
P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R

Die modernen Grafikkarten wie
NVidia GeForce 256, GeForce
2, GeForce 3 und ATI Radeon

verlagern die Berechnung immer kom-
plexerer Funktionen in die Hardware
und entlasten so die Hauptprozessoren.
Zu diesen Funktionen zählen vor allem
die Geometrietransformation und die
Beleuchtungsberechnung. Texturkoor-
dinaten generieren weitere Aufgaben,
die die Grafik-Hardware übernimmt.
Dieses Feature und die Cube Maps ver-
wenden Sie, um Spiegelungen zwischen
zwei 3D-Objekten und der umgeben-
den 3D-Szene darzustellen.

Environment Mapping (auch Reflec-
tion Mapping) ist eine Texturierungsme-
thode, die den Anschein erweckt, als spie-
gele sich die umgebende 3D-Szene auf
der Oberfläche eines 3D-Objekts. Beim
Texture Mapping sind einem Dreieck
feste Texturkoordinaten zugewiesen.

Das Environment Mapping berechnet
die Texturkoordinaten für jeden Vertex.

Für die Berechnung sind die Ober-
flächennormale, die Blickrichtung des
Betrachters und die Environment-Map-
ping-Technik ausschlaggebend. Die Be-
rechnungen variieren von Technik zu
Technik. Genauso verhält es sich mit
den Anforderungen an die Daten, den
Environment-Texturen. Diese sollen die
umgebende 3D-Szene enthalten.

■ Spherical Environment
Mapping
Spherical Environment Mapping ist die
momentan wahrscheinlich am meisten
verwendete Technik, welche die meisten
3D-Beschleuniger unterstützen. Die
Umgebung wird hierbei in einer einzi-
gen Textur repräsentiert. Eine exempla-
rische Spheremap sehen Sie im Bild un-
ten.

Etwas über 20 Prozent der Fläche, der
schwarze Bereich der Textur, werden
nicht genutzt. Weil beim Sphere Map-
ping eine Kugel auf einer Ebene darge-
stellt wird, treten Verzerrungen auf.
Daraus folgt, dass das Verhältnis aus der

Fläche eines Pixels in der Spheremap
und dem repräsentierten Winkelbereich
in der Spiegelung nicht konstant ist, son-
dern variiert, was Aliasing-Effekte her-
vorruft.

Von Vorteil sind die gute Unterstüt-
zung durch die Hardware und die Gra-
fik-APIs. Sie benötigen beim Sphere
Mapping nur eine einzige Textur, um die
Spiegelung der Umgebung darzustellen.
Spheremaps sind immer vom Betrach-
terstandpunkt und der -blickrichtung
abhängig (view-dependent). Weil Sie da-
bei Verzerrungen einkalkulieren müs-
sen, ist es nicht einfach, dynamische
Spheremaps zu generieren.

■ Dual Paraboloid Maps
Im Gegensatz zu Spheremaps sind Dual
Paraboloid Maps view-independent: Sie
können sie einmal für die 3D-Szene ge-
nerieren und den Betrachter frei bewe-
gen. Außerdem gibt es weitaus weniger
Verzerrungen als auf einer Spheremap.
Ein Manko haben beide: Etwa 25 Pro-
zent der Fläche bleiben ungenutzt.

Das Dual Paraboloid Mapping
benötigt entweder Dual Texturing, wo-
bei der 3D-Beschleuniger zwei Texturen
gleichzeitig verwenden muss, oder die
spiegelnden Oberflächen müssen zwei-
mal gerendert werden. Der Aufwand ist
gering, denn das Environment-Map-
ping-Verfahren, das Sie in dieser Ausga-
be einsetzen, stellt weit höhere Anforde-
rungen an die 3D-Hardware.

Dual Paraboloid Maps können aller-
dings nur schwer eine dynamische 3D-
Szene gespiegelt darstellen, da die Gene-
rierung der Maps etwas aufwändiger ist.

■ Cube Environment
Mapping
Das Cube Environment Mapping ist das
Verfahren unserer Wahl. Es wird seit der
Einführung des NVidia-GeForce-256-

206 PC Magazin 4/2002

Cube Mapping mit OpenGL

Kugeln im Spiegel
Berechnende Hardware: Eine NVidia-GeForce-256/2/3 oder ATI-Radeon-
Grafikkarte zaubert Spiegelungen mit wenigen Programmzeilen OpenGL
auf den Bildschirm.

