Non Photorealistic Rendering :

-
P]

Beethoven aus
und

Bringen Sie lhre Grafikkarte mit OpenGL dazu,
Bilder in Echtzeit darzustellen, die
aussehen. Die Grundlagen dazu lernen Sie

in diesem Artikel kennen!

CARSTEN DACHSBACHER

|

|

|

n den bisherigen PC-Underground- !

I Artikeln Uber 3D-Grafikprogram- |
mierung haben Sie sich immer |
bemiiht, mdglichst realistische Berech- |
nungen und Darstellungen durchzu- i
fiihren. Das Ziel ist es, die Realitét tref- |
fend nachzuahmen. Diesem Ziel streben |
Sie auch in dieser Ausgabe nach. Doch |
diesmal handelt es sich nicht um natirli- i
che Phanoméne, sondern um handge- !
zeichnete Grafiken, wie Sie sie aus Zei- |
chentrickfilmen (Cartoons) kennen. Da- |
mit steigen Sie in die Grundlagen des |
3D-Cartoon-Renderings ein. |
Das Cartoon-Rendering ist eines der !
Gebiete, die unter dem Begriff Non- |
Photorealistic Rendering (NPR) zusam- |
mengefasst werden. Andere Themen
von NPR sind, mit Hilfe von 3D-Hard- i
ware Schwarzweif3 zu illustrieren, den !
Eindruck von Wasserfarben zu vermit- |
teln oder Maltechniken mit Pinselstri- |
chen nachzuahmen. i
|

|

|

|

|

|

|

Die erste Technik, die wir Thnen hier
vorstellen, ist das so genannte Inking.
Dieser Begriff (ink: Tinte) bezeichnet,
wie Sie die Randlinien einer Comicfigur
oder eines Objekts bestimmen. Der Be-
griff Painting bezeichnet, wie Sie das
durch Linien begrenzte Innere flllen
oder farben. Damit folgt das Painting
dem Inking.

Mit diesen beiden Techniken kénnen
Sie herkdbmmliche 3D-Modelle darstel-
len, wie Sie sie mit Milkshape 3D, 3D-

Studio Max, Lightwave und anderen
Modelling-Programmen geschaffen ha-
ben. Das Resultat unseres Beispielpro-
gramms dieser Ausgabe kann sich sehen
lassen!

DAS CARTOON-Rendering-Verfahren
stellt die Beethoven-Buste vor.

Fir das Inking benétigen Sie auRer der
Liste der Knoten und Dreiecke des 3D-
Modells noch eine Liste mit allen Kan-
ten. Verwenden Sie folgende Daten-
strukturen flr ein 3D-Modell:

/I ein Knoten
typedef struct

GlLfloat x, Yy, z;
JWERTEX3D;

/I Flache (3 Indizes + Normale)
typedef struct

~ PC UNDERGROUND

PRAXIS

AUF CD

ol Die Quelltexte sowie die fertig tbersetzten

if _/'
- ——
2

|
=
|
|
|
|
I
|
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
I
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Routinen finden Sie unter Heft Add-ons/Pro-
grammierung/PC Underground.

GLint a, b, c;
VERTEX3D normal;
IFACE;

/I Kante
typedef struct
{

GLint a, b;

int boundary;

int poly[2];
}EDGE;

VERTEX3D *pVertexList;
VERTEX3D *pNormalList;
EDGE *pEdgelList;
EDGE *pRenderEdge;
FACE *pFacelList;

nVertices,
nFaces,
nEdges,
nRenderEdges;

int

Die pVertexList und die pFaceL.ist erhal-
ten Sie aus den Daten der 3D-Modelle.
Auf der Heft-CD finden Sie neben dem
Beispielprogramm, das diese Daten ein-
liest, einige 3D-Modelle im ASCII For-
mat. Sie berechnen selbst die Normalen
der Dreiecksflachen, der Knoten und die
Kantenliste. Beginnen Sie zundchst mit
den Dreiecksnormalen. Diese Routine
verwendet Uberladene Operatoren fiir
die Vektorrechnung, die Sie in der Datei
VERTEX3DOP.h finden:

for (i =0; i< nFaces; i++)

