Vertex-Shader in OpenGL

Assemblierte

Mit Vertex-Shadern machen Sie Ihrer Grafikkarte
Beine und bestimmen selbst, wie Vertices

CARSTEN DACHSBACHER

in unaufhaltsamer Trend bei mo-
Ederner Grafik-Hardware ist eine

immer groflere Geschwindigkeit
bei der Berechnung und Darstellung von
3D-Grafik. Das Rendering von virtuel-
len Szenen lauft immer nach demselben
Schema, der Grafik-Pipeline, ab, wie Sie
im Bild unten sehen kénnen.

|]

Transform Vertex
Lightin

Progra

Rasterizﬂ

Setup

|

Texture
Blendin

;

Framebufi

JEDER VERTEX muss die Grafik-Pipeline
durchlaufen.

Die Grafik-Pipeline transformiert die
Geometrie abhangig von der Lage der
Objekte und der Kamera und berechnet
anschlieffend die Beleuchtung. Das Re-
sultat sind im allgemeinen Dreiecke, de-
ren Eckpunkte (Vertices) mit Attributen
wie Textur-Koordinaten, Farb- und
Transparenz-Werten ausgestattet sind.
Der Rasterizer, der Teil der Grafik-

werden.

Hardware, der das Zeichnen verantwor-
tet, bekommt diese Daten und rendert
entsprechend in den Framebuffer.
Neuere nVidia-Hardware und die Rade-
on-Karten von AT gestatten Program-
mierern, die Transform- and Lighting-
Stufe der Grafik-Pipeline mit einer eige-
nen Assembler-Sprache zu gestalten.
Diese Schnittstelle heiBt in OpenGL
Vertex Programs und in DirectX 8 Ver-
tex-Shader. (Vertex Shader passt nicht
ganz, da sich das Wort Shading eigent-
lich auf Pixel und nicht auf Vertices be-
zieht.)

In diesem Artikel werden Sie diese As-
sembler Sprache kennenlernen und er-
fahren, wie Sie sie mit nVidia-Grafik-
karten (GeForce) und OpenGL ab Ver-
sion 1.2 einsetzen koénnen. Die aktuelle
OpenGL Version ist 1.3.

Als Beispiel dienen zwei von vielen
Einsatzgebieten: Sie schreiben eine eige-
ne Beleuchtungsberechnung und ver-
wenden die Vertex Programs, um so ge-
nannte Billboards auszurichten. Billbo-
ards sind Polygone, die immer senkrecht
zur Blickrichtung liegen, also zum Be-
trachter hinzeigen.

Mit Vertex-Programmen haben Sie die
volle Kontrolle Gber die Transform- and
Lighting-Stufe der Grafik Pipeline. Da-
mit kénnen Sie komplexe Operationen
mit den Vertices in der GPU (Graphic
Processing Unit) lhrer Grafikkarte aus-
fuhren lassen. So entlasten Sie die CPU
des Rechners, die Sie damit fur andere
Aufgaben physikalisch oder fur Simula-
tionen freimachen. Sie geben der CPU
also mehr Zeit fur physikalische Berech-
nungen wie Partikel-Bewegungen.

 PC UNDERGROUND

1
|
|
|
|
I
|
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
I
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

-
-

PRAXIS

AUF CD
Die Quelltexte sowie die fertig tbersetzten
Routinen finden Sie im Verzeichnis Praxis/Pro-
grammierung/PC Underground.

Sie verwenden Vertex-Programme,
um die Beleuchtung zu berechnen, fiir
Skinning- und Blending-Techniken, al-
so das Uberblenden von Bewegungsab-
laufen bei der Animation von Charakte-
ren, und um Texture-Koordinaten zu
generieren. AulRerdem kdnnen Sie belie-
bige Texture-Matrix-Berechnungen
durchfihren oder die Vertices durch
weitere Rechenschritte modifizieren.