AUF CD 1
Die Quelltexte sowie die fertig übersetzten

Routinen finden Sie im Verzeichnis Heft Add-
ons/Programmierung/PC Underground.

UNSER BEISPIELPROGRAMM zeigt zwei spiegelnde Kugeln.

P C U N D E R G R O U N D
P R A X I S

Grafikchips unterstützt. Hierbei prä-
sentiert sich die umgebende 3D-Szene in
sechs Texturen.

Der Vorteil: Die 3D-Hardware kann
diese sechs Texturen zusammen adres-
sieren. Sie müssen also keine speziellen
Environment-Texturen berechnen. Die
Verzerrungen, die beim Rendering auf-
treten, sind kleiner als bei den Dual Pa-
raboloid Maps.

Stellen Sie sich die sechs Texturen ei-
ner Cubemap als einen Würfel vor, der
aufgefaltet um den Koordinatenur-
sprung liegt. Jedes Texel (Pixel einer
Textur) repräsentiert den Teil der Um-
gebung, der vom Ursprung aus in dieser
Richtung sichtbar ist. Vereinfachend
nimmt man an, dass die Cubemaps von
einem Punkt aus berechnet werden, und
die Umgebung unendlich weit entfernt
ist. Da diese Annahme nicht realisierbar
ist, sind die Spiegelungen für nahe Ob-
jekte nicht exakt. Aber die Abweichun-
gen sind akzeptabel, wovon Sie sich im
Beispielprogramm überzeugen können.

Um Cubemaps zu berechnen, platzie-
ren Sie eine Kamera in der Mitte des spie-
gelnden 3D-Objekts und rendern sechs-
mal die 3D-Szene ohne das spiegelnde
Objekt – je eines entlang der positiven
und negativen x-, y- und z-Achse.

■ Cubemapping in OpenGL
Ein Teil der OpenGL-API unter-

stützt Cubemapping, was neuere Gra-
fikkartentreiber berücksichtigen. Des-
halb sollten Sie vorerst prüfen, ob der
Treiber die verwendeten Fähigkeiten be-
herrscht. Außerdem benötigen Sie die
aktuellen OpenGL-Extension-Header
(glext.h), die Sie beim Quelltext des Bei-
spielprogramms finden.

Für das Cubemapping verwenden Sie
die GL_ARB_texture_cube_map oder
die GL_NV_texgen_reflection-Extensi-
on. So prüfen Sie die Fähigkeiten der
Treiber:

char *extensions;
extensions = strdup((char*)

glGetString(GL_EXTENSIONS));
for (unsigned int i = 0;
i < strlen(extensions); i ++)

if (extensions[i] == ‘ ‘)
extensions[i] = ‘\n’;

if (strstr(extensions,
„GL_ARB_texture_cube_map“) ||

strstr(extensions,
„GL_NV_texgen_reflection“))

{
// Extensions unterstützt
}

Unterstützt ein Treiber auch die Erwei-
terung GL_SGIS_generate_mipmap,
können Sie diese verwenden. Damit er-

sparen Sie es sich, die Mipmaps für Tex-
turen manuell aufzubauen, was vor al-
lem für dynamisch generierte Texturen
von Nutzen ist.

Wenn die Abfrage der Extensions er-
folgreich verlaufen ist, beginnen Sie da-
mit, die Cubemaps anzulegen. Durch
die Cubemap-Extension ist auch ein
neues Textur-Target definiert.

Beim Basis OpenGL gibt es ein- und
zwei-dimensionale Texturen, deren
Textur-Targets als GL_TEXTURE_1D
und GL_TEXTURE_2D definiert sind.
Diese Targets geben Sie an, um beim
Texture Mapping Parameter zu setzen.
Das neu definierte Target heißt

GL_TEXTURE_CUBE_MAP_ARB.
Sonst legen Sie die Textur so an, wie Sie
es von OpenGL gewohnt sind:

GLuint texture;
glEnable

(GL_TEXTURE_CUBE_MAP_ARB);
glGenTextures(1, &texture);
glBindTexture

(GL_TEXTURE_CUBE_MAP_ARB,
texture);

Sofern der Treiber die automatische Ge-
nerierung der Mipmaps unterstützt, ver-
wenden Sie am besten folgende Parame-
ter:

glTexParameteri
(GL_TEXTURE_CUBE_MAP_ARB,

GL_TEXTURE_MIN_FILTER,
GL_LINEAR_MIPMAP_LINEAR);

glTexParameteri
(GL_TEXTURE_CUBE_MAP_ARB,

GL_TEXTURE_MAG_FILTER,
GL_LINEAR);

glTexParameteri
(GL_TEXTURE_CUBE_MAP_ARB,

GL_GENERATE_MIPMAP_SGIS,
GL_TRUE);

