
P C U N D E R G R O U N D
P R A X I S

2/2002 PC Magazin 191

C A R S T E N D A C H S B A C H E R

Ein unaufhaltsamer Trend bei mo-
derner Grafik-Hardware ist eine
immer größere Geschwindigkeit

bei der Berechnung und Darstellung von
3D-Grafik. Das Rendering von virtuel-
len Szenen läuft immer nach demselben
Schema, der Grafik-Pipeline, ab, wie Sie
im Bild unten sehen können.

Die Grafik-Pipeline transformiert die
Geometrie abhängig von der Lage der
Objekte und der Kamera und berechnet
anschließend die Beleuchtung. Das Re-
sultat sind im allgemeinen Dreiecke, de-
ren Eckpunkte (Vertices) mit Attributen
wie Textur-Koordinaten, Farb- und
Transparenz-Werten ausgestattet sind.
Der Rasterizer, der Teil der Grafik-

Hardware, der das Zeichnen verantwor-
tet, bekommt diese Daten und rendert
entsprechend in den Framebuffer.
Neuere nVidia-Hardware und die Rade-
on-Karten von ATI gestatten Program-
mierern, die Transform- and Lighting-
Stufe der Grafik-Pipeline mit einer eige-
nen Assembler-Sprache zu gestalten.
Diese Schnittstelle heißt in OpenGL
Vertex Programs und in DirectX 8 Ver-
tex-Shader. (Vertex Shader passt nicht
ganz, da sich das Wort Shading eigent-
lich auf Pixel und nicht auf Vertices be-
zieht.)

In diesem Artikel werden Sie diese As-
sembler Sprache kennenlernen und er-
fahren, wie Sie sie mit nVidia-Grafik-
karten (GeForce) und OpenGL ab Ver-
sion 1.2 einsetzen können. Die aktuelle
OpenGL Version ist 1.3.

Als Beispiel dienen zwei von vielen
Einsatzgebieten: Sie schreiben eine eige-
ne Beleuchtungsberechnung und ver-
wenden die Vertex Programs, um so ge-
nannte Billboards auszurichten. Billbo-
ards sind Polygone, die immer senkrecht
zur Blickrichtung liegen, also zum Be-
trachter hinzeigen.

■ Das Vertex-Programm
Mit Vertex-Programmen haben Sie die
volle Kontrolle über die Transform- and
Lighting-Stufe der Grafik Pipeline. Da-
mit können Sie komplexe Operationen
mit den Vertices in der GPU (Graphic
Processing Unit) Ihrer Grafikkarte aus-
führen lassen. So entlasten Sie die CPU
des Rechners, die Sie damit für andere
Aufgaben physikalisch oder für Simula-
tionen freimachen. Sie geben der CPU
also mehr Zeit für physikalische Berech-
nungen wie Partikel-Bewegungen.

Sie verwenden Vertex-Programme,
um die Beleuchtung zu berechnen, für
Skinning- und Blending-Techniken, al-
so das Überblenden von Bewegungsab-
läufen bei der Animation von Charakte-
ren, und um Texture-Koordinaten zu
generieren. Außerdem können Sie belie-
bige Texture-Matrix-Berechnungen
durchführen oder die Vertices durch
weitere Rechenschritte modifizieren.

Sie schreiben Ihr Vertex-Programm in
einer speziellen, mächtigen SIMD-As-
semblersprache (Single Instruction Mul-
tiple Data). Als Eingabedaten dienen ei-
ne Reihe von Variablen, deren Inhalt Sie
von außen festlegen können, und ein
nicht transformierter, nicht beleuchteter
Vertex inklusive einiger Attribute.

Die Ausgabe muss die transformierten
Koordinaten enthalten und optional die
Beleuchtung, die Texture-Koordinaten,
Fog-Koordinaten (Nebel) und Point

Sizes (die Größe der Punkte beim Ren-
dering von GL_POINTS). Ein Vertex-
Programm bearbeitet also immer nur
einen Vertex. Es werden keine zusätzli-
chen Vertices erzeugt oder gelöscht, es
gibt keine topologischen Informationen
zu benachbarten Vertices, die vielleicht
zusammen ein Dreieck bilden könnten
(Nachbarschaftsinformation).

