o-E]

PC UNDERGROUND
PRAXIS

Cube Mapping mit OpenGL

e\
\
2

; /f Die Quelltexte sowie die fertig ibersetzten
Routinen finden Sie im Verzeichnis Heft Add-
ons/Programmierung/PC Underground.

Im Spiegel

Berechnende Hardware: Eine NVidia-GeForce-256/2/3 oder ATI-Radeon-

Grafikkarte zaubert Spiegelungen

auf den Bildschirm.

CARSTEN DACHSBACHER

ie modernen Grafikkarten wie
D NVidia GeForce 256, GeForce
2, GeForce 3 und ATl Radeon
verlagern die Berechnung immer kom-
plexerer Funktionen in die Hardware
und entlasten so die Hauptprozessoren.
Zu diesen Funktionen zéhlen vor allem
die Geometrietransformation und die
Beleuchtungsberechnung. Texturkoor-
dinaten generieren weitere Aufgaben,
die die Grafik-Hardware tbernimmt.
Dieses Feature und die Cube Maps ver-
wenden Sie, um Spiegelungen zwischen
zwei 3D-Objekten und der umgeben-
den 3D-Szene darzustellen.
Environment Mapping (auch Reflec-
tion Mapping) ist eine Texturierungsme-
thode, die den Anschein erweckt, als spie-
gele sich die umgebende 3D-Szene auf
der Oberflache eines 3D-Objekts. Beim
Texture Mapping sind einem Dreieck
feste Texturkoordinaten zugewiesen.
Das Environment Mapping berechnet
die Texturkoordinaten fiir jeden Vertex.

Fur die Berechnung sind die Ober-
flachennormale, die Blickrichtung des
Betrachters und die Environment-Map-
ping-Technik ausschlaggebend. Die Be-
rechnungen variieren von Technik zu
Technik. Genauso verhdlt es sich mit
den Anforderungen an die Daten, den
Environment-Texturen. Diese sollen die
umgebende 3D-Szene enthalten.

Spherical Environment Mapping ist die
momentan wahrscheinlich am meisten
verwendete Technik, welche die meisten
3D-Beschleuniger unterstiitzen. Die
Umgebung wird hierbei in einer einzi-
gen Textur représentiert. Eine exempla-
rische Spheremap sehen Sie im Bild un-
ten.

Etwas Uber 20 Prozent der Flache, der
schwarze Bereich der Textur, werden
nicht genutzt. Weil beim Sphere Map-
ping eine Kugel auf einer Ebene darge-
stellt wird, treten Verzerrungen auf.
Daraus folgt, dass das Verhaltnis aus der

UNSER BEISPIELPROGRAMM zeigt zwei spiegelnde Kugeln.

206 PC Magazin 4,/2002

OpenGL

Flache eines Pixels in der Spheremap
und dem reprasentierten Winkelbereich
in der Spiegelung nicht konstant ist, son-
dern variiert, was Aliasing-Effekte her-
vorruft.

Von Vorteil sind die gute Unterstiit-
zung durch die Hardware und die Gra-
fik-APls. Sie bendtigen beim Sphere
Mapping nur eine einzige Textur, um die
Spiegelung der Umgebung darzustellen.
Spheremaps sind immer vom Betrach-
terstandpunkt und der -blickrichtung
abhéngig (view-dependent). Weil Sie da-
bei Verzerrungen einkalkulieren mus-
sen, ist es nicht einfach, dynamische
Spheremaps zu generieren.

Im Gegensatz zu Spheremaps sind Dual
Paraboloid Maps view-independent: Sie
kdnnen sie einmal fur die 3D-Szene ge-
nerieren und den Betrachter frei bewe-
gen. Aul3erdem gibt es weitaus weniger
Verzerrungen als auf einer Spheremap.
Ein Manko haben beide: Etwa 25 Pro-
zent der Flache bleiben ungenutzt.

Das Dual Paraboloid Mapping
bendtigt entweder Dual Texturing, wo-
bei der 3D-Beschleuniger zwei Texturen
gleichzeitig verwenden muss, oder die
spiegelnden Oberflachen missen zwei-
mal gerendert werden. Der Aufwand ist
gering, denn das Environment-Map-
ping-Verfahren, das Sie in dieser Ausga-
be einsetzen, stellt weit h6here Anforde-
rungen an die 3D-Hardware.

Dual Paraboloid Maps kdnnen aller-
dings nur schwer eine dynamische 3D-
Szene gespiegelt darstellen, da die Gene-
rierung der Maps etwas aufwéndiger ist.

