
P C U N D E R G R O U N D
P R A X I S

3/2002 PC Magazin 211

C A R S T E N D A C H S B A C H E R

In den bisherigen PC-Underground-
Artikeln über 3D-Grafikprogram-
mierung haben Sie sich immer

bemüht, möglichst realistische Berech-
nungen und Darstellungen durchzu-
führen. Das Ziel ist es, die Realität tref-
fend nachzuahmen. Diesem Ziel streben
Sie auch in dieser Ausgabe nach. Doch
diesmal handelt es sich nicht um natürli-
che Phänomäne, sondern um handge-
zeichnete Grafiken, wie Sie sie aus Zei-
chentrickfilmen (Cartoons) kennen. Da-
mit steigen Sie in die Grundlagen des
3D-Cartoon-Renderings ein.

Das Cartoon-Rendering ist eines der
Gebiete, die unter dem Begriff Non-
Photorealistic Rendering (NPR) zusam-
mengefasst werden. Andere Themen
von NPR sind, mit Hilfe von 3D-Hard-
ware Schwarzweiß zu illustrieren, den
Eindruck von Wasserfarben zu vermit-
teln oder Maltechniken mit Pinselstri-
chen nachzuahmen.

■ Inking
Die erste Technik, die wir Ihnen hier
vorstellen, ist das so genannte Inking.
Dieser Begriff (ink: Tinte) bezeichnet,
wie Sie die Randlinien einer Comicfigur
oder eines Objekts bestimmen. Der Be-
griff Painting bezeichnet, wie Sie das
durch Linien begrenzte Innere füllen
oder färben. Damit folgt das Painting
dem Inking.

Mit diesen beiden Techniken können
Sie herkömmliche 3D-Modelle darstel-
len, wie Sie sie mit Milkshape 3D, 3D-

Studio Max, Lightwave und anderen
Modelling-Programmen geschaffen ha-
ben. Das Resultat unseres Beispielpro-
gramms dieser Ausgabe kann sich sehen
lassen!

Für das Inking benötigen Sie außer der
Liste der Knoten und Dreiecke des 3D-
Modells noch eine Liste mit allen Kan-
ten. Verwenden Sie folgende Daten-
strukturen für ein 3D-Modell:

// ein Knoten
typedef struct
{

GLfloat x, y, z;
}VERTEX3D;

// Fläche (3 Indizes + Normale)
typedef struct
{

GLint a, b, c;
VERTEX3D normal;

}FACE;

// Kante
typedef struct
{

GLint a, b;
int boundary;
int poly[2];

}EDGE;

VERTEX3D *pVertexList;
VERTEX3D *pNormalList;
EDGE *pEdgeList;
EDGE *pRenderEdge;
FACE *pFaceList;

int nVertices,
nFaces,
nEdges,
nRenderEdges;

Die pVertexList und die pFaceList erhal-
ten Sie aus den Daten der 3D-Modelle.
Auf der Heft-CD finden Sie neben dem
Beispielprogramm, das diese Daten ein-
liest, einige 3D-Modelle im ASCII For-
mat. Sie berechnen selbst die Normalen
der Dreiecksflächen, der Knoten und die
Kantenliste. Beginnen Sie zunächst mit
den Dreiecksnormalen. Diese Routine
verwendet überladene Operatoren für
die Vektorrechnung, die Sie in der Datei
VERTEX3DOP.h finden:

for (i = 0; i < nFaces; i++)
{
VERTEX3D *a1, *a2, *a3;
VERTEX3D a, b;

// Eckpunkte des Dreiecks
a1=&pVertexList[pFaceList[i].a];
a2=&pVertexList[pFaceList[i].b];
a3=&pVertexList[pFaceList[i].c];

// zwei Kanten des Dreiecks
a = *a2 - *a1;
b = *a3 - *a1;

// Normale durch Kreuzprodukt
// der Kanten bestimmen

pFaceList[i].normal = a ^ b;

// und normalisieren
~pFaceList[i].normal;
}

Die Normalen an den Vertices (Knoten)
erhalten Sie, indem Sie jeweils den Sum-
menvektor der Normalen aller Dreiecke
nehmen, an denen der betrachtete Ver-
tex beteiligt ist. Diesen Summenvektor
müssen Sie anschließend normalisieren:

for (i =0;i< nVertices;i++)
pNormalList[i].x =
pNormalList[i].y =
pNormalList[i].z = 0.0f;

for (i = 0;i< nFaces;i++)
{
pNormalList[pFaceList[i].a]+=

pFaceList[i].normal;
pNormalList[pFaceList[i].b]+=

pFaceList[i].normal;
pNormalList[pFaceList[i].c]+=

Non Photorealistic Rendering

Beethoven aus
Bits und Bytes
Bringen Sie Ihre Grafikkarte mit OpenGL dazu,
Bilder in Echtzeit darzustellen, die wie hand-
gemalt aussehen. Die Grundlagen dazu lernen Sie
in diesem Artikel kennen!