■ Die Vertex-Attribute
Die Vertex-Attribute sind 16 Register,
die aus je vier Float-Werten bestehen,
also ein Vektor sind. Sie enthalten je-
weils die Daten des Vertex, der transfor-
miert werden soll und mit einem read-
only-Attribut versehen ist. Eine Instruk-
tion eines Vertex-Programms darf je-
weils nur eines dieser Register enthal- q

Vertex-Shader in OpenGL

Assemblierte
Schönheit
Mit Vertex-Shadern machen Sie Ihrer Grafikkarte
Beine und bestimmen selbst, wie Vertices trans-
formiert und beleuchtet werden.

AUF CD
Die Quelltexte sowie die fertig übersetzten

Routinen finden Sie im Verzeichnis Praxis/Pro-
grammierung/PC Underground.

JEDER VERTEX muss die Grafik-Pipeline
durchlaufen.

DIE BELEUCHTUNG UND FARBE dieses
Torus wurde von einem Vertex-Programm
berechnet.

P C U N D E R G R O U N D
P R A X I S

192 PC Magazin 2/2002

ten, aber sie darf zweimal dasselbe Regi-
ster verwenden. Die Register finden Sie
in der Tabelle.

Sie können auf zwei Arten darauf zu-
greifen: mit der Indizierung durch eine
Zahl von 0 bis 15 oder durch die Kürzel
in der zweiten Spalte, die in der dritten
Spalte beschrieben sind. Die Beschrei-
bungen bezeichnen die normale Bele-
gung der Register. Beispielsweise befin-
det sich die Normale eines Vertex im Re-
gister v[2]. Da Sie dies als Programmie-
rer beliebig festlegen können, müssen
diese Bezeichnungen nicht verbindlich
sein. Sie können diese Vertex-Attribute-
Register mit beliebigen Werten pro Ver-
tex füllen, also mit Indizes, Vektoren
oder anderen Parametern.

Das Ergebnis des Vertex-Programms
wird in die 15 Vertex-Result-Register
geschrieben. Darin ist die Information
enthalten, die die Rasterizer-Einheit der

Grafik-Hardware anschließend für das
Rendering enthält.

Die Result-Register haben jeweils ei-
ne Bezeichnung, an die Sie sich halten
müssen: So befinden sich die tranfor-
mierten Koordinaten immer im Register
o[HPOS]

■ Die Vertex-Programme
Ein Vertex-Programm besteht aus bis zu
128 SIMD-Instruktionen. Die Befehle
sind nach einem festen Schema aufge-
baut, wobei eckige Klammern jeweils ei-
nen optionalen Teil ausweisen:

Opcode dst, [-]src0 [,[-]src1
[,[-]src2]]; #Kommentar

dst ist das Zielregister src0, src1 und src2
sind Quellregister. Der Inhalt
jedes Quellregisters kann auf
Wunsch negiert werden, zum
Beispiel beim MOV-Befehl,
der den Inhalt eines Registers
in ein anderes kopiert:
MOV R1, R2 oder MOV R1,
-R2

Weiterhin können Sie die
Komponenten der Register
vertauschen:
MOV R1, R2.wzyx

Dabei passiert Folgendes:
R1.x = R2.w
R1.y = R2.z
...

Bei MOV R1.xw, R2 werden
nur die x- und w-Kompo-
nente von R1 mit den ent-

sprechenden Werten von R2 gefüllt. Die
y- und z-Komponente bleiben un-
berührt. Eine Liste der Befehle finden
Sie in der Tabelle.

SIMD-Befehle verfügen nicht über
Verzweigungsbefehle. Für diese Opera-
tionen brauchen Sie die verschiedenen
Berechnungszweige, die Sie mit den
Maskierungen von SLR und SGE multi-
plizieren und addieren.