{
VERTEX3D *al, *a2, *a3;
VERTEX3D a, b;

/I Eckpunkte des Dreiecks

al=&pVertexList[pFaceList[i].a];
a2=&pVertexList[pFaceList[i].b];
a3=&pVertexList[pFaceList[i].c];

/I zwei Kanten des Dreiecks
a=*a2-*al;
b =*a3 - *al,

/I Normale durch Kreuzprodukt
/I der Kanten bestimmen

pFacelList[i].normal = a* b;

/l und normalisieren
~pFaceList[i].normal;

Die Normalen an den Vertices (Knoten)
erhalten Sie, indem Sie jeweils den Sum-
menvektor der Normalen aller Dreiecke
nehmen, an denen der betrachtete Ver-
tex beteiligt ist. Diesen Summenvektor
mussen Sie anschlieffend normalisieren:

for (i =0;i< nVertices;i++)
pNormalList[i].x =
pNormalList[i].y =
pNormalList[i].z = 0.0f;

for (i = 0;i< nFaces;i++)

{
pNormalList[pFaceList[i].a]+=
pFaceList[i].normal,
pNormalList[pFaceList[i].b]+=
pFacelList[i].normal;
pNormalList[pFaceList[i].c]+=

>

372002 PC Magazin 21

o-E]

PC UNDERGROUND
PRAXIS

pFaceList[i].normal;

for (i =0;i < nVertices; i++)
~pNormalList[i];

Als néchstes sind die Kanten des 3D-
Obijekts an der Reihe. Sie bendtigen eine
Liste, in der jede Kante nur einmal vor-
kommt. Eine Kante ist entweder eine
Randkante, oder sie wird von zwei Drei-
ecken geteilt. Diese Unterscheidung
werden Sie spater noch beno-
tigen, um festzustellen, welche Kan-
ten Sie beim Inking zeichnen.

Legen Sie zwei Kantenlisten an. Die
ers-te (pEdgeList) enthélt alle Kanten,
jede nur einmal. Die zweite Liste
(pRenderEdge) ist zu Beginn leer. In
dieser Liste werden fur jedes gerender-
te Bild die Kanten eingetragen, die beim
Inking gezeichnet werden sollen. Bauen
Sie wie folgt die Kantenliste auf:

/I genug Speicherplatz

pEdgeList =new EDGE[nFaces*3];
pRenderEdge =new EDGE[nFaces*3];
nEdges = 0;

/I Makro

#define ADDEDGE2LIST(pp,aa,bb)\
low =min(aa, bb);\
high = max(aa, bb); \
found = 0;\
for (j = 0; j < nEdges; j++)\

if (pEdgeList[j].a==low &&\
pEdgeList[j].b == high) \

{\

found = 1; break; \

N
if (!found)\
{\

pEdgeList[nEdges].a =low; \
pEdgeList[nEdges].b = high; \
pEdgeListnEdges].poly[0]=pp; \
pEdgeList[nEdges++].boundary=1; \
}else\
{\
pEdgeList(j].poly[1]=pp; \
pEdgelList[j].boundary ++; \

/I alle Kanten in die Liste
/I Gbernehmen

for (i=0;i<nFaces; i++)

int low, high, found, j;
ADDEDGE2LIST(i,
pFaceList[i].a,pFaceList[i].b);
ADDEDGE2LIST(|,
pFaceList[i].a,pFaceList[i].c);
ADDEDGE2LIST(|,
pFaceList[i].b,pFaceList[i].c);

An dieser Stelle haben Sie alle Vorberei-
tungen fiir die Daten getroffen, welche
der Kanten des 3D-Objekts (aus einer
bestimmten Perspektive betrachtet) fur

BEETHOVEN muss sich mit den Kanten des
Inking begnuigen.

das Inking wichtig sind. Diese Aufgabe
wird als Silhouette Edge Detection be-
zeichnet. AuRer der Silhouette des 3D-
Obijekts gibt es noch zwei weitere Arten
von Kanten, die fur die Darstellung rele-
vant sind: diejenigen, die sich am Rand
des Dreiecksnetzes befinden und solche,
an denen die Oberflache des Dreiecks-
gitters einen starken Knick hat.

