2

PRAXIS

Reflection und Refraction Mapping in Opgde@ z

O]

gl_.?éi
. Die Quelltexte sowie die fertig ibersetzten

Routinen finden Sie im Verzeichnis Praxis/Pro-
grammierung/PC Underground.

Spiegelungen und Lichtbrechung von Flussigkeiten sind fur Sie ab jetzt kein
Problem mehr. Alles, was Sie benétigen, ist

CARSTEN DACHSBACHER

athematiker hatten viel Arbeit,
M Wasserwellen auf dem offenen

Meer physikalisch zu simulie-
ren (siehe PC Underground, Heft 12/01,
S. 246). In dieser Ausgabe beschéftigen
Sie sich mit dem Wasser-Rendering im
Kleinen: in FlUssigkeitsbehéltern. Dabei
lernen Sie das so genannte parabolische
Reflection- und Refraction-Mapping
(Lichtbrechung) kennen. Dieses wenden
Sie auf eine kleine Wasseroberflache an,
die sich in einem Behélter befindet.

Sie Wasser. Zunachst definieren Sie das
Gitter wie in Bitmapeffekten:

#define WATERX 96
#define WATERY 96

typedef struct

GLfloat x, vy, z;
IVERTEX3D;

VERTEX3D waterHeight
[WATERX * WATERY |;

/I arrays initialisieren
for (y=0, index=0;y < WATERY;y++)
for (x=0;x < WATERX;x++,index ++)

waterHeight[index].x =
(Xx-WATERX/2)/(float)(WATERX/2);
waterHeight
[index].z=

b4 o T S

DAS BEISPIELPROGRAMM dieser Ausgabe in Aktion

Bei der Simulation der Wasserober-
flache legen Sie weniger Wert auf die
korrekte spektrale Zusammensetzung
der Wellen als vielmehr auf eine Fort-
pflanzung von Wellen und ihrer Reflexi-
on an der Behalterwand.

Die Wasseroberflache speichern Sie als
ein Gitter aus Vertizes, deren y-Koordi-
nate (die nach oben zeigt) variabel ist.
Die x- und z-Koordinaten bleiben kon-
stant. Mit dieser Festlegung simulieren

266 PC Magazin 1/2002

(y-WATERY/2)/
(float)(WATERY/2);
/I standard héhe
waterHeight
[index].y = 0.0f;

}

Als Startenenergie
verschieben Sie zwei
oder mehr Gitter-
punkte nach oben:
waterHeight[WA-
TERX+1].y=0.5f;
waterHeight
[WATERX *
(WATERY-1)- 2.y =
0.5f;
Weiterhin bendtigen
Sie, um die Wellen-
fortpflanzung zu be-
rechnen, flr jeden
Gitterpunkt einen Geschwindigkeits-
und einen Kraftvektor. Da Sie nur eine
Bewegung in y-Richtung zulassen, be-
schranken sich die Vektoren auf einen
Float-Wert:

float waterVelocity

[WATERX * WATERY J;

float waterForce
[WATERX * WATERY |;

rs

Und so berechnen Sie die iterative Ani-
mation des Wassers: Aus der Ableitung
der waterHeight-Eintrdge in verschie-
denen Richtungen erhalten Sie die Kraft-
vektoren. Da Sie es mit diskreten Gitter-
punktwerten und nicht mit einer konti-

nuierlichen Funktion zu tun haben, sind
die Ableitungen nichts anderes als die
Differenzen: Wenn Sie einen Gitter-
punkt betrachten, besitzt dieser acht
Nachbarpunkte (oben, rechts oben,
rechts, rechts unten, usw.). Berechnen
Sie jeweils die Differenz zwischen der
Hohe des aktuellen Gitterpunkts und
der Hohe eines seiner Nachbarn. Das
Ergebnis addieren Sie negiert zum
Kraftvektor des aktuellen Gitterpunkts
und nicht-negiert zum Kraftvektor des
Nachbarpunkts. Die Differenz der
schragen Nachbarpunkte multiplizieren
Sie mit dem Inversen der Wurzel aus 2.
Der Faktor ergibt sich durch die An-
nahme, dass die Gitterpunkte eine L&n-
geneinheit voneinander entfernt sind,
woraus sich fir schrage Nachbarn eine
Entfernung von Wurzel 2 ergibt. Exem-
plarisch fur den oberen Nachbarn und
den rechten oberen betrachten Sie fol-
genden Codeteil:

memset(waterForce, 0, sizeof
(float) * nVertices);

for (inty =2;y<WATERY-2;y++)
for (int x=2;x < WATERX-2;x++)

{
float d;
d=waterHeight[x+WATERX *y] .y-
waterHeight[x-1+WATERX*y] .y;
waterForce[x+WATERX*y]-=d;
waterForce[x-1+WATERX*y]+=d;

d=(waterHeight[x+WATERX*y] .y-
waterHeight
[x+1+WATERX * (y+1)].y);
d *=INVSQRT2;
waterForce[x+WATERX*y]-=d;
waterForce[x+1+WATERX*(y+1)]+=d;

}

Nun mussen Sie noch die Geschwindig-
keit und die Verschiebungen berechnen.
Aus der Physik ist bekannt, dass Sie aus
der Kraft durch Integration tiber die Zeit
die Geschwindigkeit und eine weitere
Integration dartber die Auslenkung
(Verschiebung) erhalten. Die einfachste,
aber flr diesen Zweck taugliche Metho-
de zu integrieren, lautet:

for (i = 0; i < nVertices;i++)
waterVelocity[i] +

= waterForce[i] * 0.04f;

for (i=0; i< nVertices; i++)
waterHeight[i].y + =

waterVelocity[i];

Damit ist die Simulation der Wasser-
oberflache vollstdndig, und Sie kdnnen
sich dem Rendering widmen. Dazu grei-
fen Sie tief in die Trickkiste der Compu-
tergrafik.

Das Dual-Paraboloid Environment
Mapping ist ein relativ neuer Ansatz, um
Spiegelungen einer 3D-Szene auf einem
Objekt zu visualisieren. Er gestattet es,
die gespiegelte 3D-Szene in Texturen
festzuhalten und die Spiegelungen auf
eine Oberflache unabhéngig von der Be-
trachterposition zu rendern.

Ein Vorteil gegentiber Spheremapping
oder dem Nachteil von Spheremaps ist,
dass die Sampling-Rate gleichméafiger
ist. Sie bezieht sich in diesem Fall auf die
Flache auf den Environmentmaps
(Sphere oder Dual-Paraboloid), die ei-
nem bestimmten Raumwinkel zugeord-
net ist. Eine weitere akzeptable Lésung
ist das Cube Environment-Mapping, das
nur wenige moderne 3D-Beschleuniger
unterstiitzen. Zudem braucht das Ver-
fahren sechs Texturen. Dual-Paraboloid
Environment Mapping kommt mit zwei
Texturen aus. Diese zwei Texturen ent-
halten die ganze Umgebung, also die
ganze gespiegelte 3D-Szene von einem
3D-Objekt. Dual-Paraboloid Environ-
ment Mapping wird allerdings auch nur
von relativ neuen 3D-Beschleunigern
(nVidia) direkt unterstitzt.

ben Sektors bei den Spheremaps. Die
Dual-Paraboloid Maps sind die Bilder
von zwei Kameras, die in entgegenge-
setzter Richtung aufgestellt sind und mit
einer speziellen Linse den 180-Grad-
Sektor einsehen. Diese Texturen kénnen
Sie berechnen, wie der folgende Code-
ausschnittan Beispielen einer Front oder
Back Map zeigt:

VERTEX3D ray, color, p, pos;
float st;
for (j=0;j < 256; j++)

{
t=2.0f*((float)j/256.0f - 0.5f);
for (i=0; i < 256; i++)