Für jeden Vertex rufen Sie ein Vertex-
Programm auf. Sie können dabei auf die
Attribute sowie Result-Register zurück-
greifen. Weiterhin gibt es 12 temporäre
Register R1 bis R11 (read/write), jeweils
aus vier Floats bestehend, und die Pro-
grammparameter, die 96 Register mit
vier Floats (c[0] bis c[95]) aufweisen. Die
Programmparameter sind read-only, die
Sie außerhalb des Renderns (also vor
oder nach dem glBegin/glEnd-Befehl-
spaar) modifizieren können.

Es ist notwendig, dass Sie zur Trans-
formation der Koordinaten die jeweils
gültige Modelview und Projection Ma-
trix von OpenGL kennen. Dazu nutzen
Sie das Tracking-Verfahren. Damit le-
gen Sie fest, dass die Vektoren der Ma-
trizen in bestimmten Programmparame-
tern und Registern gespeichert sind. Fol-
gende Zeilen legen dies fest:

glTrackMatrixNV
(GL_VERTEX_PROGRAM_NV, 4,
GL_MODELVIEW, GL_IDENTITY_NV);
glTrackMatrixNV
(GL_VERTEX_PROGRAM_NV, 20,
GL_MODELVIEW, GL_INVERSE_NV);

DIE VERTEX-ATTRIBUTE
(REGISTER)

Register Name normale Belegung
v[0] v[OPOS] Vertex-Koordinate
v[1] v[WGHT] Vertex Weight (für

Blending)
v[2] v[NRML] Normale
v[3] v[COL0] primäre Farbe
v[4] v[COL1] sekundäre Farbe
v[5] v[FOGC] Fog-Koordinate
v[6] — —
v[7] — —
v[8] v[TEX0] Textur-Koordinate 0
v[9] v[TEX1] Textur-Koordinate 1
v[10] v[TEX2] Textur-Koordinate 2
v[11] v[TEX3] Textur-Koordinate 3
v[12] v[TEX4] Textur-Koordinate 4
v[13] v[TEX5] Textur-Koordinate 5
v[14] v[TEX6] Textur-Koordinate 6
v[15] v[TEX7] Textur-Koordinate 7

DIE VERTEX-RESULT-REGISTER

Register- Beschreibung Inter-
name pretation
o[HPOS] homogene Koordinaten (x,y,z,w)
o[COL0] primäre Farbe (vorne) (r,g,b,a)
o[COL1] sekundäre Farbe (vorne) (r,g,b,a)
o[BFC0] primäre Farbe (hinten) (r,g,b,a)
o[BFC1] sekundäre Farbe (hinten) (r,g,b,a)
o[FOGC] Fog Koordinaten (x,y,z,w)
o[PSIZ] Point Size (x,y,z,w)
o[TEX0] Texture Koordinaten Set 0 (s,t,r,q)
o[TEX1] Texture Koordinaten Set 1 (s,t,r,q)
o[TEX2] Texture Koordinaten Set 2 (s,t,r,q)
o[TEX3] Texture Koordinaten Set 3 (s,t,r,q)
o[TEX4] Texture Koordinaten Set 4 (s,t,r,q)
o[TEX5] Texture Koordinaten Set 5 (s,t,r,q)
o[TEX6] Texture Koordinaten Set 6 (s,t,r,q)
o[TEX7] Texture Koordinaten Set 7 (s,t,r,q)

3

DIE BEFEHLE DER VERTEX-PROGRAMME

Befehl Beschreibung
MOV dest, src0 Kopiert den Inhalt von src0 nach dest
MUL dest, src0, src1 Komponentenweise Multiplikation
ADD dest, src0, src1 Komponentenweise Addition
MAD dest, src0, src1, Addiert die Werte von src2 zu dem Multiplikationsergebnis von rc0
src2 und src1
RCP dest, src0.C Berechnet das Reziproke zu einer Komponente C von src0
RSQ dest, src0.C Berechnet die inverse Wurzel zu einer Komponente von src0
DP3 dest, src0, src1 Skalarprodukt zweier Vektoren/3 Komponenten (x, y, z)
DP4 dest, src0, src1 Skalarprodukt zweier Vektoren/4 Komponenten (x, y, z, w)
MIN dest, src0, src1 Komponentenweises Minimum bilden
MAX dest, src0, src1 Komponentenweises Maximum bilden
SLR dest, src0, src1 Komponentenweiser Vergleich auf kleiner als. Ist eine Komponente von

src0 kleiner als die von src1, dann wird die entsprechende Komponente
in dest auf 1.0 — sonst 0.0 gesetzt.