Die Berechnungen der Silhouette sind
abhéngig von der Blickrichtung und Be-
trachterposition. Deshalb muissen Sie fiir

jedes Frame (jedes gerenderte Bild) neu
rechnen. Die Randkanten haben Sie be-
reits bestimmt, als Sie die Kanten aufge-
listet haben: Sie sind nur Teil eines Drei-
ecks. Diese Definition lasst sich erwei-
tern: Dazu legen Sie fest, dass es sich bei
einer inneren Kante (die Teil zweier
Dreiecke ist) um eine Randkante han-
delt. Das heifdt, dass die benachbarten
Dreiecke dort unterschiedliche Mate-
rialdefinitionen, Texturkoordinaten
oder Normalen besitzen. Diese Betrach-
tung ist spéter leicht in die Berechnung
einzubauen.

Die Kriterien fur eine Kante mit dem
Index i, die beim Inking zu zeichnen ist,
sind hier aufgefiihrt:

» Die Kante ist Randkante, dann ist
pEdgeList[i].boundary=1

» Handelt es sich um eine innere Kante,
dann ist

(pEdgeList[i].boundary=2)

Hier befindet sie sich an einem starkem
Knick der Oberflaiche. Der Winkel
Uberschreitet zwischen den Normalen
der benachbarten Dreiecke eine vorher
festgelegte Schwelle. Die Verweise auf
die Nachbardreiecke haben Sie in der
Kantenstruktur gespeichert.

» Die Kante ist Teil der Silhouette. Dann
ist pEdgeList[i].boundary= 2 und eine
der Normalen der benachbarten Drei-
ecke zeigt zum Betrachter hin, die ande-
re weg. FUr diese Berechnung benétigen
Sie die Blickrichtung des Betrachters.
Diese Information finden Sie bei
OpenGL in der Modelview Matrix. Hier
die Berechnungen in C-Syntax:

nRenderEdges = 0;
for (i=0; i < nEdges; i++)

int add2List = 0;

/l Randkante ?

BEETHOVEN mit den drei Rendering-Optionen unseres Beispielprogramms

212 PC Magazin 3/2002

if (pEdgeList[i].boundary ==1)
add2List = 1;

if (PEdgeList[i].boundary ==2)
/I Nachbardreiecke und Normalen

int p1 = pEdgeList[i].poly[0];
int p2 = pEdgeList[i].poly[1];
VERTEX3D
*nl = &pFaceList] p1].normal,
*n2 = &pFaceList] p2].normal;

/I Auf Knick in der Oberflache

/I prifen

/I Skalarprodukt ist Cosinus des

/I Winkels zwischen den Normalen

float dot=*nl**n2;

/1 0.4 ->arccos(0.4)=66 Grad

if (dot < 0.4f)
add2List = 1;

/I Kante der Silhoutte ?
/lein Vertex der Kante als Bezug

VERTEX3D *vertex =
&pVertexList[pEdgeList[i].a];

/I Blickrichtung !

float matrix[16];
glGetFloatv(
GL_MODELVIEW_MATRIX, matrix);

VERTEX3D viewVector;
viewVector.x = matrix[0+2];
viewVector.y = matrix[4+2];
viewVector.z = matrix[8+2];
~viewVector;