{
s=2.0f*((float)i/256.0f-0.5f);
float q = s*s + t*t +1;
ray.x=2.0f*s/q;
ray.y =2.0f*t/q;
ray.z=(q-2)/q;

pos.x = pos.y = pos.z= 0.0f;

unsigned int color =
intersect(pos, ray);

dpMap[i+ j*256] = color;
}

Die Hauptarbeit dieser Routine verbirgt
sich in der Funktion intersect(...). Die
Schleife berechnet die Richtungen der
Lichtstrahlen, die fiir einen Texel (Bild-
punkt auf einer Textur) auf der Dual-

O DIE EXEMPLARISCHE SPHEREMAP zeigt schlechtes Sampling (links).
[J DIE PARABOLISCHEN MAPS fur vorne und hinten (rechts)

Die Bilder zeigen jeweils eine Sphere-
map und die entsprechenden Dual-Para-
boloid Maps. Jede Farbe steht fir einen
90-Grad-Sektor der Umgebung des Ob-
jekts. Ein Sektor ist die 3D-Szene vom
Obijekt aus gerendert, wobei der Kame-
ra6ffnungswinkel 90 Grad betragt. Auf-
fallig ist das schlechte Sampling des gel-

Paraboloid Map verantwortlich sind.
Per Raytracing kdnnen Sie diesen Strahl
verfolgen und die berechnete Farbe in
die Map eintragen. Wenn Sie einen eige-
nen Raytracer geschrieben haben oder
einen anderen modifizieren, kdnnen Sie
damit solche Maps berechnen.

Unser Beispielprogramm beschrankt

PC UNDERGROUND
PRAXIS

sich auf eine einfachere Alternative. Die
Szene besteht aus einer Skybox, also
sechs Wiirfelseiten, die mit Landschafts-
texturen belegt sind. Intersect(...) be-
rechnet damit
die Schnitt-
punkte und liest
die entspre-
chende Farbe
aus den Skybox
-Texturen aus.

DIE SKYBOX-
TEXTUREN ent-
halten die ganze
Umgebung.

Das Resultat fur die Frontparaboloid-
map sehen Sie im folgenden Bild. Darin
ist schon die ganze Umgebung gespei-
chert, die sich auf der Wasseroberflache
spiegeln kann. Wie Sie selbst solche Sky-
box-Texturen berechnen, entnehmen
Sie der Textbox auf der néchsten Seite.

Nicht jede Grafikkarten-Hardware
unterstitzt das Dual-Paraboloid En- ©

ALLE SPIEGELUNGEN der Wasserober-
flache sind in dieser Textur gespeichert.

172002 PC Magazin 267

) B0

o-E]

PC UNDERGROUND
PRAXIS

Mit Terragen, einem fur Privatnutzer frei-
en Programm (http://www.planetside.
co.uk), kénnen Sie Landschaften, Wasser,
Wolken und Himmel erzeugen und ren-
dern. Mit wenigen Arbeitsschritten erzeu-
gen Sie Skybox-Texturen. Nach dem Pro-
grammstart von Terragen sind automa-
tisch zwei Fenster geoffnet.

Im Landscape-Fenster kénnen Sie mit
Generate Terrain eine Zufallslandschaft
abhangig von zahlreichen Parametern

L

Fived Height Abave Surface v [30m

Target Position [3840.m |7680m [185,5m

Fived Height Abave Surface W [0m

5 {
s T head pitch bank
Drientation [0 0448 |0
Use Mause Buttors
Detal "1 | | tadescibe the
o |ElenmEy | |EREE
— Left button positions
Image Size (in pikels] the Camera, and
Right buttan
Width [258 Heioht [25] positions the Target. |
Bendel\mage‘ ‘ Camera Seftings ‘
Last Image: Wiew Egosue 4| | #|zoom o [|

=
Image Camera " Tenainunits & Metres
¥ v 2[alt)
Camera Position [3840,m |3840m |215 5m