SGE dest, src0, src1 Komponentenweiser Vergleich auf größer gleich (siehe SLR)
EXP dest, src0.C Berechnet 2 src0.C

LOG dest, src0.C Berechnet Logarithmus zur Basis 2 von src0.C
ARL A0.x, src0.C Laden des Adressregisters
LIT dest, src0 Beleuchtungsberechnung
src0.x Skalarprodukt für diffuse Beleuchtung (N*L)
src0.y Skalarprodukt für spiegelnde (specular) Beleuchtung (N*H)
src0.w Phong Exponent, Resultat: Koeffizient für ambiente (dest.x), diffuse

(dest.y) und spiegelnde (specular) (dest.z) Beleuchtung
DST dest, src0.C, src1.D Distance Vector: src0.C = d2, src1.D = 1/d, Resultat: dest = (1, d, d2, 1/d)3

P C U N D E R G R O U N D
P R A X I S

2/2002 PC Magazin 193

Diese Zeilen besagen, dass die Regis-
ter c[4], c[5], c[6] und c[7] die Model-
view Matrix enthalten und c[20] bis c[23]
die Inverse dieser Matrix. Andere Wer-
te speichern Sie mit dem folgenden
Befehl:

glProgramParameter4fNV
(GL_VERTEX_PROGRAM_NV,
16, 1, 2, 3, 4);

Damit enthält das Register c[16] den
Vektor (1, 2, 3, 4).

Ein Vertex-Programm bekommt in
OpenGL einen Integer-Wert als Be-
zeichnung zugeordnet. Diesen Wert er-
halten Sie – ähnlich wie bei der Verwal-
tung von Texturen – durch den Befehl

glGenProgramsNV
(int n, int *ids)

Ein Vertex-Programm speichern Sie im
Quelltext mit einem String und überge-
ben diesen mit

glLoadProgramNV(enum target,
int id, int length,
const char *program)

an OpenGL:
const unsigned char program[] =
{...};
int vertexProgram;
glGenProgramsNV(1, &vertexPro-
gram);
glBindProgramNV(GL_VERTEX_PRO-
GRAM_NV, vertexProgram);
glLoadProgramNV(GL_VERTEX_PRO-
GRAM_NV, vertexProgram, strlen(
program), program);

Sobald Sie nun mit glEnable(GL_VER-
TEX_PROGRAM_NV) die Vertex-
Programme aktiviert haben, nutzen Sie
die gesamte Transform- und Lighting-
Stufe von OpenGL für Ihr eigenes Pro-
gramm. Jetzt müssen Sie nur noch spezi-
fizieren, welche Daten in den Vertex-
Attribut-Registern gespeichert werden
sollen. Dazu brauchen Sie zwei Befehle.
Zuerst aktivieren Sie einen Stream von
Daten mit

glEnableClientState(GL_VERTEX_
ATTRIB_ARRAY0_NV);

Die zu übermittelnden Daten übergeben
Sie mit dem Befehl unten. Dabei ist der
erste Parameter der Index des Streams,
den Sie soeben aktiviert haben. Der
zweite Parameter gibt die Anzahl der
Komponenten an. Bei folgendem Bei-
spiel werden die x-, y- und z-Kompo-
nenten von v[HPOS] mit den Koordi-
naten aus vertexArray gefüllt:

glVertexAttribPointerNV
(0, 3, GL_FLOAT,
sizeof(VERTEX3D), &vertexArray);

Weiterhin gibt es eine spezielle Variante
von Vertex-Programmen, die so ge-
nannten Vertex-State-Programs. Diese
dürfen die Parameter-Register modifi-

zieren, müssen aber explizit –
von Ihrem Programm – ausgeführt wer-
den.