AUF CD
Die Quelltexte sowie die fertig übersetzten

Routinen finden Sie unter Heft Add-ons/Pro-
grammierung/PC Underground.

DAS CARTOON-Rendering-Verfahren
stellt die Beethoven-Büste vor.

q

P C U N D E R G R O U N D
P R A X I S

212 PC Magazin 3/2002

pFaceList[i].normal;
}

for (i = 0; i < nVertices; i++)
~pNormalList[i];

Als nächstes sind die Kanten des 3D-
Objekts an der Reihe. Sie benötigen eine
Liste, in der jede Kante nur einmal vor-
kommt. Eine Kante ist entweder eine
Randkante, oder sie wird von zwei Drei-
ecken geteilt. Diese Unterscheidung
werden Sie später noch benö-
tigen, um festzustellen, welche Kan-
ten Sie beim Inking zeichnen.

Legen Sie zwei Kantenlisten an. Die
ers-te (pEdgeList) enthält alle Kanten,
jede nur einmal. Die zweite Liste
(pRenderEdge) ist zu Beginn leer. In
dieser Liste werden für jedes gerender-
te Bild die Kanten eingetragen, die beim
Inking gezeichnet werden sollen. Bauen
Sie wie folgt die Kantenliste auf:

// genug Speicherplatz
pEdgeList =new EDGE[nFaces*3];
pRenderEdge =new EDGE[nFaces*3];
nEdges = 0;

// Makro

#define ADDEDGE2LIST(pp,aa,bb)\
low = min(aa, bb); \
high = max(aa, bb); \
found = 0; \
for (j = 0; j < nEdges; j++) \

if (pEdgeList[j].a==low && \
pEdgeList[j].b == high) \

{ \
found = 1; break; \

} \
if (!found) \
{ \
pEdgeList[nEdges].a =low; \
pEdgeList[nEdges].b = high; \
pEdgeList[nEdges].poly[0]=pp; \
pEdgeList[nEdges++].boundary=1; \
} else \
{ \

pEdgeList[j].poly[1]=pp; \
pEdgeList[j].boundary ++; \

}

// alle Kanten in die Liste
// übernehmen

for (i = 0; i < nFaces; i++)
{

int low, high, found, j;
ADDEDGE2LIST(i,

pFaceList[i].a,pFaceList[i].b);
ADDEDGE2LIST(i,

pFaceList[i].a,pFaceList[i].c);
ADDEDGE2LIST(i,

pFaceList[i].b,pFaceList[i].c);
}

An dieser Stelle haben Sie alle Vorberei-
tungen für die Daten getroffen, welche
der Kanten des 3D-Objekts (aus einer
bestimmten Perspektive betrachtet) für

das Inking wichtig sind. Diese Aufgabe
wird als Silhouette Edge Detection be-
zeichnet. Außer der Silhouette des 3D-
Objekts gibt es noch zwei weitere Arten
von Kanten, die für die Darstellung rele-
vant sind: diejenigen, die sich am Rand
des Dreiecksnetzes befinden und solche,
an denen die Oberfläche des Dreiecks-
gitters einen starken Knick hat.

Die Berechnungen der Silhouette sind
abhängig von der Blickrichtung und Be-
trachterposition. Deshalb müssen Sie für

jedes Frame (jedes gerenderte Bild) neu
rechnen. Die Randkanten haben Sie be-
reits bestimmt, als Sie die Kanten aufge-
listet haben: Sie sind nur Teil eines Drei-
ecks. Diese Definition lässt sich erwei-
tern: Dazu legen Sie fest, dass es sich bei
einer inneren Kante (die Teil zweier
Dreiecke ist) um eine Randkante han-
delt. Das heißt, dass die benachbarten
Dreiecke dort unterschiedliche Mate-
rialdefinitionen, Texturkoordinaten
oder Normalen besitzen. Diese Betrach-
tung ist später leicht in die Berechnung
einzubauen.

