
P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R

Mathematiker hatten viel Arbeit,
Wasserwellen auf dem offenen
Meer physikalisch zu simulie-

ren (siehe PC Underground, Heft 12/01,
S. 246). In dieser Ausgabe beschäftigen
Sie sich mit dem Wasser-Rendering im
Kleinen: in Flüssigkeitsbehältern. Dabei
lernen Sie das so genannte parabolische
Reflection- und Refraction-Mapping
(Lichtbrechung) kennen. Dieses wenden
Sie auf eine kleine Wasseroberfläche an,
die sich in einem Behälter befindet.

Bei der Simulation der Wasserober-
fläche legen Sie weniger Wert auf die
korrekte spektrale Zusammensetzung
der Wellen als vielmehr auf eine Fort-
pflanzung von Wellen und ihrer Reflexi-
on an der Behälterwand.

■ Berechnung der
Wasseroberfläche
Die Wasseroberfläche speichern Sie als
ein Gitter aus Vertizes, deren y-Koordi-
nate (die nach oben zeigt) variabel ist.
Die x- und z-Koordinaten bleiben kon-
stant. Mit dieser Festlegung simulieren

Sie Wasser. Zunächst definieren Sie das
Gitter wie in Bitmapeffekten:

#define WATERX 96
#define WATERY 96

typedef struct
{

GLfloat x, y, z;
}VERTEX3D;

VERTEX3D waterHeight
[WATERX * WATERY];

// arrays initialisieren
for (y=0, index=0;y < WATERY;y++)
for (x=0;x < WATERX;x++,index ++)

{
waterHeight[index].x =

(x-WATERX/2)/(float)(WATERX/2);
waterHeight

[index].z =
(y-WATERY/2)/

(float)(WATERY/2);
// standard höhe

waterHeight
[index].y = 0.0f;

}

Als Startenenergie
verschieben Sie zwei
oder mehr Gitter-
punkte nach oben:
waterHeight[WA-
TERX+1].y=0.5f;
waterHeight
[WATERX *
(WATERY-1)- 2].y =
0.5f;

Weiterhin benötigen
Sie, um die Wellen-
fortpflanzung zu be-
rechnen, für jeden

Gitterpunkt einen Geschwindigkeits-
und einen Kraftvektor. Da Sie nur eine
Bewegung in y-Richtung zulassen, be-
schränken sich die Vektoren auf einen
Float-Wert:

float waterVelocity
[WATERX * WATERY];

float waterForce
[WATERX * WATERY];

Und so berechnen Sie die iterative Ani-
mation des Wassers: Aus der Ableitung
der waterHeight-Einträge in verschie-
denen Richtungen erhalten Sie die Kraft-
vektoren. Da Sie es mit diskreten Gitter-
punktwerten und nicht mit einer konti-

nuierlichen Funktion zu tun haben, sind
die Ableitungen nichts anderes als die
Differenzen: Wenn Sie einen Gitter-
punkt betrachten, besitzt dieser acht
Nachbarpunkte (oben, rechts oben,
rechts, rechts unten, usw.). Berechnen
Sie jeweils die Differenz zwischen der
Höhe des aktuellen Gitterpunkts und
der Höhe eines seiner Nachbarn. Das
Ergebnis addieren Sie negiert zum
Kraftvektor des aktuellen Gitterpunkts
und nicht-negiert zum Kraftvektor des
Nachbarpunkts. Die Differenz der
schrägen Nachbarpunkte multiplizieren
Sie mit dem Inversen der Wurzel aus 2.
Der Faktor ergibt sich durch die An-

nahme, dass die Gitterpunkte eine Län-
geneinheit voneinander entfernt sind,
woraus sich für schräge Nachbarn eine
Entfernung von Wurzel 2 ergibt. Exem-
plarisch für den oberen Nachbarn und
den rechten oberen betrachten Sie fol-
genden Codeteil:

memset(waterForce, 0, sizeof
(float) * nVertices);

for (int y =2;y<WATERY-2;y++)
for (int x=2;x < WATERX-2;x++)

{
float d;
d=waterHeight[x+WATERX *y] .y-

waterHeight[x-1+WATERX*y] .y;
waterForce[x+WATERX*y]-=d;
waterForce[x-1+WATERX*y]+=d;

d=(waterHeight[x+WATERX*y] .y-
waterHeight

[x + 1 + WATERX * (y+1)] .y);
d *=INVSQRT2;
waterForce[x+WATERX*y]-=d;
waterForce[x+1+WATERX*(y+1)]+=d;
...