// upload
int vertexStateProgram;
glGenProgramsNV(1, &vertexState-
Program);
glLoadProgramNV
(GL_VERTEX_STATE_PROGRAM_NV,
vertexStateProgram,
strlen(stateProgram),
stateProgram);

// ausführen
float nulldata[4] = {0.0f, 0.0f,
0.0f, 0.0f};
glExecuteProgramNV(
GL_VERTEX_STATE_PROGRAM_NV, ver-
texStateProgram, (float*)nullda-
ta);

Die speziellen OpenGL-Befehle sind
Erweiterungen des ursprünglichen
OpenGL Standards, und Sie müssen
überprüfen, ob sie zur Verfügung ste-
hen. Dazu suchen Sie nach der NV_ver-
tex_program-Erweiterung und holen

sich mit wglGetProcAdress(...) die
Adressen der neuen Befehle. Die ent-
sprechenden Aufrufe und Konstanten
finden Sie im Beispiel-Programm auf der
Heft CD.

■ Das erste Vertex-Program
Los geht’s mit Ihrem ersten Vertex-Pro-
gramm: Dieses soll einen Vertex von sei-
nen angegebenen Koordinaten (mit gl-
Vertex) ins Koordinatensystem der Be-
trachterkamera transformieren. Kom-
mentare innerhalb des Vertex-Pro-
gramms, das immer mit der Kennung
!!VP 1.0 beginnt, kennzeichnen Sie mit
einem #-Symbol. Für die Tranformation
benötigen Sie die Modelview- und die
Projection-Matrix, die in den Parame-
ter-Registern gespeichert werden.

const unsigned char simpleSha-
der[]=
{
„!!VP1.0 \
Transformation Objectspace-
>Worldspace
DP4 R0.x,v[OPOS],c[0]; \
DP4 R0.y,v[OPOS],c[1]; \
DP4 R0.z,v[OPOS],c[2]; \

DP4 R0.w,v[OPOS],c[3];\
Transformation Worldspace->Ca-
meraspace
DP4 R1.x,R0,c[4]; \
DP4 R1.y,R0,c[5];\
DP4 R1.z,R0,c[6];\
DP4 R1.w,R0,c[7];\
und speichern
MOV o[HPOS],R1;\
Farbwert einfach durchreichen
MOV o[COL0], v[COL0];\
END“
};

glEnable(GL_VERTEX_PROGRAM_NV);
glBindProgramNV(GL_VERTEX_PRO-
GRAM_NV, 1);
glLoadProgramNV(GL_VERTEX_PRO-
GRAM_NV, 1, strlen(simpleShader),
simpleShader);

glTrackMatrixNV(GL_VERTEX_PRO-
GRAM_NV, 0, GL_MODELVIEW,
GL_IDENTITY_NV);
glTrackMatrixNV(GL_VERTEX_PRO-
GRAM_NV, 4, GL_PROJECTION,
GL_IDENTITY_NV);

Als nächstes fügen Sie eine eigene Be-
leuchtungsberechnung in das Vertex-

Programm ein. Als
Beispiel wollen wir
Ihnen hier eine bunt
eingefärbte Ober-
fläche mit Beleuch-
tung mit dem Phong-
modell vorstellen.