Die Kriterien für eine Kante mit dem
Index i, die beim Inking zu zeichnen ist,
sind hier aufgeführt:
• Die Kante ist Randkante, dann ist
pEdgeList[i].boundary=1
• Handelt es sich um eine innere Kante,
dann ist
(pEdgeList[i].boundary=2)
Hier befindet sie sich an einem starkem
Knick der Oberfläche. Der Winkel
überschreitet zwischen den Normalen
der benachbarten Dreiecke eine vorher
festgelegte Schwelle. Die Verweise auf
die Nachbardreiecke haben Sie in der
Kantenstruktur gespeichert.
• Die Kante ist Teil der Silhouette. Dann
ist pEdgeList[i].boundary= 2 und eine
der Normalen der benachbarten Drei-
ecke zeigt zum Betrachter hin, die ande-
re weg. Für diese Berechnung benötigen
Sie die Blickrichtung des Betrachters.
Diese Information finden Sie bei
OpenGL in der Modelview Matrix. Hier
die Berechnungen in C-Syntax:

nRenderEdges = 0;
for (i = 0; i < nEdges; i++)

{
int add2List = 0;

// Randkante ?

BEETHOVEN muss sich mit den Kanten des
Inking begnügen.

BEETHOVEN mit den drei Rendering-Optionen unseres Beispielprogramms

P C U N D E R G R O U N D
P R A X I S

3/2002 PC Magazin 213

if (pEdgeList[i].boundary ==1)
add2List = 1;

if (pEdgeList[i].boundary ==2)
{

// Nachbardreiecke und Normalen

int p1 = pEdgeList[i].poly[0];
int p2 = pEdgeList[i].poly[1];

VERTEX3D
*n1 = &pFaceList[p1].normal,
*n2 = &pFaceList[p2].normal;

// Auf Knick in der Oberfläche
// prüfen
// Skalarprodukt ist Cosinus des
// Winkels zwischen den Normalen

float dot = *n1 * *n2;

// 0.4 ->arccos(0.4)=66 Grad

if (dot < 0.4f)
add2List = 1;

// Kante der Silhoutte ?
//ein Vertex der Kante als Bezug

VERTEX3D *vertex =
&pVertexList[pEdgeList[i].a];

// Blickrichtung !

float matrix[16];
glGetFloatv(

GL_MODELVIEW_MATRIX, matrix);

VERTEX3D viewVector;
viewVector.x = matrix[0+2];
viewVector.y = matrix[4+2];
viewVector.z = matrix[8+2];
~viewVector;

// Test, ob unterschiedliche
// Richtung der Normalen bzgl.
// der Blickrichtung

float dot1 = viewVector * *n1;
float dot2 = viewVector * *n2;

if((dot1*dot2) <= 0.00000001f)
add2List = 1;

}

// Hinzufügen, wenn eins der
// Kriterien erfüllt ist

if (add2List)
pRenderEdge[nRenderEdges ++] =

pEdgeList[i];
}

Jetzt müssen Sie die gewonnenen Ergeb-
nisse, also die Kanten, auf den Bild-
schirm bringen. Um die Linien, die nicht
sichtbar sein sollten, weil sie durch die
Oberfläche des 3D-Objekts verdeckt
wären, unsichtbar zu machen, zeichnen
Sie die Dreiecksflächen des Objekts, al-
lerdings in der Hintergrundfarbe und
geringfügig vom Betrachter weg ver-
schoben. Wenn Sie die Flächen des Ob-
jekts einfärben wollen, können Sie auch
jede andere Farbe wählen. Der Zweck
ist, den Z-Buffer (Tiefenpuffer) mit
Werten zu füllen, so dass Kanten auf der
Rückseite des Objekts nicht gezeichnet
werden:

glDisable(GL_BLEND);

glDisable(GL_LIGHTING);
glColor3ub(255, 255, 255);

glEnable
(GL_POLYGON_OFFSET_FILL);

glPolygonOffset(1.0f, 5.0f);

glBegin(GL_TRIANGLES);
for (i = 0; i < nFaces; i++)
{

FACE *f = &pFaceList[i];
glVertex3fv(&pVertexList[f->a]);
glVertex3fv(&pVertexList[f->b]);
glVertex3fv(&pVertexList[f->c]);
}
glEnd();

glDisable(GL_TEXTURE_2D);
glDisable

(GL_POLYGON_OFFSET_FILL);

Zeichnen Sie die Kanten. Außerdem
sollten Sie, falls Sie den optionalen Anti-
Aliasing-Teil verwenden, nochmals ge-
sondert die Vertices als Punkte zeichnen.
So vermeiden Sie Lücken in den Linien-
zügen. Beachten Sie, dass das Anti-Alia-
sing auf älteren 3D-Karten eventuell
nicht unterstützt wird – oder sehr lang-
sam ist.
Gleiches gilt übrigens auch für den
Schalter GL_POLYGON_SMOOTH.
Diesen sollten Sie standardmäßig mit gl-
Disable(...) ausschalten, weil Treiber wie
von GeForce diesen aktivieren. Mit dem
Code zeichnen Sie die Linien:

glDepthFunc(GL_LEQUAL);

