (Winkel)
float direction;
// Richtung (Vektor)
float dirX, dirY;
// Wellenlänge
float lambda;
// Wellennummer
float k;

// Winkelgeschwindigkeit
float omega;
// Frequenz
float freq;
// Periodenlänge
float periode;
// Amplitude
float amplitude;
// Phase
float phase;

}WAVE;

int nWaves;
WAVE wave[MAX_WAVES];

Die Berechnung und Selektion der Wel-
len erfolgen in einer While-Schleife:

WAVE *w = &wave[0];
nWaves = 0;
while (nWaves < 32)
{

// zufällige Frequenz
float frequency = freqPeak +

rand()/32768.0f - 0.5f;

Durch den Zufallszahlengenerator kön-
nen auch negative Frequenzen auftau-
chen, die wir gleich an dieser Stelle aus-
schließen wollen:

if (frequency > 0.0f)
{

w->lambda = 2.0f * M_PI / (pow(
2.0f * M_PI * frequency, 2.0f) /
gravity);
w->k = 2.0f * M_PI / w->lambda;
w->omega = sqrt(gravity * w->k);
w->freq = w->omega / (2.0f *
M_PI);
w->periode = 1.0f / w->freq;

Aus der Richtung als Winkel ergibt sich
der Vektor

w->direction = 0.0f + (rand() /
16384.0f + 0.5f) * M_PI;
w->dirX = cos(w->direction) *
0.5f;
w->dirY = sin(w->direction) *
0.5f;

Die Startphase der Welle bestimmen Sie
auch durch einen Zufallswert

float phi0 = rand() / 16384.0f *
M_PI;
float a0 = waveAmplitude(w-
>freq, w->direction - windDirec-
tion, w->k);
w->amplitude = a0 * cos(phi0);
w->phase = a0 * sin(phi0);

Die Welle ist nur interessant, wenn Ihre
berechnete Amplitude groß genug ist:

if (fabs(w->amplitude) >=
0.0001f)
{

w ++;
nWaves ++;

}
}

}

■ Zeitliche Animation
der Wellen
Jetzt haben Sie alle Vorbereitungen ge-
troffen, um mit der eigentlichen Anima-
tion des Wassers zu beginnen. Die Imple-
mentation des Renderings, dass Sie auf

der Heft CD oder im Internet finden, ver-
wendet den schon mehrmals eingesetzten
PC Underground OpenGL Startup. Im
Beispielprogramm wurde auf Geschwin-
digkeit optimiertes Rendering zu Gun-
sten der Übersichtlichkeit verzichtet.

Um die Wasserfläche zu rendern,
benötigen Sie ein zweidimensionales Ar-
ray, in dem Sie die Höhenverschiebung
des entsprechenden Gitterpunktes (Ver-
tex) speichern. Für die realistische Be-
leuchtung verwenden Sie außerdem eine
Oberflächennormale für jeden Vertex:

#define WATERX 128
#define WATERY 128

typedef struct
{

float x, y, z;
}VERTEX3D;

float *waterHeight;
VERTEX3D *waterNormal;

waterHeight = new float[WATERX *
WATERY];
waterNormal = new VERTEX3D[WA-
TERX * WATERY];

Berechnen Sie während der Animation
für einen Zeitpunkt time die aktuellen
Gitterverschiebungen für jeden Punkt
des Gitters:

for (j = 0; j < WATERY; j++)
for (i = 0; i < WATERX; i++)
{

float h = 0.0f;

Sie überlagern alle Wellen
for (k = 0; k < nWaves; k++)

{
wave *w = &wave[k];

Entscheidend ist zum einen die Ampli-
tude der Welle. Die Phase der Sinuswel-
le setzt sich aus der initialen Phase und
der zeit- und ortsabhängigen Phasenver-
schiebung zusammen:

h += w->amplitude *
sin(
// Initiale Phase
w->phase +
// Ausbreitungsgeschwindigkeit
w->omega*w->freq*(
// Zeitliche Verschiebung
time +
// Ortsabhängige Verschiebung
w->dirX * i +
w->dirY * j));

}

248 PC Magazin 12/2001

DIE WASSERTEXTUR

P C U N D E R G R O U N D
P R A X I S

waterHeight[i + j * WATERX]
= h;
}

Für die Darstellung müssen Sie noch die
Oberflächennormalen berechnen. Es ge-
nügt, diese in einer Näherung zu berech-
nen. Alles andere wäre viel zu rechenin-
tensiv für eine Echtzeitanwendung.