Dazu benötigen Sie
weitere Parameter:
glTrackMatrixNV

(GL_VERTEX_PRO-
GRAM_NV, 8,
GL_MODELVIEW,

GL_INVERSE_TRANSPOSE_NV);
// Licht Richtung

glProgramParameter4fNV
(GL_VERTEX_PROGRAM_NV, 32, 0, 0,
1, 1);
// Halfspace Vektor H
glProgramParameter4fNV
(GL_VERTEX_PROGRAM_NV, 33, 0,
0, 1, 1);
// diffus-ambienter Koeffizient
Oberfläche
glProgramParameter4fNV
(GL_VERTEX_PROGRAM_NV,

35, 0.8, 0.2, 0, 0);
// Farbe der Highlights
glProgramParameter4fNV
(GL_VERTEX_PROGRAM_NV,

36, 1.0, 1.0, 1.0, 1.0);
// Phongexponent
glProgramParameter4fNV
(GL_VERTEX_PROGRAM_NV,

38, 30.0, 0, 0, 0);

Die Farbe der Objektoberfläche wird
schön bunt, indem Sie den Betrag der
Normalen als Farbe verwenden. Den
Betrag berechnen Sie mit einem kleinen
Trick per MAX-Befehl:

MOV R4, v[NRML];
MAX R4, R4, -R4; q

DIE VEKTOREN im Phong-Beleuchtungsmodell.

P C U N D E R G R O U N D
P R A X I S

194 PC Magazin 2/2002

Jetzt berechnen Sie Schritt für Schritt die
Beleuchtung. Zunächst transformieren
Sie die Normale mit der inversen Mo-
delview-Matrix in dasselbe Koordina-
tensystem wie die Lichtrichtung:

DP3 R2.x, c[8], v[NRML];
DP3 R2.y, c[9], v[NRML];
DP3 R2.z, c[10], v[NRML];

Anschließend berechnen Sie die Skalar-
produkte der Lichtrichtung bzw. des
Halfspace-Vektors und der Normalen
und schließen die Vorbereitung der Be-
leuchtungsberechnung ab, indem Sie in
R3.z den Phong-Exponenten speichern.

DP3 R3.x, c[32], R2;
DP3 R3.y, c[33], R2;
MOV R3.w, c[38].x;
LIT R4, R3;

Jetzt können Sie den resultierenden
Farbwert an Hand des berechneten Sha-
dings bestimmen:

MAD R5, c[35].x, R4.y, c[35].y;
R5.x = Diffuse*(N*L)+Ambient
MUL R6.xyz, c[36], R4.z;
R6 = SpecularFarbe*Koeff.
MAD o[COL0].xyz, R4, R5.x, R6;
Farbe = R4*(Amb+Diff)+Specular-
Farbe

■ Modifikation
der Vertex-Koordinaten
Unser zweites Anwendungsbeispiel er-
ledigt nicht nur die
Transformation und
Beleuchtung, sondern
modifiziert die Lage
der Vertices selbst. Es
soll so genannte Bill-
boards (Polygone),
die immer zum Be-
trachter hinzeigen,
automatisch ausrich-
ten.

Für jedes Billboard
verwenden Sie ein
Quadrat, also vier
Vertices, und zeich-
nen diese mit
GL_QUADS. Mit
den Billboards wollen
wir eine Partikel-
fontäne darstellen.

Für einen Partikel
ist jeweils nur der Ort bekannt. Es ist al-
so die Aufgabe des Vertex Programms,
aus der Position ein Quadrat im Raum
zu platzieren. Die benötigten Vektoren,
die vom Betrachter aus nach rechts und
nach oben zeigen, sind die Right- und
Up-Vektoren der Modelview-Matrix.
Da die Vertex-Programme keine neuen
Vertices erzeugen können, legen Sie von
vornherein eine Liste von Vertices, für

jeden Partikel vier Stück, an. Für jeden
Knoten speichern Sie zusätzlich zur
Koordinate weitere Daten. Zunächst le-
gen Sie die Programmparameter fest:

glTrackMatrixNV
(GL_VERTEX_PROGRAM_NV, 0,
GL_MODELVIEW, GL_IDENTITY_NV);
glTrackMatrixNV
(GL_VERTEX_PROGRAM_NV, 4,
GL_MODELVIEW_PROJECTION_NV,
GL_IDENTITY_NV);
// texture koordinaten
glProgramParameter4fNV
(GL_VERTEX_PROGRAM_NV,

