
P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R

Um Spiegelungen zu program-
mieren, verwenden Sie
OpenGL-Erweiterungen fürs

Environment Mapping (sphärisch, para-
bolisch oder kubisch). Dabei wird die
umgebende Szene, die sich in einem Ob-
jekt spiegeln soll, in einer Textur gespei-
chert. Diese Textur können Sie statisch
oder dynamisch erzeugen – abhängig
vom Einsatzgebiet und davon, was sich
im Spiegelbild befinden soll. Bei einem
gespiegelten Himmel setzen Sie eine sta-
tische Texture Map
ein, animierte Objek-
te auf einer Ober-
fläche spiegeln Sie mit
dynamischen Texture
Maps.

In dieser Ausgabe
lernen Sie eine Tech-
nik kennen, mit der
Sie planare (ebene)
Spiegel in einer 3D-
Szene darstellen kön-
nen. Die Darstellung
der Spiegelungen
wird perspektivisch
korrekt sein und nicht
den Umweg über eine
Textur gehen. Das be-
deutet, die Rende-
ring-Auflösung der Spiegelungen hat die
gleiche Qualität wie die direkt gerender-
te 3D-Szene.

Für den Spiegelungseffekt müssen Sie
die 3D-Szene zweimal rendern. Für jeden
weiteren Spiegel in der 3D-Szene brau-
chen Sie einen zusätzlichen Renderpass.

Im ersten Renderpass zeichnen Sie die
gespiegelte Szene, im zweiten die nor-
male Ansicht der 3D-Szene. Um die
Spiegelung nicht zu überschreiben, ver-
wenden Sie das so genannte Stencil Buf-
fering (vgl. Bild oben).

Das Bild zeigt eine 3D-Szene, den Be-
trachter und eine spiegelnde (zunächst
unendlich große) Ebene. Das Spiegel-
bild, das der Betrachter auf dem Spiegel
sehen würde, entspricht dem, das der
Betrachter sehen würde, wenn er von
der gespiegelten Betrachter-Position
durch den Spiegel hindurch blickt.

Jetzt wird die 3D-Szene an der Ebene
gespiegelt und von der normalen Be-
trachterposition aus durch den Spiegel
gesehen (siehe Bild 2). Beide Varianten
sind vom Ergebnis her identisch. Wir
entscheiden uns hier für die zweite Me-
thode, da Sie diese mit OpenGL an-

schaulicher und einfacher programmie-
ren können.

■ Stencil Buffers
Sie verwenden den Stencil Buffer, ähn-
lich wie den Z-Buffer, dazu, das Rende-
ring auf Pixelbasis (also für einzelne Pi-
xel) zu steuern. Das bedeutet, Sie gestat-
ten oder verbieten es, einen Pixel zu set-
zen. Das erreichen Sie dadurch, dass Sie
zusätzlich zum Frame- oder Color-Buf-
fer, in dem das Bild gerendert wird, und
dem Z-Buffer, der die Tiefeninformati-

on speichert, einen Stencil Buffer zur
Verfügung stellen. Dieser hat die gleiche
Auflösung wie das endgültige Bild. Die
Bittiefe des Stencil Buffer variiert je nach
Hardware und Anwendung (ein Bit
oder acht Bit). Sie brauchen keine spezi-
ellen OpenGL-Extensions für den Sten-
cil Buffer, den fast jede 3D-Hardware
zur Verfügung stellt.

Sie können mit Ihrem Programm den
Stencil Buffer löschen und beschreiben.
Zunächst müssen Sie OpenGL mittei-
len, dass Sie einen verwenden möchten.
Dazu beschreiben Sie das gewünschten
Pixelformat, während Sie den Render-
context erzeugen. Da sich die Initialisie-
rung sonst nicht von der herkömmli-
chen unterscheidet, müssen Sie sich
nicht um die entsprechenden Codefrag-
mente (im Sourcecode zu dieser Ausga-
be) kümmern.