SKYBOXES berechnen Sie leicht mit
Terragen.

vironment Mapping. Es muss die
GL_REFLECTION_MAP_NV-Er-
weiterung von OpenGL vorhanden
sein, die Sie zu Beginn des Programms
testen sollten. Doch dann lassen sich
mit OpenGL die Texturkoordinaten s
und t fir die Environment Maps mit Ma-
trizen aus den Reflection Vektoren be-
rechnen.

s R,
t I

=A-P-S.- (M) y
1 (M) R.
1 1

Die einzelnen Matrizen sind wie folgt
definiert: A ist eine Matrix, die 2D-Ko-
ordinaten vom Intervall [-1,1] in das
Intervall [0,1] fUr das Texturemapping
transformiert.

1 1
i {]] 0 3
) 1.0

—

Die Matrix P enthélt die Projektion ei-
nes 3D-Vektors auf 2D.

Die Matrix S subtrahiert den 3D-Vek-
tor von einem Orientierungsvektor d,
der die Blickrichtung représentiert, also

268 PC Magazin 1/2002

generieren. Betrachten Sie dann das
Rendering-Control-Fenster. Damit posi-
tionieren Sie den Betrachter in der Mitte
der Landschaft und aktivieren Fixed
Height above Surface. Bei den Settings
stellen Sie das Rendering-Detail auf
Maximum. Bei den Camera Settings
wahlen Sie Traditional Computer Gra-
phics, und fur Zoom.”Magnifikation geben
Sie den Wert 1.0 an. AnschlieBend be-
rechnen Sie die sechs Skybox-Texturen
mit 256 x 256 Pixeln und folgenden Kame-
ra-Einstellungen:

Seite Camera Camera Camera
Head Pitch Bank
1 0 0 0
2 90 0 0
3 180 0 0
4 270 0 0
5 0 90 0
6 0 270 0

Mit diesen sechs Texturen und unserem
Tool berechnen Sie die Dual-Paraboloid
Maps.

100 0

001 0
0010

(0,0,1) fuir die Frontmap oder (0,0,-1) fur
die Backmap.

Die folgende Matrix ist die Inverse zur
Modelview-Matrix von OpenGL.

(M)~

Die Modelview-Matrix von OpenGL
ist eine affine Abbildung (Kombination
aus Rotation, Skalierung und Verschie-
bung), deren inverse Matrix das Bei-
spielprogramm berechnet. Nun mussen
Sie OpenGL noch mitteilen, was es mit
den Matrizen und Texturen tun soll.
Wahlen Sie also die entsprechende Tex-
tur mit gIBind(...) aus, und fiihren Sie
folgenden Code aus, wobei Sie mit
Streamdaten (Arrays aus Vertizes und
Normalen) rendern:

glEnableClientState
(GL_VERTEX_ARRAY);

glVertexPointer
(3,GL_FLOAT,0,&waterHeight[0]);

glEnableClientState(GL_NORMAL_AR-
RAY);
glNormalPointer

(GL_FLOAT,0,&waterNormal[0]);
/I Abbildungsmatrix Gibergeben

glTexGeni(GL_S,
GL_TEXTURE_GEN_MODE,
GL_REFLECTION_MAP_NV);
glTexGeni(GL_T,
GL_TEXTURE_GEN_MODE,
GL_REFLECTION_MAP_NV);
glTexGeni(GL_R,
GL_TEXTURE_GEN_MODE,
GL_REFLECTION_MAP_NV);

glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
glEnable(GL_TEXTURE_GEN_R);

glDrawElements(GL_TRIANGLES,
nindices, GL_UNSIGNED_INT,
waterindex);

glDisableClientState
(GL_VERTEX_ARRAY);

glDisableClientState
(GL_NORMAL_ARRAY);

Im obigen Code-Ausschnitt finden Sie
zwei bislang unbekannte Arrays:

« waterIndex enthalt lediglich die Indi-
zes der zu zeichnenden Dreiecke in der
waterHeight-Liste. Diese legt das Pro-
gramm zu Beginn an.