// Linienfarbe und -dicke wählen

glColor3ub(0, 0, 0);
glLineWidth(2);
glPointSize(2);

// –optional–
// anti-aliasing
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA,

GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_LINE_SMOOTH);
glEnable(GL_POINT_SMOOTH);
// –optional ende–

glBegin(GL_LINES);
for (i = 0;i < nRenderEdges;i++)
{

EDGE *e = &pRenderEdge[i];
glVertex3fv(&pVertexList[e->a]);
glVertex3fv(&pVertexList[e->b]);
}
glEnd();

glDepthFunc(GL_LESS);
glBegin(GL_POINTS);
for (i = 0;i< nRenderEdges;i++)
{

EDGE *e = &pRenderEdge[i];
glVertex3fv
(&pVertexList[e->a]);
glVertex3fv
(&pVertexList[e->b]);

}
glEnd();

■ Painting
Nun können Sie die relevanten Kanten
herausfinden und zeichnen. Füllen Sie

im nächsten Schritt die Flächen aus.
Auch hier greift der Artikel eine wichti-
ge Methode von vielen heraus, um das
Non-Photorealistic Rendering zu pro-
grammieren. In Cartoons ist oft zu be-
obachten, dass die Oberflächen der Ob-
jekte zwar schattiert werden, aber nur
sehr wenige Farben zeigen, meist nur
zwei bis drei: eine für im Schatten be-
findliche Teile, die Grundfarbe und
eventuell noch eine Farbe für High-
lights.

Wie simulieren Sie diesen Effekt mit
Ihrer 3D-Hardware? Die Beleuchtung
berechnen Sie selbst. Es genügt nicht,
wenn Sie die Farben der Flächen oder
Vertices bestimmen und an OpenGL
weitergeben. Verwenden Sie Flat-
shading, bekommt jedes Dreieck eine ei-
gene Farbe: Doch damit werden die
Dreiecksgrenzen selbst sichtbar. Oder
Sie verwenden Gouraud-Shading, wo-
mit Sie Farbüberläufe auf einzelnen
Dreiecken erhalten, obwohl Sie die Zahl

der Farben reduzieren wollten. Die Lö-
sung liegt im Texture-Mapping. Legen
Sie in einem Bildbearbeitungsprogramm
Ihrer Wahl eine Textur an.

In dieser wenig spektakulär wirken-
den Textur sehen Sie untereinander
waagrecht vier frei definierte Farbüber-
gänge, die aus drei Farbstufen bestehen.
Sie können auch zwei oder mehr als drei
Farben verwenden. Damit berechnen Sie
die Beleuchtung für jeden Vertex. Den
Helligkeitswert, den Sie erhalten, ver-
wenden Sie als Texture-Mapping-Koor-
dinate für die waagrechte Komponente.
Die Farbe der Oberfläche, also welchen
der Farbverläufe Sie wollen, bestimmen
Sie mit der anderen, der vertikalen Kom-
ponente. Rendern Sie die Flächen des
3D-Modells statt einfarbig mit dieser
Textur. q

DIE SCHATTIERUNG der Oberflächen de-
finieren Sie mit einer einfachen Textur.

P C U N D E R G R O U N D
P R A X I S

214 PC Magazin 3/2002

Zunächst müssen Sie für das 3D-Ob-
jekt eine weitere Liste speichern. Darin
speichern Sie die Texturkoordinaten:

float *pTexCoordList =
new float[2*nVertices];

Die Textur (auf der Heft-CD) laden Sie
über die PCUTexture-Wrapper-Klasse.
Damit laden Sie bmp-Dateien einfacher
als OpenGL Texturen:

PCUTexture *colors =
new PCUTexture();

colors->loadBMP(„texture.bmp“);

Wenn Sie eine geladene Textur in
OpenGL verwenden wollen, wählen Sie
sie mit colors->select() aus.

Sie berechnen die Beleuchtung, bevor
Sie die Dreiecke zeichnen. Dazu müssen
Sie die Normalen der Vertices aus dem
Objectspace (das lokale Koordinaten-
system des 3D-Modells) in den World-
space transformieren. Der Worldspace
ist das Koordinatensystem, in dem alle
3D-Modelle und der Betrachter platziert
werden. Diese Transformation nehmen
Sie mit der inversen Matrix zur Model-
view Matrix vor. Anschließend berech-
nen Sie den Helligkeitswert eines Vertex
aus dem Skalarprodukt der transfor-
mierten Normalen und einer festgeleg-
ten Lichtrichtung.