}

Nun müssen Sie noch die Geschwindig-
keit und die Verschiebungen berechnen.
Aus der Physik ist bekannt, dass Sie aus
der Kraft durch Integration über die Zeit
die Geschwindigkeit und eine weitere
Integration darüber die Auslenkung
(Verschiebung) erhalten. Die einfachste,
aber für diesen Zweck taugliche Metho-
de zu integrieren, lautet:

for (i = 0; i < nVertices;i++)
waterVelocity[i] +

266 PC Magazin 1/2002

Reflection und Refraction Mapping in OpenGL

Wasser-Spiegel
Spiegelungen und Lichtbrechung von Flüssigkeiten sind für Sie ab jetzt kein
Problem mehr. Alles, was Sie benötigen, ist OpenGL und ein wenig Theorie!

AUF CD 1
Die Quelltexte sowie die fertig übersetzten

Routinen finden Sie im Verzeichnis Praxis/Pro-
grammierung/PC Underground.

DAS BEISPIELPROGRAMM dieser Ausgabe in Aktion

P C U N D E R G R O U N D
P R A X I S

= waterForce[i] * 0.04f;
for (i = 0; i < nVertices; i++)

waterHeight[i].y + =
waterVelocity[i];

Damit ist die Simulation der Wasser-
oberfläche vollständig, und Sie können
sich dem Rendering widmen. Dazu grei-
fen Sie tief in die Trickkiste der Compu-
tergrafik.

■ Dual-Paraboloid
Environment Mapping
Das Dual-Paraboloid Environment
Mapping ist ein relativ neuer Ansatz, um
Spiegelungen einer 3D-Szene auf einem
Objekt zu visualisieren. Er gestattet es,
die gespiegelte 3D-Szene in Texturen
festzuhalten und die Spiegelungen auf
eine Oberfläche unabhängig von der Be-
trachterposition zu rendern.
Ein Vorteil gegenüber Spheremapping

oder dem Nachteil von Spheremaps ist,
dass die Sampling-Rate gleichmäßiger
ist. Sie bezieht sich in diesem Fall auf die
Fläche auf den Environmentmaps
(Sphere oder Dual-Paraboloid), die ei-
nem bestimmten Raumwinkel zugeord-
net ist. Eine weitere akzeptable Lösung
ist das Cube Environment-Mapping, das
nur wenige moderne 3D-Beschleuniger
unterstützen. Zudem braucht das Ver-
fahren sechs Texturen. Dual-Paraboloid
Environment Mapping kommt mit zwei
Texturen aus. Diese zwei Texturen ent-
halten die ganze Umgebung, also die
ganze gespiegelte 3D-Szene von einem
3D-Objekt. Dual-Paraboloid Environ-
ment Mapping wird allerdings auch nur
von relativ neuen 3D-Beschleunigern
(nVidia) direkt unterstützt.

Die Bilder zeigen jeweils eine Sphere-
map und die entsprechenden Dual-Para-
boloid Maps. Jede Farbe steht für einen
90-Grad-Sektor der Umgebung des Ob-
jekts. Ein Sektor ist die 3D-Szene vom
Objekt aus gerendert, wobei der Kame-
raöffnungswinkel 90 Grad beträgt. Auf-
fällig ist das schlechte Sampling des gel-

ben Sektors bei den Spheremaps. Die
Dual-Paraboloid Maps sind die Bilder
von zwei Kameras, die in entgegenge-
setzter Richtung aufgestellt sind und mit
einer speziellen Linse den 180-Grad-
Sektor einsehen. Diese Texturen können
Sie berechnen, wie der folgende Code-
ausschnitt an Beispielen einer Front oder
Back Map zeigt:

VERTEX3D ray, color, p, pos;
float s,t;
for (j = 0; j < 256; j++)

{
t=2.0f*((float)j/256.0f - 0.5f);

for (i=0; i < 256; i++)
{
s=2.0f*((float)i/256.0f-0.5f);

float q = s*s + t*t +1;
ray.x = 2.0f * s / q;
ray.y = 2.0f * t / q;
ray.z = (q - 2) / q;

pos.x = pos.y = pos.z= 0.0f;

unsigned int color =
intersect(pos, ray);

dpMap[i+ j*256] = color;
}

Die Hauptarbeit dieser Routine verbirgt
sich in der Funktion intersect(...). Die
Schleife berechnet die Richtungen der
Lichtstrahlen, die für einen Texel (Bild-
punkt auf einer Textur) auf der Dual-

Paraboloid Map verantwortlich sind.
Per Raytracing können Sie diesen Strahl
verfolgen und die berechnete Farbe in
die Map eintragen. Wenn Sie einen eige-
nen Raytracer geschrieben haben oder
einen anderen modifizieren, können Sie
damit solche Maps berechnen.
Unser Beispielprogramm beschränkt

sich auf eine einfachere Alternative. Die
Szene besteht aus einer Skybox, also
sechs Würfelseiten, die mit Landschafts-
texturen belegt sind. Intersect(...) be-
rechnet damit
die Schnitt-
punkte und liest
die entspre-
chende Farbe
aus den Skybox
-Texturen aus.