Sie schreiben Ihr VVertex-Programm in
einer speziellen, méchtigen SIMD-As-
semblersprache (Single Instruction Mul-
tiple Data). Als Eingabedaten dienen ei-
ne Reihe von Variablen, deren Inhalt Sie
von auBBen festlegen kénnen, und ein
nicht transformierter, nicht beleuchteter
Vertex inklusive einiger Attribute.

Die Ausgabe muss die transformierten
Koordinaten enthalten und optional die
Beleuchtung, die Texture-Koordinaten,
Fog-Koordinaten (Nebel) und Point

DIE BELEUCHTUNG UND FARBE dieses
Torus wurde von einem Vertex-Programm
berechnet.

Sizes (die GroRe der Punkte beim Ren-
dering von GL_POINTS). Ein Vertex-
Programm bearbeitet also immer nur
einen Vertex. Es werden keine zusétzli-
chen Vertices erzeugt oder geldscht, es
gibt keine topologischen Informationen
zu benachbarten Vertices, die vielleicht
zusammen ein Dreieck bilden kdnnten
(Nachbarschaftsinformation).

Die Vertex-Attribute sind 16 Register,
die aus je vier Float-Werten bestehen,
also ein Vektor sind. Sie enthalten je-
weils die Daten des Vertex, der transfor-
miert werden soll und mit einem read-
only-Attribut versehen ist. Eine Instruk-
tion eines Vertex-Programms darf je-
weils nur eines dieser Register enthal- ©

272002 PC Magazin 191

al.

PC UNDERGROUND
PRAXIS

Register Name normale Belegung

Befehl Beschreibung

MOV dest, srcO Kopiert den Inhalt von srcO nach dest

v[0] V[OPOS] Vertex-Koordinate MUL dest, src0, srcl Komponentenweise Multiplikation
v[1] V[WGHT] Vertex Weight (fur ADD dest, src0, srcl Komponentenweise Addition
Blending) MAD dest, srcO, srcl, Addiert die Werte von src2 zu dem Multiplikationsergebnis von rcO

v[2] V[NRML] Normale src2 und srcl
v[3] v[COLO] primare Farbe RCP dest, src0.C Berechnet das Reziproke zu einer Komponente C von srcO
v[4] v[COLT] sekundare Farbe RSQ dest, src0.C Berechnet die inverse Wurzel zu einer Komponente von srcO
v[5] V[FOGC] Fog-Koordinate DP3 dest, src0, srcl Skalarprodukt zweier Vektoren/3 Komponenten (x, y, z)
v[6] = — DP4 dest, srcO, srcl Skalarprodukt zweier Vektoren/4 Komponenten (x, y, z, w)
v[7] — - MIN dest, src0, srcl Komponentenweises Minimum bilden
v[8] V[TEXO] Textur-Koordinate O MAX dest, src0, srcl Komponentenweises Maximum bilden
v[9] V[TEX1] Textur-Koordinate 1 SLR dest, srcO, srcl Komponentenweiser Vergleich auf kleiner als. Ist eine Komponente von
v[10] V[TEX2] Textur-Koordinate 2 srcO kleiner als die von srcl, dann wird die entsprechende Komponente
v[1] V[TEX3] Textur-Koordinate 3 I GEan 00— s.onst 0.0 ggsetzt. . I

- SGE dest, src0, srcl Komponentenweiser Vergleich auf gréBer gleich (siehe SLR)
v[12] V[TEX4] Textur-Koordinate 4 $1c0.C
V[3] V[TEX5] Textur-Koordinate 5 EXP dest, src0.C BEIE S ,
v[i4] V[TEX6] Textur-Koordinate 6 LOG dest, src0.C Berechnet Logarlthrn.us zur Basis 2 von src0.C
V5] VITEX7] Textur-Koordinate 7 ARL A0.x, src0.C Laden des Adressregisters

ten, aber sie darf zweimal dasselbe Regi-
ster verwenden. Die Register finden Sie
in der Tabelle.