24, 0, 0, 0, 0);
glProgramParameter4fNV
(GL_VERTEX_PROGRAM_NV,

25, 1, 0, 0, 0);
glProgramParameter4fNV
(GL_VERTEX_PROGRAM_NV,

26, 1, 1, 0, 0);
glProgramParameter4fNV
(GL_VERTEX_PROGRAM_NV,

27, 0, 1, 0, 0);

Rufen Sie vor dem Zeichnen das Vertex-
State-Programm auf. Dieses verwendet
die Up- und Right-Vektoren, um die
vier Vektoren zu bilden, die das Billbo-
ard aufspannen:

!!VSP1.0
MOV R0.xyz,c[0];
MOV R1.xyz,c[1];
ADD c[20], -R0, -R1; #links oben
ADD c[21], R0, -R1; #rchts oben
ADD c[22], R0, R1; #rchts unt.
ADD c[23], -R0, R1; #lnks unten
END

Die Speicherung der Vertices erfolgt
mit der Struktur, wobei pro Partikel vier
Vertices notwendig sind:

typedef struct
{

VERTEX3D pos;
VERTEX3D vdata;

}BILLBOARDVERTEX;
BILLBOARDVERTEX *particleVertex;

In vdata.x speichern Sie für jeden Ver-
tex, ob es sich um den ersten, zweiten,

dritten oder vierten Vertex des Billbo-
ards handelt, die Werte 0, 1, 2 oder 3.
Diesen Index benötigen Sie im Vertex-
Programm, um die oben berechneten
Vektoren und die Texturkoordinaten zu
indizieren. In vdata.y speichern Sie ei-
nen Faktor für die Größe des Partikels
und in vdata.z seine Helligkeit.

Diese Daten wird das zweite Vertex
Programm verwenden. In pos speichern
Sie die Koordinate, wobei Sie für jeden
Vertex eines Billboards dieselbe Koordi-
nate verwenden. Diese Daten übermit-
teln Sie wie folgt:

glEnableClientState
(GL_VERTEX_ATTRIB_ARRAY0_NV);
glEnableClientState
(GL_VERTEX_ATTRIB_ARRAY1_NV);

glVertexAttribPointerNV
(0, 3, GL_FLOAT, sizeof
(BILLBOARDVERTEX),
&particleVertex[0].pos);
glVertexAttribPointerNV
(1, 3, GL_FLOAT,
sizeof(BILLBOARDVERTEX),
&particleVertex[0].vdata);

// zeichnen
glDrawElements
(GL_QUADS, nParticles*4,
GL_UNSIGNED_INT, particleIndex);

glDisableClientState
(GL_VERTEX_ATTRIB_ARRAY0_NV);
glDisableClientState
(GL_VERTEX_ATTRIB_ARRAY1_NV);

Dieses Vertex-Programm übernimmt
die Arbeit:

!!VP1.0
ARL A0.x,v[1].x;
#Index laden
MUL R0, c[A0.x+20], v[1].y;
#Vektor indizieren
#und Vektor skalieren
ADD R1, R0, v[0];
#auf die Koordinate addieren

DP4 o[HPOS].x,R1,c[4];
#Koordinate transformieren
DP4 o[HPOS].y,R1,c[5];
DP4 o[HPOS].z,R1,c[6];
DP4 o[HPOS].w,R1,c[7];

MOV R1, v[1];
MUL o[COL0], v[COL0],R1.z;
#helligkeit der farbe
MOV o[TEX0].xy,c[A0.x+24];
#Texture-Koordinate kopieren

END

Das Resultat des Vertex-Programms se-
hen Sie im nebenstehenen Bild. Die op-
tischen Spielereien erreichen Sie mit ei-
ner spiegelnden Fläche. Der wolkige
Hintergrund bereichert den lebendigen
Eindruck. Die vollständige Implementa-
tion inklusive der Partikelroutine finden
Sie auf der Heft-CD. s E T

Lesen Sie zur Programmierung von Grafikkarten:
http://developer.nvidia.com

DIE PARTIKEL dieser Fontäne werden mit Billboards dar-
gestellt.