Um den Stencil Buffer zu löschen
wollen, arbeiten Sie mit dem Befehl

glClear
(GL_STENCIL_BUFFER_BIT);

Im folgenden Stencil-Test beschreiben
Sie den Stencil Buffer mit Rendering-
Optionen (etwa für Polygone):

glEnable(GL_STENCIL_TEST);

OpenGL setzt jeden Pixel mit einer Ver-
gleichsoperation, die Sie mit dem glSten-
cilFunc(...)-Befehl festlegen. Der erste
Parameter gibt die Vergleichsfunktion
an. Diese legt fest, ob der Wert im Sten-
cil Buffer kleiner (gleich), größer (gleich)
oder gleich einem Referenzwert (der
zweite Parameter) sein muss. Sie können
auch festlegen, dass immer ein positives
oder negatives Ergebnis geliefert wird,
wenn Sie den Stencil Buffer nur mit
Werten füllen wollen. Mit dem dritten
Parameter lässt sich eine Bitmaske über-
geben. Beide Werte, aus dem Stencil
Buffer und dem Referenzwert, unterzie-
hen Sie vor dem Vergleich einem bitwei-
sen AND-Verfahren. Mit der OpenGL-
Funktion glStencilOp(...) bestimmen

190 PC Magazin 5/2002

Planare Spiegelungen mit Stencil Buffers

Mehrfach gespiegelt
Mit einer 3D-Karte und OpenGL können Sie Ihre 3D-Szenen in planaren
Spiegeln wiedergeben. Mit der Stencil-Buffer-Technik stellen Sie Ihr Werk
perspektivisch korrekt dar.

AUF CD
Die Quelltexte sowie die fertig übersetzten

Routinen finden Sie im Verzeichnis Heft Add-
ons/Programmierung/PC Underground.

GEDANKLICH SPIEGELN Sie die Kamera an der Ebene.

P C U N D E R G R O U N D
P R A X I S

Sie, was nach dem Stencil-Test – abhän-
gig vom Ergebnis – passiert: ob ein Pixel
gesetzt wird oder nicht und ob der Sten-
cil-Buffer-Wert verändert wird oder
nicht. Zunächst unterscheiden Sie drei
Fälle, bei denen Sie auch das Ergebnis
des Z-Buffer-Tests heranziehen:
• Der Stencil-Buffer-Test liefert ein ne-
gatives Ergebnis.
• Der Stencil-Buffer-Test liefert ein po-
sitives Ergebnis, aber der Z-Buffer-Test
schlägt fehl.
• Beide Tests liefern ein positives Resul-
tat. Beim Z-Buffer-Test kann das auch
auftreten, wenn dieser deaktiviert ist.

Sie reagieren auf die Ergebnisse mit
unterschiedlichen Operationen. Für je-
den dieser drei Fälle geben Sie beim gl-
StencilOp(...)-Befehl an, welche Opera-
tion durchgeführt werden soll:
• Sie lassen den Stencil-Buffer-Wert un-
verändert.
• Sie setzen den Wert auf Null.
• Sie gleichen den Wert mit dem Refe-
renz-Wert der glStencilFunc(...)-Funkti-
on ab, setzen, erhöhen, erniedrigen oder
invertieren bitweise.

Die flexible Steuerung der Stencil Buf-
fers lässt viele Spezialeffekte wie Outli-
ning, Constructive Solid Geometry und
Spiegelungen zu. Die beiden Tabellen
(unten und auf Seite 192) fassen die Sten-
cil-Funktionen und -Operationen zu-
sammen

■ Spiegelungen Schritt
für Schritt
Erarbeiten Sie sich die Verfahren zur
Spiegelung und implementieren Sie sie in
OpenGL. Im ersten Renderpass setzen
Sie mit dem Befehl glLoadIdentity() die
Modelview und die Projection Matrix
auf die Identitätsabbildung. Mit den gl-
Frustum(...)- und gluLookAt(...)-Befeh-
len oder mit gluPerspective(...) wählen
Sie in der Projection-Matrix Betrachter-
position und -blickrichtung.

Sichern Sie die aktuellen OpenGL-
Matrizen, da Sie sie später für den zwei-
ten Renderpass brauchen. Am besten
speichern Sie sie mit glPushMatrix() auf
dem Matrixstack. Spiegeln Sie die 3D-
Szene an der Ebene, in der sich der Spie-
gel befindet. Dazu multiplizieren Sie die
Spiegelungsmatrix mit glMultMatrix()
und mit der Modelview-Matrix.