Sie konnen auf zwei Arten darauf zu-
greifen: mit der Indizierung durch eine
Zahl von 0 bis 15 oder durch die Kurzel
in der zweiten Spalte, die in der dritten
Spalte beschrieben sind. Die Beschrei-
bungen bezeichnen die normale Bele-
gung der Register. Beispielsweise befin-
detsich die Normale eines Vertex im Re-
gister v[2]. Da Sie dies als Programmie-
rer beliebig festlegen kdnnen, miissen
diese Bezeichnungen nicht verbindlich
sein. Sie kdnnen diese Vertex-Attribute-
Register mit beliebigen Werten pro Ver-
tex fullen, also mit Indizes, Vektoren
oder anderen Parametern.

Das Ergebnis des Vertex-Programms
wird in die 15 Vertex-Result-Register
geschrieben. Darin ist die Information
enthalten, die die Rasterizer-Einheit der

LIT dest, srcO Beleuchtungsberechnung

src0.x Skalarprodukt fur diffuse Beleuchtung (N*L)
src0.y Skalarprodukt fur spiegelnde (specular) Beleuchtung (N*H)
srcO.w Phong Exponent, Resultat: Koeffizient fur ambiente (dest.x), diffuse

(dest.y) und spiegelnde (specular) (dest.z) Beleuchtung

ne

12

Grafik-Hardware anschlieBend fur das
Rendering enthélt.

mussen: So befinden sich die tranfor-
mierten Koordinaten immer im Register

sind nach einem festen Schema aufge-
baut, wobei eckige Klammern jeweils ei-
nen optionalen Teil ausweisen:

dst ist das Zielregister src0, srcl und src2

DST dest, src0.C, srcl.D Distance Vector: src0.C = d4, srcl.D = 1/d, Resultat: dest = (14 o4, 1/d)3

sprechenden Werten von R2 gefiillt. Die
y- und z-Komponente bleiben un-
berthrt. Eine Liste der Befehle finden
Sie in der Tabelle.

SIMD-Befehle verfligen nicht Uber
Verzweigungsbefehle. Fur diese Opera-

Die Result-Register haben jeweils ei-
Bezeichnung, an die Sie sich halten

o[HPOS] tionen brauchen Sie die verschiedenen
Berechnungszweige, die Sie mit den
Maskierungen von SLR und SGE multi-
Ein Vertex-Programm besteht aus bis zu plizieren und addieren.

8 SIMD-Instruktionen. Die Befehle Fur jeden Vertex rufen Sie ein Vertex-
Programm auf. Sie kdnnen dabei auf die
Attribute sowie Result-Register zurtick-
greifen. Weiterhin gibt es 12 temporére
Register R1 bis R11 (read/write), jeweils
aus vier Floats bestehend, und die Pro-

grammparameter, die 96 Register mit

Opcode dst, [-]srcO [,[-]srcl
[.[-Isrc2]]; #Kkommentar

Register- Beschreibung
pretation

o|[HPOS omogene Koordinaten X,Y,Z,W
o[COLO] primare Farbe (vorne) (rgba)
o[COL1] sekundare Farbe (vorne) (r.gb,a)
o[BFCO] primare Farbe (hinten) (rgbsa)
o[BFCI] sekundare Farbe (hinten) (r.gb,a)
o[FOGC] Fog Koordinaten (xy,zw)
o[PSIZ] Point Size (xy,z,w)
o[TEXO] Texture Koordinaten Set O (strq)
o[TEXI] Texture Koordinaten Set 1 (strq)
o[TEX2] Texture Koordinaten Set 2 (strq)
o[TEX3] Texture Koordinaten Set 3 (strq)
o[TEX4] Texture Koordinaten Set 4 (strq)
o[TEX5] Texture Koordinaten Set 5 (strq)
o[TEX6] Texture Koordinaten Set 6 (str.q)
o[TEX7] Texture Koordinaten Set 7 (strq)

192 PC Magazin 2/2002

sind Quellregister. Der Inhalt
jedes Quiellregisters kann auf
Wunsch negiert werden, zum
Beispiel beim MOV-Befehl,
der den Inhalt eines Registers
in ein anderes kopiert:

MOV R1, R2 oder MOV R1,

-R2

Weiterhin koénnen Sie die
Komponenten der Register
vertauschen:

MOV R1, R2.wzyx

Dabei passiert Folgendes:

R1.x=R2.w
Rl1ly=R2.z

Bei MOV R1.xw, R2 werden
nur die x- und w-Kompo-
nente von R1 mit den ent-

vier Floats (c[0] bis c[95]) aufweisen. Die
Programmparameter sind read-only, die
Sie auBerhalb des Renderns (also vor
oder nach dem glBegin/glEnd-Befehl-
spaar) modifizieren kénnen.

Es ist notwendig, dass Sie zur Trans-
formation der Koordinaten die jeweils
gultige Modelview und Projection Ma-
trix von OpenGL kennen. Dazu nutzen
Sie das Tracking-Verfahren. Damit le-
gen Sie fest, dass die Vektoren der Ma-
trizen in bestimmten Programmparame-
tern und Registern gespeichert sind. Fol-
gende Zeilen legen dies fest:

glTrackMatrixNV

(GL_VERTEX_PROGRAM_NV, 4,

GL_MODELVIEW, GL_IDENTITY_NV);

glTrackMatrixNV

(GL_VERTEX_PROGRAM_NV, 20,
GL_MODELVIEW, GL_INVERSE_NV);

Diese Zeilen besagen, dass die Regis-
ter c[4], c[5], c[6] und c[7] die Model-
view Matrix enthalten und c[20] bis c[23]
die Inverse dieser Matrix. Andere Wer-
te speichern Sie mit dem folgenden
Befehl:

glProgramParameter4fNV

(GL_VERTEX_PROGRAM_NV,

16,1, 2, 3, 4);

Damit enthdlt das Register c[16] den
Vektor (1, 2, 3, 4).

Ein Vertex-Programm bekommt in
OpenGL einen Integer-Wert als Be-
zeichnung zugeordnet. Diesen Wert er-
halten Sie — &hnlich wie bei der Verwal-
tung von Texturen — durch den Befehl

glGenProgramsNV

(intn, int *ids)

Ein Vertex-Programm speichern Sie im
Quelltext mit einem String und tberge-
ben diesen mit

glLoadProgramNV(enum target,
intid, int length,
const char *program)

an OpenGL:
const unsigned char program[] =

{-h

int vertexProgram;

glGenProgramsNV(1, &vertexPro-

gram);

glBindProgramNV(GL_VERTEX_PRO-

GRAM_NV, vertexProgram);

glLoadProgramNV(GL_VERTEX_PRO-

GRAM_NV, vertexProgram, strlen(

program), program);
Sobald Sie nun mit glEnable(GL_VER-
TEX_PROGRAM_NV) die Vertex-
Programme aktiviert haben, nutzen Sie
die gesamte Transform- und Lighting-
Stufe von OpenGL fur Ihr eigenes Pro-
gramm. Jetzt missen Sie nur noch spezi-
fizieren, welche Daten in den Vertex-
Attribut-Registern gespeichert werden
sollen. Dazu brauchen Sie zwei Befehle.
Zuerst aktivieren Sie einen Stream von
Daten mit

glEnableClientState(GL_VERTEX_

ATTRIB_ARRAYO_NV);
Die zu Gibermittelnden Daten tibergeben
Sie mit dem Befehl unten. Dabei ist der
erste Parameter der Index des Streams,
den Sie soeben aktiviert haben. Der
zweite Parameter gibt die Anzahl der
Komponenten an. Bei folgendem Bei-
spiel werden die x-, y- und z-Kompo-
nenten von vV[HPOS] mit den Koordi-
naten aus vertexArray gefillt:

glVertexAttribPointerNV

(0, 3, GL_FLOAT,

sizeof(VERTEX3D), &vertexArray);
Weiterhin gibt es eine spezielle Variante
von Vertex-Programmen, die so ge-
nannten Vertex-State-Programs. Diese
dirfen die Parameter-Register modifi-

zieren, missen aber explizit -
von Ihrem Programm — ausgefiihrt wer-
en

/I upload

int vertexStateProgram;
glGenProgramsNV(1, &vertexState-
Program);

glLoadProgramNV
(GL_VERTEX_STATE_PROGRAM_NV,
vertexStateProgram,
strlen(stateProgram),

stateProgram);

Q.