< waterNormal enthélt die Normalen
fir jeden Gitterpunkt. Diese berechnen
Sie gleich nach der Wassersimulation fur
jeden Frame neu, indem Sie — dhnlich
wie bei den Kraftvektoren — Differenzen
bilden. Exemplarisch fiir eine Normale:

n.x = 0.0f;
n.y = 1.0f;
n.z = 0.0f;

n.x+=waterHeight
[CLAMP(x-1,y)].y;
n.x-=waterHeight
[CLAMP(x+1,y)].y;
n.z+=waterHeight
[CLAMP(x,y-1)].y;
n.z-=waterHeight
[CLAMP(x,y+1)].y;

Der Aufwand fir dieses Verfahren
hélt sich in Grenzen, doch die Ergebnis-
se sind beeindruckend.

AuBer den Spiegelungen, soll unsere
Wasseroberflache Lichtbrechung auf-
weisen. Dazu gibt es leider keine ent-
sprechende OpenGL-Erweiterung, so
dass Sie selbst Hand anlegen mussen.
Wenn ein Lichtstrahl aus der Luft ins
Wasser eintritt, andert sich seine Rich-
tung. Die neue Richtung, die nach dem
Gesetz von Snell berechnet wird, hangt
von der Oberflaéchennormalen, der ur-
springlichen Richtung und der Brech-
zahl des Mediums (hier Wasser) ab. Sie
berechnen das Verfahren, hier gleich in
C-Syntax dargestellt, folgendermafien:

/I Kameraposition
float m[16 ;

glGetFloatv
(GL_MODELVIEW_MATRIX, m);
cameraPosition.x =m[2];
cameraPosition.y =m[6];
cameraPosition.z=m[10];

/IRichtung Betrachter->Gitterpkt
eyeVector.x = cameraPosition.x -
waterHeight[CLAMP(x,y) I;
eyeVector.y = cameraPosition.y -
waterHeight[CLAMP(X,y) I;
eyeVector.z = cameraPosition.z -
waterHeightl CLAMP(X, y)];

/I Brechzahl
float eta = 0.75f;

dot = n.x*eyeVector.x + n.y*
eyeVector.y+n.z*eyeVector.z;

lambda = sqrt(1-(eta*eta*
(1-(dot*dot))));

lambda = (eta * dot) -lambda;

refract.x = lambda*n.x
-eta*eyeVector.x;
refract.y =
lambda * n.y - eta*eyeVector.y;
refract.z =
lambda * n.z - eta*eyeVector.z;

Die Richtung der gebrochenen Strahlen
sollten Sie zusammen mit den Normalen
berechnen.

Es fragt sich, wie Sie von der Richtung
des gebrochenen Strahls auf verwert-
bare Texturkoordinaten kommen und

Gefales.

wie die entsprechende Textur aussehen
muss.

Die verwendete Textur muss alle In-
nenwénde unseres GeféRes (hier ein
Quader) ausgestalten, weil die Textur-
koordinaten fir die Eckpunkte eines
Dreiecks verschiedene Seitenflachen des
Wassercontainers représentieren kon-
nen, aber nur eine Textur gleichzeitig
adressierbar ist.

UNSERE REFRACTIONMAP enthilt alle Seitenflachen des

Im Bild sehen Sie an den vier Seiten
perspektivisch verzerrt die Texturen der
Wande. In der Mitte befindet sich die
Boden-Textur. Diese Refractionmap
(Wassercontainer) zeichnen Sie per
Hand mit einem Bildbearbeitungspro-
gramm, wobei Sie Beleuchtungseffekte
hinzufiigen.