Die Normale eines Punktes berech-
nen Sie durch die Höhendifferenz seiner
Nachbarpunkte. Die X-Komponente
der Normalen erhalten Sie durch die ho-
rizontalen Nachbarn im waterHeight-
Array, die Z-Komponente aus den ver-
tikalen. Die Y-Komponente, die nach

oben zeigt, setzen Sie auf einen
konstanten Wert:

for (j = 0; j < WATERY;
j++)
for (int i = 0; i < WA-
TERX; i++)

{
float x, y, z, l;

x = waterHeight[(i+1) +
j*WATERX] -
waterHeight[(i-1) +
j*WATERX];
z = waterHeight[i +
(j+1)*WATERX] -

waterHeight[i + (j-
1)*WATERX];
y = 8.0f;
waterNormal[i + j *
WATERX].x = x;
waterNormal[i + j *
WATERX].y = y;
waterNormal[i + j *
WATERX].z = z;
}

Die Normalen brauchen Sie
nicht normalisieren. OpenGL
übernimmt das für Sie beim
Rendering, wenn Sie glEnable(
GL_NORMALIZE) nutzen.

Mit der Höheninformation und den
Normalen für die Vertizes können Sie
nun die Wasseroberfläche rendern. Die-
se rendern Sie am besten mit der Grund-
farbe Ihres Wasser, also einem
Blauton und einer Textur, die Struktur
von Wasserwellen abbildet.

Außerdem schalten Sie die OpenGL
Beleuchtungsberechnung ein. Wenn Sie
Specular Highlights (Spiegelnde Reflexi-
on) anschalten, können Sie den Ein-
druck vermitteln, als ob die Sonne sich
auf dem Wasser spiegelt. Damit erhalten
Sie Resultate wie in den nächsten Bildern
mit leichtem Wind und etwas stärkerem

Seegang. Der Himmel
in den Screenshots
wurde einfach mit ei-
ner Hintergrundbit-
map erzeugt. So
zeichnen Sie die Was-
seroberfläche:
glColor3ub(120,
200, 255);

glDepthFunc(
GL_LEQUAL);

// Texturwählen
bump->select();
for (int j = 0; j < WATERY; j++
)
{

glBegin(GL_QUAD_STRIP);
for (int i = 0; i < WATERX; i++

)
{

int x = i&(WATERX-1);
int y = j&(WATERY-1);
int y1 = (j+1)&(WATERY-1);
glNormal3fv(&waterNormal[x+y*

WATERX]);
glTexCoord2f(i * 0.3f,j * 0.3f);

glVertex3f((i-WATERX/2),
waterHeight[x+y*WATERX],

(j-WATERY/2));
glNormal3fv(&waterNormal [x+y1*
WATERX]);
glTexCoord2f(i *0.3f,(j+1)*0.3f);

glVertex3f((i-WATERX/2),
waterHeight[x+y1*WATERX],
(j+1-WATERY/2));
}
glEnd();

}

Sie verbessern die Optik mit einer zu-
sätzlichen Reflectionmap. Diese spiegelt

den Himmel auf der Wasser-
oberfläche.

OpenGL berechnet für Sie
die Texturkoordinaten für die
Reflectionmap aus den Vertex-
koordinaten oder den Norma-
len des Gitters. Die dafür nöti-
gen Befehle sind glTexGeni(...)
und glTexGenf(...). Damit kön-
nen Sie die automatische Tex-
turgenerierung steuern.

Die Darstellung des Wassers
lässt sich optimieren. Im Bei-
spielprogramm sehen Sie mit
eingeschaltetem Wireframe
Rendering, das die weiter ent-
fernten Polygone sehr klein
werden. Das Gitter benötigt ei-
ne so hohe Auflösung, da das
Wasser sonst von nahem zu
grob wirkt. Rechnen Sie die
Höhe eines beliebigen Punktes
aus: Sie können Polygonstruk-
turen verwenden, die eine bes-
sere Auflösungsverteilung ha-
ben. Weitere Informationen
finden Sie unter unserer Under-
ground-Homepage www.dachs
bacher.de/pcu. s E T

12/2001 PC Magazin 249

DIE WASSEROBERFLÄCHE mit
einfacher Beleuchtung bei leich-
tem Wind

DIESELBE WASSEROBERFLÄCHE nur bei mehr Wind

LLiitteerraattuurr:: Fournier, Alain; William T.
Reeves; „A Simple Model of Ocean
Waves“, SIGGRAPH 1986, Vol. 20,
Number 4

Mastin, Gary A.; Perter A. Watterberg;
„Fourier Synthesis of Ocean Scenes“,
IEEE Computer Graphics & Animation
1987 www.first.gmd.de/persons/
bwalter/html/report/DIE WASSEROBERFLÄCHE mit einer Reflectionmap