/I Test, ob unterschiedliche
/I Richtung der Normalen bzgl.
/I der Blickrichtung

float dotl = viewVector * *n1;
float dot2 = viewVector * *n2;

if((dot1*dot2) <= 0.00000001f)
add2List = 1;
}

/I Hinzufigen, wenn eins der
/I Kriterien erfullt ist

if (add2List)
pRenderEdge[nRenderEdges ++] =
pEdgeList[i];

Jetzt missen Sie die gewonnenen Ergeb-
nisse, also die Kanten, auf den Bild-
schirm bringen. Um die Linien, die nicht
sichtbar sein sollten, weil sie durch die
Oberflache des 3D-Objekts verdeckt
wadren, unsichtbar zu machen, zeichnen
Sie die Dreiecksflachen des Obijekts, al-
lerdings in der Hintergrundfarbe und
geringfligig vom Betrachter weg ver-
schoben. Wenn Sie die Flachen des Ob-
jekts einfarben wollen, kénnen Sie auch
jede andere Farbe wéhlen. Der Zweck
ist, den Z-Buffer (Tiefenpuffer) mit
Werten zu filllen, so dass Kanten auf der
Ruckseite des Objekts nicht gezeichnet
werden:
glDisable(GL_BLEND);

glDisable(GL_LIGHTING);
glColor3ub(255, 255, 255);

glEnable
(GL_POLYGON_OFFSET_FILL);
glPolygonOffset(1.0f, 5.0f);

glBegin(GL_TRIANGLES);
for (i=0;i<nFaces; i++)

FACE *f = &pFacelList[i];
glVertex3fv(&pVertexList[f->a]);
glVertex3fv(&pVertexList[f->b]);
glVertex3fv(&pVertexList[f->c]);

glEnd();

glDisable(GL_TEXTURE_2D);
glDisable
(GL_POLYGON_OFFSET_FILL);

Zeichnen Sie die Kanten. AuRerdem
sollten Sie, falls Sie den optionalen Anti-
Aliasing-Teil verwenden, nochmals ge-
sondert die Vertices als Punkte zeichnen.
So vermeiden Sie Liicken in den Linien-
zligen. Beachten Sie, dass das Anti-Alia-
sing auf <eren 3D-Karten eventuell
nicht unterstitzt wird — oder sehr lang-
sam ist.
Gleiches gilt Ubrigens auch fir den
Schalter GL_POLYGON_SMOOTH.
Diesen sollten Sie standardméafig mit gl-
Disable(...) ausschalten, weil Treiber wie
von GeForce diesen aktivieren. Mit dem
Code zeichnen Sie die Linien:

glDepthFunc(GL_LEQUAL);
/I Linienfarbe und -dicke wahlen

glColor3ub(0, 0,0);
glLineWidth(2);
glPointSize(2);

/I —optional—

/I anti-aliasing

glEnable(GL_BLEND);

glBlendFunc(GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA);

glEnable(GL_LINE_SMOOTH);

glEnable(GL_POINT_SMOOTH);

/I —optional ende—

glBegin(GL_LINES);
for (i = 0;i < nRenderEdges;i++)

EDGE *e = &pRenderEdge[i];
glVertex3fv(&pVertexList[e->a]);
glVertex3fv(&pVertexList[e->b]);

}
glEnd();

glDepthFunc(GL_LESS);
glBegin(GL_POINTS);
for (i = 0;i< nRenderEdges;i++)
{
EDGE *e = &pRenderEdge[i];
glVertex3fv
(&pVertexList[e->a);
glVertex3fv
(&pVertexList[e->b]);

}
glEnd();

Nun koénnen Sie die relevanten Kanten
herausfinden und zeichnen. Fillen Sie

PC UNDERGROUND
PRAXIS

im néchsten Schritt die Flachen aus.
Auch hier greift der Artikel eine wichti-
ge Methode von vielen heraus, um das
Non-Photorealistic Rendering zu pro-
grammieren. In Cartoons ist oft zu be-
obachten, dass die Oberflachen der Ob-
jekte zwar schattiert werden, aber nur
sehr wenige Farben zeigen, meist nur
zwei bis drei: eine fir im Schatten be-
findliche Teile, die Grundfarbe und
eventuell noch eine Farbe fir High-
lights.