Anderenfalls können Sie auf das Mip-
mapping verzichten und schalten die bi-
lineare Filterung ein:

glTexParameteri
(GL_TEXTURE_CUBE_MAP_ARB,

GL_TEXTURE_MIN_FILTER,
GL_LINEAR);

glTexParameteri
(GL_TEXTURE_CUBE_MAP_ARB,

GL_TEXTURE_MAG_FILTER,
GL_LINEAR);

Als nächstes können Sie Daten in die
Texturen kopieren. Denken Sie daran,
dass Sie mit einem Aufruf von glBind-
Texture(...) sechs Texturen auswählen.
Auf die einzelnen Texturen greifen Sie
mit den Konstanten im Array cubeMap-
Constants[] zu:

GLuint cubeMapConstants[6] =
{
GL_TEXTURE_CUBE_MAP
➥_POSITIVE_X_ARB,
GL_TEXTURE_CUBE_MAP
➥_NEGATIVE_X_ARB,
GL_TEXTURE_CUBE_MAP
➥_POSITIVE_Y_ARB,
GL_TEXTURE_CUBE_MAP
➥_NEGATIVE_Y_ARB,
GL_TEXTURE_CUBE_MAP
➥_POSITIVE_Z_ARB,
GL_TEXTURE_CUBE_MAP
➥_NEGATIVE_Z_ARB
};

for (int i = 0; i < 6; i++)
glTexImage2D(

cubeMapConstants[i],0,GL_RGB8,
CUBEMAPSIZE, CUBEMAPSIZE,
0, GL_RGB, GL_UNSIGNED_BYTE,
DatenPtr);

Abschließend müssen Sie OpenGL
noch mitteilen, dass es die Texturkoor-
dinaten aus der Betrachterposition, -
blickrichtung und Oberflächennorma-
len für das Cubemapping berechnen
soll. Dazu gibt es eine spezielle Erweite-
rung, die GL_REFLECTION_MAP_
ARB-Methode, die Sie mit folgenden
Zeilen einbinden:

glTexGeni(GL_S,
GL_TEXTURE_GEN_MODE,
GL_REFLECTION_MAP_ARB);

glTexGeni(GL_T,
GL_TEXTURE_GEN_MODE,
GL_REFLECTION_MAP_ARB);

glTexGeni(GL_R,
GL_TEXTURE_GEN_MODE,
GL_REFLECTION_MAP_ARB);

■ Cubemaps in dynami-
schen 3D-Szenen
Berechnen Sie die Cubemaps für eine
dynamische 3D-Szene und ein bewegli-
ches spiegelndes Objekt. Untersuchen
Sie die Hauptschleife des Renderings der
3D-Szene. Der wichtige Punkt ist die
Abfolge der Transformationen (Ver-
schiebungen und Rotationen). Zunächst
platzieren Sie das spiegelnde Objekt,
hier eine Kugel, und initialisieren Sie die
Projektionsmatrix:

// Berechnung der Position
spherePos.x = ...;
spherePos.y = ...;
spherePos.z = ...; q

4/2002 PC Magazin 207

JEDER FARBBEREICH der Spheremap re-
präsentiert eine Blickrichtung entlang der
Koordinatenachsen +x,-x,+y,-y,+z,-z.

P C U N D E R G R O U N D
P R A X I S

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective

(70, aspectRatio, 1, 5000);

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

Verwenden Sie als Transformationen in
der Modelview-Matrix zwei Rotationen
und eine Translation:

glRotatef
(xangle, 1.0f, 0.0f, 0.0f);
glTranslatef(0, 30, 0);
glRotatef
(zangle, 0.0f, 0.0f, 1.0f);

An dieser Stelle zeichnen Sie das spie-
gelnde Objekt. Der Einfachkeit halber
verwenden Sie eine Kugel, deren Geo-
metrie die Funktionen der GLUT-Bi-
bliothek darstellen kann. Diese Kugel
können Sie durch ein beliebiges 3D-Ob-
jekt ersetzen, Sie müssen lediglich das
Dreiecksnetz inklusive der Normalen
der Vertices übergeben.