Das Cube Environment Mapping ist das
Verfahren unserer Wahl. Es wird seit der
Einfihrung des NVidia-GeForce-256-

Grafikchips unterstiitzt. Hierbei pré-
sentiert sich die umgebende 3D-Szene in
sechs Texturen.

Der Vorteil: Die 3D-Hardware kann
diese sechs Texturen zusammen adres-
sieren. Sie mussen also keine speziellen
Environment-Texturen berechnen. Die
Verzerrungen, die beim Rendering auf-
treten, sind Kleiner als bei den Dual Pa-
raboloid Maps.

Stellen Sie sich die sechs Texturen ei-
ner Cubemap als einen Wurfel vor, der
aufgefaltet um den Koordinatenur-
sprung liegt. Jedes Texel (Pixel einer
Textur) reprasentiert den Teil der Um-
gebung, der vom Ursprung aus in dieser
Richtung sichtbar ist. Vereinfachend
nimmt man an, dass die Cubemaps von
einem Punkt aus berechnet werden, und
die Umgebung unendlich weit entfernt
ist. Da diese Annahme nicht realisierbar
ist, sind die Spiegelungen fiir nahe Ob-
jekte nicht exakt. Aber die Abweichun-
gen sind akzeptabel, wovon Sie sich im
Beispielprogramm Uberzeugen kénnen.

Um Cubemaps zu berechnen, platzie-
ren Sie eine Kamera in der Mitte des spie-
gelnden 3D-Objekts und rendern sechs-
mal die 3D-Szene ohne das spiegelnde
Objekt — je eines entlang der positiven
und negativen x-, y- und z-Achse.

Ein Teil der OpenGL-API unter-
stitzt Cubemapping, was neuere Gra-
fikkartentreiber bericksichtigen. Des-
halb sollten Sie vorerst prifen, ob der
Treiber die verwendeten Fahigkeiten be-
herrscht. AuRerdem bendtigen Sie die
aktuellen OpenGL-Extension-Header
(glext.h), die Sie beim Quelltext des Bei-
spielprogrammes finden.

Fur das Cubemapping verwenden Sie
die GL_ARB_texture_cube_map oder
die GL_NV_texgen_reflection-Extensi-
on. So prifen Sie die Fahigkeiten der
Treiber:

char *extensions;
extensions = strdup((char*)
glGetString(GL_EXTENSIONS));
for (unsigned inti=0;
i < strlen(extensions); i ++)
if (extensions[i]=="")
extensions[i] ="\n’;

if (strstr(extensions,
.GL_ARB_texture_cube_map"“) ||

strstr(extensions,
,GL_NV_texgen_reflection“))

/I Extensions unterstutzt

}

Unterstitzt ein Treiber auch die Erwei-
terung GL_SGIS_generate_mipmap,
kdnnen Sie diese verwenden. Damit er-

sparen Sie es sich, die Mipmaps fur Tex-
turen manuell aufzubauen, was vor al-
lem fUr dynamisch generierte Texturen
von Nutzen ist.

Wenn die Abfrage der Extensions er-
folgreich verlaufen ist, beginnen Sie da-
mit, die Cubemaps anzulegen. Durch
die Cubemap-Extension ist auch ein
neues Textur-Target definiert.

Beim Basis OpenGL gibt es ein- und
zwei-dimensionale Texturen, deren
Textur-Targets als GL_TEXTURE_1D
und GL_TEXTURE_2D definiert sind.
Diese Targets geben Sie an, um beim
Texture Mapping Parameter zu setzen.
Das neu definierte Target heil3t

JEDER FARBBEREICH der Spheremap re-
prasentiert eine Blickrichtung entlang der
Koordinatenachsen +x,-x,+y,-y,+z,-z.

GL_TEXTURE_CUBE_MAP_ARB.
Sonst legen Sie die Textur so an, wie Sie
es von OpenGL gewohnt sind:

GLuint texture;
glEnable
(GL_TEXTURE_CUBE_MAP_ARB);
glGenTextures(1, &texture);
glBindTexture
(GL_TEXTURE_CUBE_MAP_ARB,
texture);

Sofern der Treiber die automatische Ge-
nerierung der Mipmaps unterstitzt, ver-
wenden Sie am besten folgende Parame-
ter:

glTexParameteri
(GL_TEXTURE_CUBE_MAP_ARB,
GL_TEXTURE_MIN_FILTER,
GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri
(GL_TEXTURE_CUBE_MAP_ARB,
GL_TEXTURE_MAG_FILTER,
GL_LINEAR);
glTexParameteri
(GL_TEXTURE_CUBE_MAP_ARB,
GL_GENERATE_MIPMAP_SGIS,
GL_TRUE);