Das Resultat für die Frontparaboloid-
map sehen Sie im folgenden Bild. Darin
ist schon die ganze Umgebung gespei-
chert, die sich auf der Wasseroberfläche
spiegeln kann. Wie Sie selbst solche Sky-
box-Texturen berechnen, entnehmen
Sie der Textbox auf der nächsten Seite.

■ Reflection-Mapping
in OpenGL
Nicht jede Grafikkarten-Hardware
unterstützt das Dual-Paraboloid En- q

1/2002 PC Magazin 267

➊ DIE EXEMPLARISCHE SPHEREMAP zeigt schlechtes Sampling (links).
➋ DIE PARABOLISCHEN MAPS für vorne und hinten (rechts)

DIE SKYBOX-
TEXTUREN ent-

halten die ganze
Umgebung.

ALLE SPIEGELUNGEN der Wasserober-
fläche sind in dieser Textur gespeichert.

➋➊

P C U N D E R G R O U N D
P R A X I S

vironment Mapping. Es muss die
GL_REFLECTION_MAP_NV-Er-
weiterung von OpenGL vorhanden
sein, die Sie zu Beginn des Programms
testen sollten. Doch dann lassen sich
mit OpenGL die Texturkoordinaten s
und t für die Environment Maps mit Ma-
trizen aus den Reflection Vektoren be-
rechnen.

Die einzelnen Matrizen sind wie folgt
definiert: A ist eine Matrix, die 2D-Ko-
ordinaten vom Intervall [-1,1] in das
Intervall [0,1] für das Texturemapping
transformiert.

Die Matrix P enthält die Projektion ei-
nes 3D-Vektors auf 2D.

Die Matrix S subtrahiert den 3D-Vek-
tor von einem Orientierungsvektor d,
der die Blickrichtung repräsentiert, also

(0,0,1) für die Frontmap oder (0,0,-1) für
die Backmap.

Die folgende Matrix ist die Inverse zur
Modelview-Matrix von OpenGL.

Die Modelview-Matrix von OpenGL
ist eine affine Abbildung (Kombination
aus Rotation, Skalierung und Verschie-
bung), deren inverse Matrix das Bei-
spielprogramm berechnet. Nun müssen
Sie OpenGL noch mitteilen, was es mit
den Matrizen und Texturen tun soll.
Wählen Sie also die entsprechende Tex-
tur mit glBind(...) aus, und führen Sie
folgenden Code aus, wobei Sie mit
Streamdaten (Arrays aus Vertizes und
Normalen) rendern:

glEnableClientState
(GL_VERTEX_ARRAY);

glVertexPointer
(3,GL_FLOAT,0,&waterHeight[0]);

glEnableClientState(GL_NORMAL_AR-
RAY);
glNormalPointer

(GL_FLOAT,0,&waterNormal[0]);

// Abbildungsmatrix übergeben

glTexGeni(GL_S,
GL_TEXTURE_GEN_MODE,
GL_REFLECTION_MAP_NV);
glTexGeni(GL_T,
GL_TEXTURE_GEN_MODE,
GL_REFLECTION_MAP_NV);
glTexGeni(GL_R,
GL_TEXTURE_GEN_MODE,
GL_REFLECTION_MAP_NV);

glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
glEnable(GL_TEXTURE_GEN_R);

glDrawElements(GL_TRIANGLES,
nIndices, GL_UNSIGNED_INT,

waterIndex);

glDisableClientState
(GL_VERTEX_ARRAY);

glDisableClientState
(GL_NORMAL_ARRAY);

Im obigen Code-Ausschnitt finden Sie
zwei bislang unbekannte Arrays:
• waterIndex enthält lediglich die Indi-
zes der zu zeichnenden Dreiecke in der
waterHeight-Liste. Diese legt das Pro-
gramm zu Beginn an.
• waterNormal enthält die Normalen
für jeden Gitterpunkt. Diese berechnen
Sie gleich nach der Wassersimulation für
jeden Frame neu, indem Sie – ähnlich
wie bei den Kraftvektoren – Differenzen
bilden. Exemplarisch für eine Normale:

n.x = 0.0f;
n.y = 1.0f;
n.z = 0.0f;

n.x+=waterHeight
[CLAMP(x-1,y)].y;

n.x-=waterHeight
[CLAMP(x+1,y)].y;

n.z+=waterHeight
[CLAMP(x,y-1)].y;

n.z-=waterHeight
[CLAMP(x,y+1)].y;

Der Aufwand für dieses Verfahren
hält sich in Grenzen, doch die Ergebnis-
se sind beeindruckend.