Zuerst das Setup des Texture Map-
ping:

// Cubemapping aktivieren
glEnable
(GL_TEXTURE_CUBE_MAP_ARB);
// und Cubemap wählen
glBindTexture
(GL_TEXTURE_CUBE_MAP_ARB,

cubeMap);

glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
glEnable(GL_TEXTURE_GEN_R);

Jetzt kommt der wichtige Teil mit der
Umkehrung der Modelview-Transfor-
mationen, damit Sie Texturkoordinaten
korrekt berechnen können:

glMatrixMode(GL_MODELVIEW);
glPushMatrix();
// 3D-Szene bzgl. spiegelnden
// Objekts verschieben:
glTranslatef
(spherePos.x, spherePos.y,

spherePos.z);

glMatrixMode(GL_TEXTURE);
glPushMatrix();

// Rotationen rückgängig machen
glRotatef

(-zangle, 0.0f, 0.0f, 1.0f);
glRotatef

(-xangle, 1.0f, 0.0f, 0.0f);

// 3D-Objekt zeichnen
glutSolidSphere(SPHERE_SIZE,
SPHERE_SUBDIVX, SPHERE_SUBDIVY);

glPopMatrix();

Nach dem Zeichnen des Objekts
räumen Sie den Matrix Stack wieder
auf und deaktivieren die Texturko-
ordinaten-Generierung. Anschlie-
ßend zeichnen Sie den Rest der 3D-
Szene:

glMatrixMode(GL_MODELVIEW);
glPopMatrix();

glDisable(GL_TEXTURE_GEN_S);
glDisable(GL_TEXTURE_GEN_T);
glDisable(GL_TEXTURE_GEN_R);

// Rest der 3D-Szene zeichnen

renderScene();

■ Cubemaps generieren
Sie benötigen noch eine Cube-Environ-
ment-Map für Ihr spiegelndes Objekt,
die die aktuelle 3D-Szene aus der Sicht
des Objekts enthält. Eine Cubemap
können Sie leichter als jede andere Envi-
ronment-Map generieren.

Sie platzieren die OpenGL-Kamera
und richten sie aus, rendern die 3D-Sze-
ne und kopieren das Resultat in die
Cubemap. Diese Schritte sehen Sie an
Hand von Codezeilen. Die Berechnung
der Cubemap rufen Sie am besten vor
der Render-Hauptschleife auf, die Sie
zuvor gesehen haben. Legen Sie die
Größe der gerenderten Cubemap-Seite
fest, die der Größe entspricht, die Sie bei

der Initialisierung gewählt haben. An-
schließend setzen Sie die Parameter der
Projektion. Verwenden Sie einen Kame-
raöffnungswinkel von 90 Grad. Andern-
falls enthalten die Cubemaps nicht die
gesamte, umgebende 3D-Szene.

// Größe festlegen
glViewport
(0,0,CUBEMAPSIZE,CUBEMAPSIZE);

// Projektion
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(90, 1.0f,1,500);

glMatrixMode(GL_MODELVIEW);

// für jede Richtung
for(int i = 0; i < 6; i++)
{
glClear(GL_COLOR_BUFFER_BIT |

GL_DEPTH_BUFFER_BIT);
glLoadIdentity();

Richten Sie die Kamera entlang der Ko-
ordinatenachsen +x, -x, +y, -y, +z, -z aus.

Diese Ausrichtung fassen folgende Zei-
len zusammen:

float cubeMapRotation[6][4] =
{

{ -90, 0, 1, 0 },
{ 90, 0, 1, 0 },
{ -90, 1, 0, 0 },
{ 90, 1, 0, 0 },
{ 180, 1, 0, 0 },
{ 180, 0, 0, 1 }

};

glRotatef(
cubeMapRotation[i][0],
cubeMapRotation[i][1],
cubeMapRotation[i][2],
cubeMapRotation[i][3]);

if(i < 2)
glRotatef
(180.0f, 0.0f, 0.0f, 1.0f);

Verschieben Sie den Mittelpunkt der
Kugel in den Ursprung – somit auch den
Rest der 3D-Szene – und zeichnen Sie
diese:

glTranslatef(-spherePos.x,
-spherePos.y, -spherePos.z);

renderScene();

Damit können Sie einen Teil der Cube-
map aus dem Framebuffer von OpenGL
in die Textur kopieren. Der glFlush(...)-
Befehl stellt sicher, dass das Rendern ab-
geschlossen ist, bevor der Kopiervor-
gang beginnt:

glEnable
(GL_TEXTURE_CUBE_MAP_ARB);

glFlush();
glBindTexture

(GL_TEXTURE_CUBE_MAP_ARB,
cubemap);

glCopyTexSubImage2D(
cubeMapConstants
[i], 0, 0, 0, 0, 0,
CUBEMAPSIZE, CUBEMAPSIZE);

glFlush();
glDisable
(GL_TEXTURE_CUBE_MAP_ARB);