Anderenfalls kdnnen Sie auf das Mip-
mapping verzichten und schalten die bi-
lineare Filterung ein:

glTexParameteri
(GL_TEXTURE_CUBE_MAP_ARB,

PC UNDERGROUND
PRAXIS

GL_TEXTURE_MIN_FILTER,
GL_LINEAR);
glTexParameteri
(GL_TEXTURE_CUBE_MAP_ARB,
GL_TEXTURE_MAG_FILTER,
GL_LINEAR);

Als ndchstes konnen Sie Daten in die
Texturen kopieren. Denken Sie daran,
dass Sie mit einem Aufruf von gIBind-
Texture(...) sechs Texturen auswahlen.
Auf die einzelnen Texturen greifen Sie
mit den Konstanten im Array cubeMap-
Constants[] zu:
GLuint cubeMapConstants[6 | =

{
GL_TEXTURE_CUBE_MAP
0_POSITIVE_X_ARB,
GL_TEXTURE_CUBE_MAP
0 _NEGATIVE_X_ARB,
GL_TEXTURE_CUBE_MAP
O POSITIVE_Y_ARB,
GL_TEXTURE_CUBE_MAP
0 _NEGATIVE_Y_ARB,
GL_TEXTURE_CUBE_MAP
O _POSITIVE_Z_ARB,
GL_TEXTURE_CUBE_MAP
O NEGATIVE _Z ARB

h
for (inti=0;i<6;i++)
glTeximage2D(
cubeMapConstants[i],0,GL_RGBS,
CUBEMAPSIZE, CUBEMAPSIZE,
0, GL_RGB, GL_UNSIGNED_BYTE,
DatenPtr);

AbschlieBend mussen Sie OpenGL
noch mitteilen, dass es die Texturkoor-
dinaten aus der Betrachterposition, -
blickrichtung und Oberflaéchennorma-
len fur das Cubemapping berechnen
soll. Dazu gibt es eine spezielle Erweite-
rung, die GL_REFLECTION_MAP_
ARB-Methode, die Sie mit folgenden
Zeilen einbinden:
glTexGeni(GL_S,
GL_TEXTURE_GEN_MODE,
GL_REFLECTION_MAP_ARB);
glTexGeni(GL_T,
GL_TEXTURE_GEN_MODE,
GL_REFLECTION_MAP_ARB);
glTexGeni(GL_R,

GL_TEXTURE_GEN_MODE,
GL_REFLECTION_MAP_ARB);

Berechnen Sie die Cubemaps fur eine
dynamische 3D-Szene und ein bewegli-
ches spiegelndes Objekt. Untersuchen
Sie die Hauptschleife des Renderings der
3D-Szene. Der wichtige Punkt ist die
Abfolge der Transformationen (Ver-
schiebungen und Rotationen). Zunéchst
platzieren Sie das spiegelnde Objekt,
hier eine Kugel, und initialisieren Sie die

Projektionsmatrix:
/I Berechnung der Position
spherePos.x = ...;
spherePos.y = ...;
spherePos.z = ...; (>}

4,2002 PC Magazin 207

@«@

PC UNDERGROUND

PRAXIS

glMatrixMode(GL_PROJECTION);
glLoadldentity();
gluPerspective

(70, aspectRatio, 1, 5000);

glMatrixMode(GL_MODELVIEW);
glLoadldentity();

Verwenden Sie als Transformationen in
der Modelview-Matrix zwei Rotationen
und eine Translation:

glRotatef

(xangle, 1.0f, 0.0f, 0.0f);
glTranslatef(0, 30, 0);
glRotatef

(zangle, 0.0f, 0.0f, 1.0f);

An dieser Stelle zeichnen Sie das spie-
gelnde Objekt. Der Einfachkeit halber
verwenden Sie eine Kugel, deren Geo-
metrie die Funktionen der GLUT-BI-
bliothek darstellen kann. Diese Kugel
kodnnen Sie durch ein beliebiges 3D-Ob-
jekt ersetzen, Sie missen lediglich das
Dreiecksnetz inklusive der Normalen
der Vertices Ubergeben.