MATRIX44 modelview, invmodel;

// Matrix holen...

glGetFloatv(
GL_MODELVIEW_MATRIX, modelview);

// ... und invertieren

InverseMatrixAnglePreserving(
modelview, invmodel);

// Beleuchtungsberechnung

for (i = 0; i < nVertices; i++)
{

// Normale holen

VERTEX3D *n = &pNormalList[i];

// in Worldspace transformieren

VERTEX3D tn;
tn.x=*n * *(VERTEX3D*)

&invmodel[0];
tn.y=*n * *(VERTEX3D*)

&invmodel[4];
tn.z=*n * *(VERTEX3D*)

&invmodel[8];
~tn;

// Lichtrichtung

VERTEX3D lightDir =
{0.0f,1.0f,1.0f};

// normalisieren
~lightDir;

// Helligkeit berechnen

float light = lightDir * tn;

if (light < 0.1)
light = 0.1f;

if (light > 0.9f)
light = 0.9f;

// Texturekoordinaten speichern
// Helligkeit

pTexCoordList[i*2+0] = light;

// Farbverlauf wählen

pTexCoordList[i*2+1]=texOffset;
}

Aktivieren Sie das Textur-Mapping, um
die Dreiecke zu zeichnen, und überge-
ben Sie die Texturkoordinaten an
OpenGL:

glEnable(GL_TEXTURE_2D);
colors->select();

glBegin(GL_TRIANGLES);
for (i = 0; i < nFaces; i++)
{
FACE *f = &pFaceList[i];
glTexCoord2fv

(&pTexCoordList[f->a*2]);
glVertex3fv

(&pVertexList[f->a]);
glTexCoord2fv

(&pTexCoordList[f->b*2]);
glVertex3fv

(&pVertexList[f->b]);
glTexCoord2fv

(&pTexCoordList[f->c*2]);
glVertex3fv

(&pVertexList[f->c]);
}
glEnd();

glDisable(GL_TEXTURE_2D);

■ Alternative Techniken
Die Techniken, die Sie in diesem Artikel
kennengelernt haben, bilden die Grund-
lage für das Inking und Painting.

Das auf Kanten basierende Inking ist
eine Software-Lösung und daher por-
tierbar. Die Kantendetektion der
Silhouette ist von jedem Blickwinkel aus
betrachtet korrekt. Die Schwelle für
Knicke der Oberfläche ist frei wählbar.
Die 3D-Hardware macht mit ihrem Z-
Buffer die Kanten für Sie sichtbar. Der
Nachteil ist der beträchtliche Rechen-
aufwand, der erforderlich ist, um die
Kanten zu bestimmen.

Einen ganz anderen Ansatz verfolgt
die nächste Technik, die Sie in Cartoon
Rendering von Sim Dietrich finden. Sie
erhalten das Dokument unter der URL
http://developer.nvidia.com/view.asp?
IO=Cartoon_Rendering_GeForce_256

Das Verfahren berechnet mit der
Hardware für jeden Pixel das Skalarpro-
dukt aus der Normalen des Pixels und
der Viewspace Position. Mit Hilfe einer
gewählten Schwelle lässt sich feststellen,
ob ein Pixel zur Silhouette gehört.

Der Vorteil dieser Methode liegt im
Geschwindigkeitsgewinn, also einer
besseren Performanz auf der heutigen
3D-Hardware. Die Darstellung ist aber
weniger genau. Um Knicke in der Ob-
jektoberfläche zu gestalten, bedarf es
aufwändiger Rechenverfahren.

Sie berechnen mit Vertex-Shadern
Texturkoordinaten aus der Beleuchtung
des 3D-Objekts. Somit können Sie diese
Aufgabe der Hardware überlassen.
Wenn Sie zusätzlich zur Schattierung ei-
ne weitere Textur für Ihr 3D-Objekt
verwenden wollen, müssen Sie hierzu al-
lerdings auf die zweite Texturestage aus-
weichen. s E T

Interessantes zur 3D-Programmierung finden Sie
auf den folgenden Websites:
www.dachsbacher.de/pcu
viele freie 3D-Modelle
www.3dcafe.com
Sim Dietrich, NVidia Corporation
http://developer.nvidia.com/
view.asp?IO=Cartoon_Rendering_GeForce_256
Advanced Rendering Techniques Using OpenGL,
SIGGRAPH 99 Course Notes

SIE RENDERN die Flächen der Ameisen mit der Schattierung aus dem Bild auf S. 213.