Im Beispielprogramm zu dieser Ausga-
be haben wir es nicht bei einem einzel-

208 PC Magazin 4/2002

DIE AUFTEILUNG der spiegelnden 3D-Szene bei den Dual Paraboloid Maps.

nen spiegelnden Objekt belassen. Statt-
dessen sehen Sie zwei Kugeln, in denen
sich die Umgebung und die jeweils an-
dere Kugel spiegelt. In der Hauptschlei-
fe des Rendering macht es keinen Un-
terschied, ob Sie eines oder mehrere Ob-
jekte mit Cubemapping darstellen.

■ Mehrere spiegelnde
Objekte
Wie lassen sich dynamische Cubemaps
generieren? Wie Sie in der Hauptschlei-
fe sehen, müssen Sie die Transformatio-
nen der Modelview-Matrix rückgängig
machen. Genauso müssen Sie das für die
Ausrichtung der Kamera beim Rende-
ring der Cubemaps vornehmen. Wenn
Sie weitere Objekte mit Cubemap-Spie-
gelungen haben, fügen Sie an der Stelle
des renderScene()-Aufrufs folgende Zei-
len ein:

glMatrixMode(GL_TEXTURE);
glPushMatrix();
if(i < 2)

glRotatef
(-180.0f, 0.0f, 0.0f, 1.0f);

glRotatef(
-cubeMapRotation[i][0],
cubeMapRotation[i][1],
cubeMapRotation[i][2],
cubeMapRotation[i][3]);

// Cubemapping anschalten
...

glMatrixMode(GL_MODELVIEW);
glPushMatrix();

glTranslatef(spherePos2.x,
spherePos2.y, spherePos2.z);

glutSolidSphere(SPHERE_SIZE,
SPHERE_SUBDIVX, SPHERE_SUBDIVY);

glMatrixMode(GL_MODELVIEW);
glPopMatrix();

// Cubemapping ausschalten
...
// sauber hinterlassen!
glMatrixMode(GL_TEXTURE);
glPopMatrix();

■ Tricks bei Cubemaps
Für jedes erzeugte Bild wird die gesam-
te 3D-Szene 13-mal gerendert: je sechs-

mal für jede Cubemap und einmal für
das endgültige Bild. Reduzieren Sie die-
sen Aufwand.
• Für Cubemap-Texturen genügen
deutlich kleinere Auflösungen als die
Bildschirmauflösungen. So lassen sich
mit 64 x 64 Pixeln pro Cubemap (also
insgesamt 64 x 64 x 6=24576 Pixel) sehr
gute Resultate erreichen. Eine Auflö-
sung von 128 x 128 Pixeln genügt für die
meisten Anwendungen.
• Aktualisieren Sie die Cubemaps nicht
beim Rendern jedes einzelnen Bildes. Im
Beispielprogramm erkennen Sie nicht,
dass die Cubemap des einen Objekts nur

bei jedem Bild mit
einer geraden
Nummer und die
des anderen bei
ungeraden Num-
mern neu berech-
net wird. Somit

wird die 3D-Sze-
ne für jedes end-
gültige Bild nur
noch siebenmal
gerendert. Für
komplexe 3D-
Szenen bietet sich
außerdem an, die

Geometrie der umgebenden Szene für
die Spiegelung mit gröberen 3D-Netzen
zu repräsentieren, was den Polygon-
durchsatz niedriger hält.

Cubemaps können Sie für viele Effek-
te, wie die Beleuchtungsberechnung
oder als eine Art Lookup-Tabelle für die
Vektornormalisierung einsetzen. Über
das Dot-Product-Bumpmapping be-
richtet Heft 7/01, ab S. 226. Weitere
Beispiele finden Sie auf den Webseiten
von NVidia (www.nvidia.com) und ATI
(www.ati.com). s E T

4/2002 PC Magazin 209

Quellen:

www.dachsbacher.de/pcu
http://developer.nvidia.com/
www.ati.com/na/pages/resource_centre/dev_
rel/devrel.html
„Advanced Rendering Techniques Using OpenGL“,
SIGGRAPH 99 Course Notes
www.opengl.org/developers/code/sig99/index.
html

DIE CUBE ENVIRONMENT MAP
besteht aus sechs Einzeltexturen.