Zuerst das Setup des Texture Map-
ping:

/I Cubemapping aktivieren

glEnable

(GL_TEXTURE_CUBE_MAP_ARB);

/l und Cubemap wahlen

glBindTexture

(GL_TEXTURE_CUBE_MAP_ARB,
cubeMap);

glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
glEnable(GL_TEXTURE_GEN_R);

Jetzt kommt der wichtige Teil mit der
Umkehrung der Modelview-Transfor-
mationen, damit Sie Texturkoordinaten
korrekt berechnen kénnen:

glMatrixMode(GL_MODELVIEW);

glPushMatrix();

/I 3D-Szene bzgl. spiegelnden

/I Objekts verschieben:

glTranslatef

('spherePos.x, spherePos.y,
spherePos.z);

glMatrixMode(GL_TEXTURE);
glPushMatrix();

/I Rotationen riickgéngig machen
glRotatef

(-zangle, 0.0f, 0.0f, 1.0f);
glRotatef

(-xangle, 1.0f, 0.0f, 0.0f);

/I 3D-Objekt zeichnen
glutSolidSphere(SPHERE_SIZE,
SPHERE_SUBDIVX, SPHERE_SUBDIVY);

glPopMatrix();

Nach dem Zeichnen des Objekts
rdumen Sie den Matrix Stack wieder
auf und deaktivieren die Texturko-
ordinaten-Generierung. Anschlie-
fend zeichnen Sie den Rest der 3D-
Szene:

glMatrixMode(GL_MODELVIEW);
glPopMatrix();

208 PC Magazin 4,/2002

glDisable(GL_TEXTURE_GEN_S);
glDisable(GL_TEXTURE_GEN_T);
glDisable(GL_TEXTURE_GEN_R));

Diese Ausrichtung fassen folgende Zei-
len zusammen:

) float cubeMapRotation[6][4] =
/I Rest der 3D-Szene zeichnen

{-90,0,1,0},
renderScene(); {90,0,1,0},
{-90,1,0,0},
{90,1,0,0},
Sie bendtigen noch eine Cube-Environ- Hgg: éj 8; (H
ment-Map fir Ihr spiegelndes Objekt, J5
die die aktuelle 3D-Szene aus der Sicht glRotatef(

des Objekts enthdlt. Eine Cubemap

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

1

| cubeMapRotation[i][0],
konnen Sie leichter als jede andere Envi- |

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

cubeMapRotation[i][1],
cubeMapRotation[i][2],

ronment-Map generieren. cubeMapRotation[i][3]):

Sie platzieren die OpenGL-Kamera
und richten sie aus, rendern die 3D-Sze-
ne und kopieren das Resultat in die
Cubemap. Diese Schritte sehen Sie an
Hand von Codezeilen. Die Berechnung
der Cubemap rufen Sie am besten vor
der Render-Hauptschleife auf, die Sie
zuvor gesehen haben. Legen Sie die
GroRe der gerenderten Cubemap-Seite
fest, die der GroRe entspricht, die Sie bei

if(i<2)
glRotatef
(180.0f, 0.0f, 0.0f, 1.0f);

Verschieben Sie den Mittelpunkt der
Kugel in den Ursprung —somit auch den
Rest der 3D-Szene — und zeichnen Sie
diese:

glTranslatef(-spherePos.x,
-spherePos.y, -spherePos.z);

DIE AUFTEILUNG der spiegelnden 3D-Szene bei den Dual Paraboloid Maps.

der Initialisierung gewahlt haben. An- renderScene();

schlieRend setzen Sie die Parameter der
Projektion. Verwenden Sie einen Kame-
radffnungswinkel von 90 Grad. Andern-
falls enthalten die Cubemaps nicht die

Damit kénnen Sie einen Teil der Cube-
map aus dem Framebuffer von OpenGL
in die Textur kopieren. Der glFlush(...)-
Befehl stellt sicher, dass das Rendern ab-

gesamte, umgebende 3D-Szene. geschlossen ist, bevor der Kopiervor-
/I GroRe festlegen gang beginnt:
glViewport glEnable
(0,0,CUBEMAPSIZE,CUBEMAPSIZE); (GL_TEXTURE_CUBE_MAP_ARB):

glFlush();
gIBindTexture

(GL_TEXTURE_CUBE_MAP_ARB,
cubemap);

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l
/I Projektion |
glMatrixMode(GL_PROJECTION); !
glLoadldentity(); I
gluPerspective(90, 1.0f,1,500); |
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

glCopyTexSublmage2D(
cubeMapConstants
[i1,0,0,0,0,0,
CUBEMAPSIZE, CUBEMAPSIZE);

gIMatrixMode(GL_MODELVIEW);

/I fuir jede Richtung
for(inti=0;i<6;i++)
glFlush();

glDisable
(GL_TEXTURE_CUBE_MAP_ARB);

{
glClear(GL_COLOR_BUFFER_BIT |
GL_DEPTH_BUFFER_BIT);
glLoadldentity();
Richten Sie die Kamera entlang der Ko-
ordinatenachsen +x, -x, +y, -y, +z, -z aus.