Zeichnen Sie die gesamte 3D-Szene.
Die Szene ist so zu sehen, wie sie als
Spiegelbild erscheinen würde – nur
nimmt der Spiegel für gewöhnlich nicht
das gesamte Blickfeld ein! An dieser

Stelle setzen Sie den Stencil Buffer ein.
Betrachten Sie die Situation, bevor Sie
die Spiegelungsmatrix anwenden. Hier
ist der Betrachter an seiner normalen Po-
sition und Blickrichtung. Jetzt können
Sie den Spiegel aus der Sicht des Be-
trachters in den Stencil Buffer zeichnen,
ohne den Z-Buffer oder Colorbuffer zu
beeinflussen. Wir gehen davon aus, dass
der Spiegel an seiner gewünschten Stelle
platziert ist:

// Z-Buffer nicht ändern
// oder vergleichen
glDisable(GL_DEPTH_TEST);
// Colorbuffer nicht beschreiben
glColorMask(0, 0, 0, 0);

// Stencil Test:immer positiv, 1
glEnable(GL_STENCIL_TEST);
glStencilFunc(GL_ALWAYS, 1, 1);
// Referenzwert schreiben, immer
glStencilOp

(GL_KEEP, GL_KEEP, GL_REPLACE
);

// Spiegel zeichnen
drawMirror();

// Color + Z Buffer anschalten
glColorMask(1, 1, 1, 1);
glEnable(GL_DEPTH_TEST);

Beim Rendern der gespiegelten Szene le-
gen Sie fest, dass nur dort Pixel gesetzt
werden, wo der Betrachter den Spiegel
und das Spiegelbild der 3D-Szene sieht.

Dazu verwenden Sie die folgenden Be-
fehle, wobei Ihnen OpenGL die Arbeit
abnimmt:

// Test positiv, wenn
// Stencil Buffer Wert == 1
glStencilFunc(GL_EQUAL, 1, 1);
// Werte nicht verändern
glStencilOp

(GL_KEEP, GL_KEEP, GL_KEEP);

//Rendern der gespiegelten Szene
...

Sie müssen beim Ren-
dering der gespiegel-
ten Szene darauf ach-
ten, dass Sie auch die
Position der Licht-
quellen mitspiegeln
müssen, um das Spie-
gelbild korrekt zu be-
leuchten.

Wenn in Ihrer 3D-
Szene 3D-Objekte
den Spiegel durch-
dringen, veranlassen
Sie OpenGL, die Po-
lygone dieser Objek-
te an der Ebene des
Spiegels abzuschnei-
den (clipping). Dazu
stellt Ihnen OpenGL
die Clip Planes zur

Verfügung, die Sie mit folgender Syntax
einsetzen können:

// Ebenengleichung
double eq[4] =

{ 0.0, -1.0, 0.0, 0.0 };
// und aktivieren:
glEnable(GL_CLIP_PLANE0);
glClipPlane

(GL_CLIP_PLANE0, eq);

Mit der Ebenengleichung bestimmen Sie
einen Halbraum. Alle Vertices, deren
Skalarprodukt (in Eye Coordinates) mit
dem eq-Vektor einen Wert größer oder
gleich Null ergibt, werden als innerhalb
des gewünschten Halbraums, sonst
außerhalb gewertet.

Jetzt können Sie die 3D-Szene vom
Betrachter aus zeichnen. Beginnen Sie da-
bei mit dem Spiegel, da sonst das Spiegel-
bild womöglich überschrieben wird. q

5/2002 PC Magazin 191

GLSTENCILFUNC: STENCIL-BUFFER-VERGLEICHSFUNKTIONEN

Funktion Testresultat
GL_NEVER immer negativ
GL_LESS positiv, wenn (ref & mask) < (stencil & mask).
GL_LEQUAL positiv, wenn (ref & mask) ? (stencil & mask).
GL_GREATER positiv, wenn (ref & mask) > (stencil & mask).
GL_GEQUAL positiv, wenn (ref & mask) ? (stencil & mask).
GL_EQUAL positiv, wenn (ref & mask) = (stencil & mask).
GL_NOTEQUAL positiv, wenn (ref & mask) != (stencil & mask).
GL_ALWAYS immer positiv

ÄQUIVALENTE BETRACHTUNG: Die 3D-Szene spiegelt sich an
der Ebene, durch die eine Kamera hindurch sieht.