■ Refraction Mapping
Außer den Spiegelungen, soll unsere
Wasseroberfläche Lichtbrechung auf-
weisen. Dazu gibt es leider keine ent-
sprechende OpenGL-Erweiterung, so
dass Sie selbst Hand anlegen müssen.
Wenn ein Lichtstrahl aus der Luft ins
Wasser eintritt, ändert sich seine Rich-
tung. Die neue Richtung, die nach dem
Gesetz von Snell berechnet wird, hängt
von der Oberflächennormalen, der ur-
sprünglichen Richtung und der Brech-
zahl des Mediums (hier Wasser) ab. Sie
berechnen das Verfahren, hier gleich in
C-Syntax dargestellt, folgendermaßen:

// Kameraposition
float m[16];

268 PC Magazin 1/2002

Mit Terragen, einem für Privatnutzer frei-
en Programm (http://www.planetside.
co.uk), können Sie Landschaften, Wasser,
Wolken und Himmel erzeugen und ren-
dern. Mit wenigen Arbeitsschritten erzeu-
gen Sie Skybox-Texturen. Nach dem Pro-
grammstart von Terragen sind automa-
tisch zwei Fenster geöffnet.
Im Landscape-Fenster können Sie mit
Generate Terrain eine Zufallslandschaft
abhängig von zahlreichen Parametern

generieren. Betrachten Sie dann das
Rendering-Control-Fenster. Damit posi-
tionieren Sie den Betrachter in der Mitte
der Landschaft und aktivieren Fixed
Height above Surface. Bei den Settings
stellen Sie das Rendering-Detail auf
Maximum. Bei den Camera Settings
wählen Sie Traditional Computer Gra-
phics, und für Zoom/Magnifikation geben
Sie den Wert 1.0 an. Anschließend be-
rechnen Sie die sechs Skybox-Texturen
mit 256 x 256 Pixeln und folgenden Kame-
ra-Einstellungen:

Mit diesen sechs Texturen und unserem
Tool berechnen Sie die Dual-Paraboloid
Maps.

SKYBOXEN MIT TERRAGEN

Seite Camera Camera Camera
Head Pitch Bank

1 0 0 0
2 90 0 0
3 180 0 0
4 270 0 0
5 0 90 0
6 0 270 0

SKYBOXES berechnen Sie leicht mit
Terragen.

P C U N D E R G R O U N D
P R A X I S

glGetFloatv
(GL_MODELVIEW_MATRIX, m);

cameraPosition.x = m[2];
cameraPosition.y = m[6];
cameraPosition.z = m[10];

//Richtung Betrachter->Gitterpkt
eyeVector.x = cameraPosition.x -

waterHeight[CLAMP(x, y)];
eyeVector.y = cameraPosition.y -

waterHeight[CLAMP(x, y)];
eyeVector.z = cameraPosition.z -

waterHeight[CLAMP(x, y)];

// Brechzahl
float eta = 0.75f;

dot = n.x*eyeVector.x + n.y*
eyeVector.y+n.z*eyeVector.z;

lambda = sqrt(1-(eta*eta*
(1-(dot*dot))));

lambda = (eta * dot) -lambda;

refract.x = lambda*n.x
-eta*eyeVector.x;

refract.y =
lambda * n.y - eta*eyeVector.y;

refract.z =
lambda * n.z - eta*eyeVector.z;

Die Richtung der gebrochenen Strahlen
sollten Sie zusammen mit den Normalen
berechnen.

Es fragt sich, wie Sie von der Richtung
des gebrochenen Strahls auf verwert-
bare Texturkoordinaten kommen und

wie die entsprechende Textur aussehen
muss.

Die verwendete Textur muss alle In-
nenwände unseres Gefäßes (hier ein
Quader) ausgestalten, weil die Textur-
koordinaten für die Eckpunkte eines
Dreiecks verschiedene Seitenflächen des
Wassercontainers repräsentieren kön-
nen, aber nur eine Textur gleichzeitig
adressierbar ist.