/I ausfuhren

float nulldata[4] = {0.0f, 0.0f,

0.0f, 0.0f};

glExecuteProgramNV(

GL_VERTEX_STATE_PROGRAM_NV, ver-

texStateProgram, (float*)nullda-

ta);
Die speziellen OpenGL-Befehle sind
Erweiterungen des urspriinglichen
OpenGL Standards, und Sie mdissen
Uberpriifen, ob sie zur Verfligung ste-
hen. Dazu suchen Sie nach der NV_ver-
tex_program-Erweiterung und holen

PC UNDERGROUND
PRAXIS

DP4 R0.w,v[OPOS],c[3];\

Transformation Worldspace->Ca-
meraspace

DP4 R1.x,R0,c[4]; \

DP4 R1.y,R0,c[5];\

DP4 R1.z,R0,c[6];\

DP4 R1.w,R0,c[7];\

und speichern

MOV o[HPOS],R1;\

Farbwert einfach durchreichen
MOV 0[COLO], v[COLO};\

END*

h

glEnable(GL_VERTEX_PROGRAM_NV);
glBindProgramNV(GL_VERTEX_PRO-
GRAM_NV, 1);
glLoadProgramNV(GL_VERTEX_PRO-
GRAM_NV, 1, strlen(simpleShader),
simpleShader);

glTrackMatrixNV(GL_VERTEX_PRO-
GRAM_NV, 0, GL_MODELVIEW,
GL_IDENTITY_NV);
glTrackMatrixNV(GL_VERTEX_PRO-
GRAM_NV, 4, GL_PROJECTION,
GL_IDENTITY_NV);

Als néchstes fiigen Sie eine eigene Be-
leuchtungsberechnung in das Vertex-
Programm ein. Als

Normale
[

Lichtguelle

/ Betrachter
AN

Beispiel wollen wir
Ihnen hier eine bunt
eingefarbte ~ Ober-
flache mit Beleuch-
tung mit dem Phong-
modell vorstellen.
Dazu bendgtigen Sie
weitere Parameter:
glTrackMatrixNV

DIE VEKTOREN im Phong-Beleuchtungsmodell.

sich mit wglGetProcAdress(...) die
Adressen der neuen Befehle. Die ent-
sprechenden Aufrufe und Konstanten
finden Sie im Beispiel-Programm auf der
Heft CD.

Los geht’s mit Ihrem ersten Vertex-Pro-
gramm: Dieses soll einen Vertex von sei-
nen angegebenen Koordinaten (mit gl-
Vertex) ins Koordinatensystem der Be-
trachterkamera transformieren. Kom-
mentare innerhalb des Vertex-Pro-
gramms, das immer mit der Kennung
VP 1.0 beginnt, kennzeichnen Sie mit
einem #-Symbol. Fir die Tranformation
bendtigen Sie die Modelview- und die
Projection-Matrix, die in den Parame-
ter-Registern gespeichert werden.

const unsigned char simpleSha-

der[]=

{

JIVPL.0\

Transformation Objectspace-
>Worldspace

DP4 R0.x,v[OPOS],c[0]; \

DP4 RO.y,v[OPOS],c[1]; \

DP4 R0.z,v[OPOS],c[2]; \

(GL_VERTEX_PRO-
GRAM_NV, 8,
GL_MODELVIEW,

GL_INVERSE_TRANSPOSE_NV);
/I Licht Richtung

glProgramParameter4fNV
(GL_VERTEX_PROGRAM_NV, 32,0, 0,
1,1);
/I Halfspace Vektor H
glProgramParameter4fNV
(GL_VERTEX_PROGRAM_NYV, 33, 0,
0,1,1);
/I diffus-ambienter Koeffizient
Oberflache
glProgramParameter4fNV
(GL_VERTEX_PROGRAM_NV,
35, 0.8,0.2,0,0);