Im Beispielprogramm zu dieser Ausga-
be haben wir es nicht bei einem einzel-

nen spiegelnden Objekt belassen. Statt-
dessen sehen Sie zwei Kugeln, in denen
sich die Umgebung und die jeweils an-
dere Kugel spiegelt. In der Hauptschlei-
fe des Rendering macht es keinen Un-
terschied, ob Sie eines oder mehrere Ob-
jekte mit Cubemapping darstellen.

Wie lassen sich dynamische Cubemaps
generieren? Wie Sie in der Hauptschlei-
fe sehen, mussen Sie die Transformatio-
nen der Modelview-Matrix riickgéngig
machen. Genauso mussen Sie das fur die
Ausrichtung der Kamera beim Rende-
ring der Cubemaps vornehmen. Wenn
Sie weitere Objekte mit Cubemap-Spie-
gelungen haben, fligen Sie an der Stelle
des renderScene()-Aufrufs folgende Zei-
len ein:

DIE CUBE ENVIRONMENT MAP
besteht aus sechs Einzeltexturen.

gIMatrixMode(GL_TEXTURE);
glPushMatrix();
if(i<2)

glRotatef

(-180.0f, 0.0f, 0.0f, 1.0f);

glRotatef(
-cubeMapRotation[i][0],
cubeMapRotation[i][1],
cubeMapRotation[i][2],
cubeMapRotation[i][3]);

/I Cubemapping anschalten

gIMatrixMode(GL_MODELVIEW);
glPushMatrix();

glTranslatef(spherePos2.x,
spherePos2.y, spherePos2.z);
glutSolidSphere(SPHERE_SIZE,
SPHERE_SUBDIVX, SPHERE_SUBDIVY);

gIMatrixMode(GL_MODELVIEW);
glPopMatrix();

/I Cubemapping ausschalten
})Isauber hinterlassen!

gIMatrixMode(GL_TEXTURE);
glPopMatrix();

Fir jedes erzeugte Bild wird die gesam-
te 3D-Szene 13-mal gerendert: je sechs-

mal fur jede Cubemap und einmal fir
das endgultige Bild. Reduzieren Sie die-
sen Aufwand.

e Fir Cubemap-Texturen gentgen
deutlich Kleinere Auflésungen als die
Bildschirmauflosungen. So lassen sich
mit 64 x 64 Pixeln pro Cubemap (also
insgesamt 64 x 64 x 6=24576 Pixel) sehr
gute Resultate erreichen. Eine Auflo-
sung von 128 x 128 Pixeln geniigt fur die
meisten Anwendungen.

» Aktualisieren Sie die Cubemaps nicht
beim Rendern jedes einzelnen Bildes. Im
Beispielprogramm erkennen Sie nicht,
dass die Cubemap des einen Objekts nur
bei jedem Bild mit
einer geraden
Nummer und die
des anderen bei
ungeraden Num-
mern neu berech-
net wird. Somit

wird die 3D-Sze-
ne fur jedes end-
gultige Bild nur
noch siebenmal
gerendert. Far
komplexe 3D-
Szenen bietet sich
aulRerdem an, die
Geometrie der umgebenden Szene flr
die Spiegelung mit groberen 3D-Netzen
Zu représentieren, was den Polygon-
durchsatz niedriger halt.

Cubemaps kdnnen Sie fiir viele Effek-
te, wie die Beleuchtungsberechnung
oder als eine Art Lookup-Tabelle fur die
Vektornormalisierung einsetzen. Uber
das Dot-Product-Bumpmapping be-
richtet Heft 7/01, ab S. 226. Weitere
Beispiele finden Sie auf den Webseiten
von NVidia (www.nvidia.com) und ATI

(www.ati.com). ET

Quellen:

www.dachsbacher.de/pcu
http://developer.nvidia.com/
www.ati.com/na/pages/resource_centre/dev
rel/devrel.html

»Advanced Rendering Techniques Using OpenGL",
SIGGRAPH 99 Course Notes
www.opengl.org/developers/code/sig99/index.
html

4,/2002 PC Magazin 209