Wie simulieren Sie diesen Effekt mit
lhrer 3D-Hardware? Die Beleuchtung
berechnen Sie selbst. Es genugt nicht,
wenn Sie die Farben der Flachen oder
Vertices bestimmen und an OpenGL
weitergeben. Verwenden Sie Flat-
shading, bekommt jedes Dreieck eine ei-
gene Farbe: Doch damit werden die
Dreiecksgrenzen selbst sichtbar. Oder
Sie verwenden Gouraud-Shading, wo-
mit Sie Farbuberldufe auf einzelnen
Dreiecken erhalten, obwohl Sie die Zahl

DIE SCHATTIERUNG der Oberflachen de-
finieren Sie mit einer einfachen Textur.

der Farben reduzieren wollten. Die L6-
sung liegt im Texture-Mapping. Legen
Sie in einem Bildbearbeitungsprogramm
Ihrer Wahl eine Textur an.

In dieser wenig spektakuldr wirken-
den Textur sehen Sie untereinander
waagrecht vier frei definierte Farbiber-
gange, die aus drei Farbstufen bestehen.
Sie kdnnen auch zwei oder mehr als drei
Farben verwenden. Damit berechnen Sie
die Beleuchtung fir jeden Vertex. Den
Helligkeitswert, den Sie erhalten, ver-
wenden Sie als Texture-Mapping-Koor-
dinate fur die waagrechte Komponente.
Die Farbe der Oberflache, also welchen
der Farbverlaufe Sie wollen, bestimmen
Sie mit der anderen, der vertikalen Kom-
ponente. Rendern Sie die Flachen des
3D-Modells statt einfarbig mit dieser
Textur. [>]

3/2002 PC Magazin 213

E«@

o-E]

PC UNDERGROUND
PRAXIS

SIE RENDERN die Flachen der Ameisen mit der Schattierung aus dem Bild auf S. 213.

Zunachst mussen Sie fur das 3D-Ob-
jekt eine weitere Liste speichern. Darin
speichern Sie die Texturkoordinaten:

float *pTexCoordList =
new float[2*nVertices];

Die Textur (auf der Heft-CD) laden Sie
Uber die PCUTexture-Wrapper-Klasse.
Damit laden Sie bmp-Dateien einfacher
als OpenGL Texturen:

PCUTexture *colors =
new PCUTexture();
colors->loadBMP(,texture.bmp*®);

Wenn Sie eine geladene Textur in
OpenGL verwenden wollen, wahlen Sie
sie mit colors->select() aus.

Sie berechnen die Beleuchtung, bevor
Sie die Dreiecke zeichnen. Dazu mussen
Sie die Normalen der Vertices aus dem
Obijectspace (das lokale Koordinaten-
system des 3D-Modells) in den World-
space transformieren. Der Worldspace
ist das Koordinatensystem, in dem alle
3D-Modelle und der Betrachter platziert
werden. Diese Transformation nehmen
Sie mit der inversen Matrix zur Model-
view Matrix vor. AnschlieBend berech-
nen Sie den Helligkeitswert eines Vertex
aus dem Skalarprodukt der transfor-
mierten Normalen und einer festgeleg-
ten Lichtrichtung.