/I Farbe der Highlights
glProgramParameter4fNV
(GL_VERTEX_PROGRAM_NV,

36,1.0,1.0,1.0,1.0);
/I Phongexponent
glProgramParameter4fNV
(GL_VERTEX_PROGRAM_NV,

38, 30.0,0,0,0);

Die Farbe der Objektoberflache wird
schon bunt, indem Sie den Betrag der
Normalen als Farbe verwenden. Den
Betrag berechnen Sie mit einem kleinen
Trick per MAX-Befehl:

MOV R4, V[NRML];
MAX R4, R4, -R4; [>)

2/2002 PC Magazin 193

Ol —@

5-E]

PC UNDERGROUND
PRAXIS

Jetzt berechnen Sie Schritt fur Schritt die
Beleuchtung. Zunéchst transformieren
Sie die Normale mit der inversen Mo-
delview-Matrix in dasselbe Koordina-
tensystem wie die Lichtrichtung:

DP3 R2.x, c[8], VINRML];

DP3 R2.y, c[9], VINRML];

DP3 R2.z, c[10], V[NRML];
AnschlieBend berechnen Sie die Skalar-
produkte der Lichtrichtung bzw. des
Halfspace-Vektors und der Normalen
und schlieRen die VVorbereitung der Be-
leuchtungsberechnung ab, indem Sie in
R3.z den Phong-Exponenten speichern.

DP3 R3.x, c[32], R2;

DP3 R3.y, c[33], R2;

MOV R3.w, c[38].x;
LIT R4, R3;

Jetzt kdnnen Sie den resultierenden
Farbwert an Hand des berechneten Sha-

dings bestimmen:
MAD RS5, c[35].x, R4.y, c[35].y;
R5.x = Diffuse*(N*L)+Ambient
MUL R6.xyz, c[36], R4.z;
R6 = SpecularFarbe*Koeff.
MAD o[COLO].xyz, R4, R5.x, R6;
Farbe = R4*(Amb+Diff)+Specular-
Farbe

Unser zweites Anwendungsbeispiel er-
ledigt nicht nur die
Transformation und
Beleuchtung, sondern
modifiziert die Lage
der Vertices selbst. Es
soll so genannte Bill-
boards (Polygone),
die immer zum Be-
trachter hinzeigen,
automatisch ausrich-
ten.

Fr jedes Billboard
verwenden Sie ein
Quadrat, also vier
Vertices, und zeich-
nen diese mit
GL_QUADS. Mit
den Billboards wollen
wir eine Partikel-
fonténe darstellen.

Fur einen Partikel
ist jeweils nur der Ort bekannt. Es ist al-
so die Aufgabe des Vertex Programms,
aus der Position ein Quadrat im Raum
zu platzieren. Die bendtigten Vektoren,
die vom Betrachter aus nach rechts und
nach oben zeigen, sind die Right- und
Up-Vektoren der Modelview-Matrix.
Da die Vertex-Programme keine neuen
Vertices erzeugen kénnen, legen Sie von
vornherein eine Liste von Vertices, fur

194 PC Magazin 2/2002

jeden Partikel vier Stiick, an. Fir jeden
Knoten speichern Sie zusédtzlich zur
Koordinate weitere Daten. Zunéchst le-
gen Sie die Programmparameter fest:

glTrackMatrixNV
(GL_VERTEX_PROGRAM_NV, 0,
GL_MODELVIEW, GL_IDENTITY_NV);
glTrackMatrixNV
(GL_VERTEX_PROGRAM_NV, 4,
GL_MODELVIEW_PROJECTION_NV,
GL_IDENTITY_NV);