P C U N D E R G R O U N D
P R A X I S

Den Spiegel sollten Sie nicht opak (Ge-
genteil von transparent) zeichnen, da
sonst das Spiegelbild überdeckt wird.
Zeichnen Sie ihn entweder mit Alpha-
blending teilweise transparent oder nur
in den Z-Buffer, wenn der Spiegel per-
fekt aussehen soll. Wenn Sie einen Spie-
gel mit besser und schlechter spiegeln-
den Bereichen darstellen wollen, errei-
chen Sie das mit Alphablending und ei-
ner geeigneten Textur. Zusammenge-
fasst sieht der zweite Renderpass so aus:

// kein Userdefined Clipping
// und Stencil Test mehr
glDisable(GL_CLIP_PLANE0);
glDisable(GL_STENCIL_TEST);

// teilweise transparenter,
// nicht perfekter Spiegel
glEnable(GL_BLEND);
glColor4f

(0.9f, 0.9f, 1.0f, 0.75f);
glBlendFunc

(GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA);

drawMirror();
glDisable(GL_BLEND);

// und den Rest der 3D-Szene
drawScene();

■ Die Spiegelungsabbildung

Der Spiegel liegt zunächst in einer Ko-
ordinatenebene, etwa in der x/z-Ebene.
Dann können Sie eine Spiegelung ein-
fach beschreiben, indem Sie die y-Koor-
dinaten jedes Punktes negieren und die
x- und z-Koordinate unverändert lassen.
Mit dem OpenGL-Befehl

glScalef(1.0, -1.0, 1.0);

skalieren Sie die Darstellung. Sie können
diese Methode auch für beliebige Ebe-

nen (also beliebig positionierte Spiegel)
verwenden. Mit der Spiegelungsmatrix
können Sie einen Punkt an der Ebene
spiegeln.

Die Matrix setzt sich aus einzelnen
Transformationen zusammen. Ver-
schieben Sie die Ebene, die durch einen
Punkt p und die Normalen n bestimmt
wird, so, dass sie durch den Ursprung
verläuft. Diese Transformation be-
schreiben Sie durch eine Translations-
matrix (Verschiebungsmatrix) T(-p):

| 1 0 0 -p.x |
T(-p) = | 0 1 0 -p.y |

| 0 0 1 -p.z |
| 0 0 0 1 |

Drehen Sie die Ebene so, dass Sie mit der
x/z-Ebene identisch ist, die Normale al-
so mit der gedrehten Ebene überein-
stimmt (0, 1, 0). Die Matrix, die diese
Transformation vornimmt, bezeichnen
Sie mit R(n, (0, 1, 0)). Sie können sie mit
Hilfe von Quaternionen herleiten. Wir
präsentieren Ihnen stattdessen das opti-
mierte Ergebnis für R(s, t):

v = s x t (Kreuzprodukt)
e = cos(2*phi) = s * t
(2*phi: Winkel s und t)

h = (1-e)/(v*v)

x, y, z sind die Komponenten von v:
| e+h*x 2 hxy-x hxz+y 0 |

R(s,t)=| hxy+z e+hy 2 hyz-x 0 |
| hxz-y hyz+x e+hz 2 0 |
| 0 0 0 1 |

Die Tranformation der Spiegelebene in
die x/z-Ebene sieht so aus:

F = R(n, (0, 1, 0)) T(-p)

Die Matrixmultiplikation führt die ein-
zelnen Transformationen in der Reihen-
folge von rechts nach links aus. An der
transformierten Ebene wird mit der Ska-
lierung (Skalierungsmatrix S(1,-1,1)) die
Spiegelung durchgeführt. Anschließend
machen Sie die Transformation der Ebe-
ne mit der inversen Matrix zu F:
F(inv)rückgängig:

| 1 0 0 0 |
S(1,-1,1) = | 0 -1 0 0 |

| 0 0 1 0 |
| 0 0 0 1 |

Die Spiegelungsmatrix sieht so aus:
M = F(inv) S(1, -1, 1) F

Einfacher geht es, wenn Sie die
OpenGL-Transformationen, die Sie mit
dem Spiegel vornehmen, aus einfachen
Transformationen wie Rotation und
Translation zusammensetzen. Beginnen
Sie, indem Sie einen einfachen quadrati-
schen Spiegel definieren, der in der x/z-
Ebene liegt:

void drawMirror()
{

glDisable(GL_LIGHTING);
glBegin(GL_QUADS);

glNormal3f(0.0, 1.0, 0.0);

glTexCoord2f(0.0 , 0.0);
glVertex3f(-1.0, 0.0, -1.0);

glTexCoord2f(1.0, 0.0);
glVertex3f(1.0, 0.0, -1.0);

glTexCoord2f(1.0, 1.0);
glVertex3f(2.0, 0.0, 2.0);

glTexCoord2f(0.0, 1.0);
glVertex3f(-1.0, 0.0, 1.0);

glEnd();
}

Nehmen Sie an, Sie wollen den Spiegel
durch Verschieben und Drehen in seine
gewünschte Position bringen. Die Trans-
formation beschreiben folgende Zeilen:

glRotatef(w, 0, 0, 1);

192 PC Magazin 5/2002

GLSTENCILOP: STENCIL-BUFFER-OPERATIONEN

Operation Bedeutung
GL_KEEP Stencil-Buffer-Werte bleiben unverändert
GL_ZERO Stencil-Buffer-Wert auf Null setzen
GL_REPLACE Stencil-Buffer-Wert auf Referenzwert setzen
GL_INCR Stencil Buffer-Wert erhöhen, mit Sättigung
GL_DECR Stencil-Buffer-Wert erniedrigen, nicht kleiner als Null
GL_INVERT Stencil-Buffer-Wert bitweise invertieren

UNSER BEISPIELPROGRAMM in Aktion

P C U N D E R G R O U N D
P R A X I S

glTranslatef(x, y, z);

Diese Transformation führen Sie auch
aus, bevor Sie den Spiegel in den Stencil
Buffer zeichnen. Sichern und restaurie-
ren Sie die Modelview Matrix davor und
danach. Beim endgültigen Zeichnen des
Spiegels beim zweiten Renderpass ver-
fahren Sie genauso.

Beim ersten Renderpass müssen Sie
die Transformationen in der richtigen
Reihenfolge ausführen, die analog zur
obigen Beschreibung der Matrix M ist.
Sie finden die Matrix F, F(inv) und S wie-
der. Verwenden Sie die folgende Rei-
henfolge, um die gespiegelte Szene zu
zeichnen:

// Stencil Buffer an
glStencilFunc(GL_EQUAL, 1, 1);
glStencilOp

(GL_KEEP, GL_KEEP, GL_KEEP);
glEnable(GL_CLIP_PLANE0);
glPushMatrix();

// Transformation

// Matrix F(inv)
glTranslatef(x, y, z);
glRotatef(w, 0, 0, 1);

// hier die Clip-Plane setzen:

glClipPlane
(GL_CLIP_PLANE0, eqr);

// Spiegelung an der
// XZ Ebene: S(1,-1,1)
glScalef(1.0f, -1.0f, 1.0f);

// Matrix F
glRotatef(-w, 0, 0, 1);
glTranslatef(-x, -y, -z);

// Lichtquellen & Co

glLightfv
(GL_LIGHT0, GL_POSITION,

lightPosition);

// 3D Szene rendern
drawScene();

// fertig !
glPopMatrix();

Wenn Sie mehrere Spiegel einsetzen
wollen, müssen Sie einen Stencil Buffer
mit einer größeren Bittiefe als einem Bit
(wie im Beispielprogramm) verwenden.
Dann weisen Sie jedem Spiegel einen Re-
ferenz-Stencil-Wert zu. Im Bild unten
sehen Sie unser Beispielprogramm in
Aktion. s E T

5/2002 PC Magazin 193

Literatur und Web-Infos

Advanced Rendering Techniques Using OpenGL,
SIGGRAPH 99 Course Notes

Thomas Möller, Eric Haines: Realtime Rendering, A
K Peters, Ltd., 61,50 Euro, ISBN 1-56881-101-2, 512
Seiten,
www.dachsbacher.de/pcu
http://developer.nvidia.com/
www.ati.com/na/pages/resource_centre/dev_
rel/devrel.html
www.opengl.org/developers/code/sig99/index.
html

DIE SPIEGELUNG an der x/z-Ebene stellt
eine Skalierung dar.