Die Texturkoordinaten fur die Re-
fractionmap konnen Sie berechnen,
wenn Sie den Aufbau der Map kennen.
Zunéchst berechnen Sie die Schnitt-
punkte (soweit vorhanden, in positiver
Richtung) des gebrochenen Lichtstrahls
mit den GefalRwanden und speichern die
Entfernung:

float MAXV = (float)1e37;
float distance[5] =
{MAXV,MAXV,MAXV,MAXV,MAXV },

if (refract.x 1= 0.0f)

distance[O]=vertex.x/-refract.x;
distance[1]=
(vertex.x-1)/-refract.x;

}
if (refract.z 1= 0.0f)
{

distance[2]=vertex.z/-refract.z;
distance[3]=
(vertex.z-1)/-refract.z;

distance[4]=
(1+vertex.y)/-re-
fract.y;
for(c=0;c<5;
c++)

if (distance
[c]<0)

distance

[c]=MAXV;
AnschlieBend suchen
Sie den nachsten
Schnittpunkt, der
minValue entfernt ist.
Der Index des Ein-
trags ist minDistance.
minDistance gibt an,
welche GefalRwand
vom Strahl getroffen
wurde. Da Sie wissen,
welchem Teil der
Textur diese Wand
entspricht, konnen
Sie den Schnittpunkt
mit dieser Wand be-
rechnen und auf den
entsprechenden Bereich in der Textur
abbilden:

if

(minDistance ==4)

{

/I boden

vertex.x +=refract.x * minValue;
vertex.y +=refract.y * minValue;
vertex.z +=refract.z * minValue;

u = vertex.x * 0.5f + 0.25f;
v = vertex.z * 0.5f + 0.25f;

PC UNDERGROUND
PRAXIS

} else

/I seitenwand

vertex.x +=refract.x * minValue;
vertex.z +=refract.z * minValue;
vertex.y =refract.y * minValue;

float determineV;

if (minDistance & 2)
determineV = vertex.x; else
determineV = vertex.z;

u = -0.25f * vertex.y;

v =u + determineV * (1 - 2*u);

if (minDistance & 1)
u=1-u;

i}f (minDistance &2) swap(u,v);
Die so berechneten Texturkoordinaten
speichern Sie fur jeden Gitterpunkt im
waterTexCoord-Array. Wie sich das
Licht im Wasser bricht, zeichnen fol-
gende Zeilen:

glEnableClientState
(GL_VERTEX_ARRAY);

glVertexPointer
(3,GL_FLOAT,0,&waterHeight[0]);

glEnableClientState
(GL_TEXTURE_COORD_ARRAY);

glTexCoordPointer(2,GL_FLOAT,
0,&waterTexCoord[0]);

glDrawElements(GL_TRIANGLES,
nindices,GL_UNSIGNED_INT,
waterindex);

glDisableClientState
(GL_VERTEX_ARRAY);

glDisableClientState
(GL_TEXTURE_COORD_ARRAY);
Wenn Sie Lichtbrechung und Spiege-
lung kombinieren wollen, zeichnen Sie
zuerst die Lichtbrechung und aktivieren
anschlieffend das additive Blending mit
glEnable(GL_BLEND);
glBlendFunc(GL_ONE, GL_ONE);
Dann rendern Sie die Spiegelung. Wenn
Sie das Wasser oder die Spiegelung far-
ben mdéchten, wahlen Sie eine entspre-
chende Farbe und fiigen folgende Zeilen
vor dem Rendering des Wassers ein:
glColor3ub(r, g, b);
glTexEnvf(GL_TEXTURE_ENV,

GL_TEXTURE_ENV_MODE,

GL_MODULATE); ET

Quellen im Internet:
Wolfgang Heidrich and Hans-Peter Seidel:

View-independent environment maps, In Procee-
dings of the SIGGRAPH/Eurographics Workshop on
Graphics Hardware, 1998, im Internet unter:
www9.informatik.uni-erlangen.de/eng/
research/rendering/envmap

Advanced Rendering Techniques Using OpenGL,
SIGGRAPH 99 Course Notes im Internet unter:

www.opengl.org/developers/code/sig99/
index.html

172002 PC Magazin 269

Bl