Im Bild sehen Sie an den vier Seiten
perspektivisch verzerrt die Texturen der
Wände. In der Mitte befindet sich die
Boden-Textur. Diese Refractionmap
(Wassercontainer) zeichnen Sie per
Hand mit einem Bildbearbeitungspro-
gramm, wobei Sie Beleuchtungseffekte
hinzufügen.

Die Texturkoordinaten für die Re-
fractionmap können Sie berechnen,
wenn Sie den Aufbau der Map kennen.
Zunächst berechnen Sie die Schnitt-
punkte (soweit vorhanden, in positiver
Richtung) des gebrochenen Lichtstrahls
mit den Gefäßwänden und speichern die
Entfernung:

float MAXV = (float)1e37;
float distance[5] =
{MAXV,MAXV,MAXV,MAXV,MAXV };

if (refract.x != 0.0f)
{
distance[0]=vertex.x/-refract.x;
distance[1]=

(vertex.x-1)/-refract.x;
}
if (refract.z != 0.0f)
{

distance[2]=vertex.z/-refract.z;
distance[3]=

(vertex.z-1)/-refract.z;

}
distance[4]=

(1+vertex.y)/-re-
fract.y;
for (c = 0; c < 5;
c++)

if (distance
[c] < 0)

distance
[c] = MAXV;

Anschließend suchen
Sie den nächsten
Schnittpunkt, der
minValue entfernt ist.
Der Index des Ein-
trags ist minDistance.
minDistance gibt an,
welche Gefäßwand
vom Strahl getroffen
wurde. Da Sie wissen,
welchem Teil der
Textur diese Wand
entspricht, können
Sie den Schnittpunkt
mit dieser Wand be-
rechnen und auf den

entsprechenden Bereich in der Textur
abbilden:

if

(minDistance == 4)
{
// boden
vertex.x +=refract.x * minValue;
vertex.y +=refract.y * minValue;
vertex.z +=refract.z * minValue;

u = vertex.x * 0.5f + 0.25f;
v = vertex.z * 0.5f + 0.25f;

} else
{
// seitenwand
vertex.x +=refract.x * minValue;
vertex.z +=refract.z * minValue;
vertex.y =refract.y * minValue;

float determineV;

if (minDistance & 2)
determineV = vertex.x; else
determineV = vertex.z;

u = -0.25f * vertex.y;
v =u + determineV * (1 - 2*u);
if (minDistance & 1)

u = 1 - u;

if (minDistance &2) swap(u,v);
}

Die so berechneten Texturkoordinaten
speichern Sie für jeden Gitterpunkt im
waterTexCoord-Array. Wie sich das
Licht im Wasser bricht, zeichnen fol-
gende Zeilen:

glEnableClientState
(GL_VERTEX_ARRAY);

glVertexPointer
(3,GL_FLOAT,0,&waterHeight[0]);

glEnableClientState
(GL_TEXTURE_COORD_ARRAY);

glTexCoordPointer(2,GL_FLOAT,
0,&waterTexCoord[0]);

glDrawElements(GL_TRIANGLES,
nIndices,GL_UNSIGNED_INT,
waterIndex);

glDisableClientState
(GL_VERTEX_ARRAY);

glDisableClientState
(GL_TEXTURE_COORD_ARRAY);

Wenn Sie Lichtbrechung und Spiege-
lung kombinieren wollen, zeichnen Sie
zuerst die Lichtbrechung und aktivieren
anschließend das additive Blending mit

glEnable(GL_BLEND);
glBlendFunc(GL_ONE, GL_ONE);

Dann rendern Sie die Spiegelung. Wenn
Sie das Wasser oder die Spiegelung fär-
ben möchten, wählen Sie eine entspre-
chende Farbe und fügen folgende Zeilen
vor dem Rendering des Wassers ein:

glColor3ub(r, g, b);
glTexEnvf(GL_TEXTURE_ENV,

GL_TEXTURE_ENV_MODE,
GL_MODULATE); s E T

1/2002 PC Magazin 269

Quellen im Internet:

Wolfgang Heidrich and Hans-Peter Seidel:

View-independent environment maps, In Procee-
dings of the SIGGRAPH/Eurographics Workshop on
Graphics Hardware, 1998, im Internet unter:

www9.informatik.uni-erlangen.de/eng/
research/rendering/envmap

Advanced Rendering Techniques Using OpenGL,
SIGGRAPH 99 Course Notes im Internet unter:

www.opengl.org/developers/code/sig99/
index.html

UNSERE REFRACTIONMAP enthält alle Seitenflächen des
Gefäßes.