MATRIX44 modelview, invmodel;
/I Matrix holen...

glGetFloatv(
GL_MODELVIEW_MATRIX, modelview);

/I ... und invertieren

InverseMatrixAnglePreserving(
modelview, invmodel);

/I Beleuchtungsberechnung
for (i=0; i< nVertices; i++)

/I Normale holen

214 PC Magazin 3,/2002

VERTEX3D *n = &pNormalList[i];
/I in Worldspace transformieren

VERTEX3D tn;

tn.x=*n * *(VERTEX3D*)
&invmodel[0];

tn.y=*n * *(VERTEX3D*)
&invmodel[4];

tn.z=*n * *(VERTEX3D*)
&invmodel[8];

~tn;

/I Lichtrichtung

VERTEXA3D lightDir =
{0.0f,1.0f,1.0f};

/I normalisieren

~lightDir;

/I Helligkeit berechnen
float light = lightDir * tn;

if (light <0.1)
light = 0.1f;

if (light > 0.9f)
light = 0.9f;

/I Texturekoordinaten speichern
/I Helligkeit

pTexCoordList[i*2+0] = light;
/I Farbverlauf wéahlen

pTexCoordList[i*2+1]=texOffset;

Aktivieren Sie das Textur-Mapping, um
die Dreiecke zu zeichnen, und Uberge-
ben Sie die Texturkoordinaten an
OpenGL:

glEnable(GL_TEXTURE_2D);
colors->select();

glBegin(GL_TRIANGLES);
for (i=0; i< nFaces; i++)

{
FACE *f = &pFaceList[i];
glTexCoord2fv
(&pTexCoordList[f->a*2]);
glVertex3fv
(&pVertexList[f->a]);
glTexCoord2fv
(&pTexCoordList[f->b*2]);
glVertex3fv

(&pVertexList[->b]);
glTexCoord2fv

(&pTexCoordList[f->c*2]);
glVertex3fv

(&pVertexList[f->c]);

glEnd();

glDisable(GL_TEXTURE_2D);

Die Techniken, die Sie in diesem Artikel
kennengelernt haben, bilden die Grund-
lage fiir das Inking und Painting.

Das auf Kanten basierende Inking ist
eine Software-Losung und daher por-
tierbar. Die Kantendetektion der
Silhouette ist von jedem Blickwinkel aus
betrachtet korrekt. Die Schwelle fir
Knicke der Oberflache ist frei wahlbar.
Die 3D-Hardware macht mit ihrem Z-
Buffer die Kanten fiir Sie sichtbar. Der
Nachteil ist der betréchtliche Rechen-
aufwand, der erforderlich ist, um die
Kanten zu bestimmen.

Einen ganz anderen Ansatz verfolgt
die nachste Technik, die Sie in Cartoon
Rendering von Sim Dietrich finden. Sie
erhalten das Dokument unter der URL
http://developer.nvidia.com/view.asp?
IO=Cartoon Rendering GeForce 256

Das Verfahren berechnet mit der
Hardware fir jeden Pixel das Skalarpro-
dukt aus der Normalen des Pixels und
der Viewspace Position. Mit Hilfe einer
gewahlten Schwelle lasst sich feststellen,
ob ein Pixel zur Silhouette gehort.

Der Vorteil dieser Methode liegt im
Geschwindigkeitsgewinn, also einer
besseren Performanz auf der heutigen
3D-Hardware. Die Darstellung ist aber
weniger genau. Um Knicke in der Ob-
jektoberflache zu gestalten, bedarf es
aufwandiger Rechenverfahren.

Sie berechnen mit Vertex-Shadern
Texturkoordinaten aus der Beleuchtung
des 3D-Objekts. Somit kénnen Sie diese
Aufgabe der Hardware Uberlassen.
Wenn Sie zusétzlich zur Schattierung ei-
ne weitere Textur fur Ihr 3D-Objekt
verwenden wollen, missen Sie hierzu al-
lerdings auf die zweite Texturestage aus-
weichen. ET

Interessantes zur 3D-Programmierung finden Sie
auf den folgenden Websites:
www.dachsbacher.de/pcu

viele freie 3D-Modelle

www.3dcafe.com

Sim Dietrich, NVidia Corporation
http://developer.nvidia.com/
view.asp?l0=Cartoon Rendering GeForce 256
Advanced Rendering Techniques Using OpenGL,
SIGGRAPH 99 Course Notes