Il texture koordinaten
glProgramParameter4fNV
(GL_VERTEX_PROGRAM_NV,

24, 0,0,0,0);
glProgramParameter4fNV
(GL_VERTEX_PROGRAM_NV,

25,1,0,0,0);
glProgramParameter4fNV
(GL_VERTEX_PROGRAM_NV,

26, 1,1,0,0);
glProgramParameter4fNV
(GL_VERTEX_PROGRAM_NV,

27, 0,1,0,0);

Rufen Sie vor dem Zeichnen das Vertex-
State-Programm auf. Dieses verwendet
die Up- und Right-Vektoren, um die
vier Vektoren zu bilden, die das Billbo-
ard aufspannen:

IIVSP1.0

MOV RO0.xyz,c[0];

MOV R1.xyz,c[1];

ADD c[20], -RO, -R1; #links oben
ADD c[21], RO, -R1; #rchts oben
ADD c[22], RO, R1; #rchts unt.
ADD c[23], -R0O, R1; #Inks unten
END

DIE PARTIKEL dieser Fontane werden mit Billboards dar-
gestellt.

Die Speicherung der Vertices erfolgt
mit der Struktur, wobei pro Partikel vier
Vertices notwendig sind:

typedef struct

VERTEX3D pos;

VERTEX3D vdata;
}1BILLBOARDVERTEX;
BILLBOARDVERTEX *patrticleVertex;

In vdata.x speichern Sie fur jeden Ver-
tex, ob es sich um den ersten, zweiten,

dritten oder vierten Vertex des Billbo-
ards handelt, die Werte 0, 1, 2 oder 3.
Diesen Index bendtigen Sie im Vertex-
Programm, um die oben berechneten
Vektoren und die Texturkoordinaten zu
indizieren. In vdata.y speichern Sie ei-
nen Faktor fur die GroRe des Partikels
und in vdata.z seine Helligkeit.

Diese Daten wird das zweite Vertex
Programm verwenden. In pos speichern
Sie die Koordinate, wobei Sie fiir jeden
Vertex eines Billboards dieselbe Koordi-
nate verwenden. Diese Daten Uibermit-
teln Sie wie folgt:

glEnableClientState

(GL_VERTEX_ATTRIB_ARRAYO_NV);

glEnableClientState
(GL_VERTEX_ATTRIB_ARRAY1_NV);

glVertexAttribPointerNV

(0, 3, GL_FLOAT, sizeof
(BILLBOARDVERTEX),
&particleVertex[0].pos);
glVertexAttribPointerNV
(1,3, GL_FLOAT,
sizeof(BILLBOARDVERTEX),
&particleVertex[0].vdata);

/I zeichnen

glDrawElements

(GL_QUADS, nParticles*4,
GL_UNSIGNED_INT, particlelndex);

glDisableClientState
(GL_VERTEX_ATTRIB_ARRAYO_NV);
glDisableClientState
(GL_VERTEX_ATTRIB_ARRAY1_NV);

ieses Vertex-Programm (bernimmt
die Arbeit:

1VP1.0

ARL A0.x,V[1].x;

#Index laden

MUL RO, c[A0.x+20], v[1].y;

#Vektor indizieren

#und Vektor skalieren

ADD R1, RO, v[0];

#auf die Koordinate addieren

DP4 o[HPOS].x,R1,c[4];
#Koordinate transformieren
DP4 o[HPOS].y,R1,c[5];
DP4 o[HPOS].z,R1,c[6];
DP4 o[HPOS].w,R1,c[7];

MOV R1, v[1];

MUL o[COLO], v[COLO],R1.z;
#helligkeit der farbe

MOV o[TEXO0].xy,c[A0.x+24];
#Texture-Koordinate kopieren

END

Das Resultat des Vertex-Programms se-
hen Sie im nebenstehenen Bild. Die op-
tischen Spielereien erreichen Sie mit ei-
ner spiegelnden Flache. Der wolkige
Hintergrund bereichert den lebendigen
Eindruck. Die vollstandige Implementa-
tion inklusive der Partikelroutine finden
Sie auf der Heft-CD. ET

Lesen Sie zur Programmierung von Grafikkarten:
http://developer.nvidia.com

