
P C U N D E R G R O U N D
P R A X I S

7/2002 PC Magazin 175

C A R S T E N D A C H S B A C H E R

Die 3D-Grafikkarten erlauben es,
3D-Szenen mit einem Nebelef-
fekt zu versehen. Der Program-

mierer kann diese Funktionalität mit Pa-
rametern festlegen: die Dichte des Ne-
bels oder dessen exponenziellen bzw. li-
nearen Verlauf.

Stimmungsvolle 3D-Szenen, bei-
spielsweise nur mit Bodennebel, lassen
sich damit nicht darstellen. Wir zeigen
Ihnen, wie Sie die volumetrischen Ne-
beleffekte programmieren. Volume-
trisch bedeutet, das der Nebel in einem
bestimmten Volumen eingeschlossen ist,
etwa in einem Quader, einem Zylinder
oder einer Kugel.

■ OpenGL Fogging
Nebel, wie Sie ihn im obigen Bild sehen,
kann Ihre Grafikkarte selbstständig dar-
stellen. Dafür gibt es Unterstützung sei-
tens der Hardware und der Grafik-
APIs. Die Grafik-Hardware berechnet
für jeden Vertex oder jeden Pixel (je nach

Modus) die Entfernung der dort sicht-
baren Oberfläche zum Betrachter. Ab-
hängig von dieser Entfernung ist der Ne-
beleffekt stärker oder schwächer.

In OpenGL aktivieren Sie den Nebel
(Fogging) mit glEnable(GL_FOG).
Anschließend müssen Sie die Parameter
für das Fogging angeben. Legen Sie den
Tiefen-Bereich fest, in dem sich der Ne-
bel befindet. Dazu geben Sie einen Start-

und einen Endwert an
und legen die Dichte
des Nebels und die
Farbe fest:
glFogf(
GL_FOG_START, 0.0f
);
glFogf(GL_FOG_END,
100.0f);
glFogf(GL_FOG_DEN-
SITY, 1.0f);

GLfloat fogColor[]
=

{ 1.0f, 1.0f,
1.0f, 1.0f };
glFogfv(GL_FOG_CO-
LOR,fogColor);

Für die Berechnung
der Nebelintensität f,
abhängig von der
Entfernung z, wählen

Sie mit dem Eintrag glFogi(GL_FOG_
MODE, mode) eine der folgenden drei
Optionen:

GL_LINEAR f = (end-z) /
(end-start)

GL_EXP f = e^(-density*z)
GL_EXP2 f = e^((-denstity*z)^2)

Diese Optionen bestimmen, wie die
Stärke des Effekts von der Entfernung z
und dem Start- bzw. End-Wert des Ne-
bels abhängt.

Als nächstes berechnen Sie die Farbe
jedes Pixels im Nebel, abhängig vom
Wert f. Die ursprüngliche Farbe wird in
die Nebelfarbe übergeblendet, wobei
sich der Bereich f von 0 bis 1 beschränkt:

//für jede Farbkomponente:
color_new =

f*color + (1-f)*fogColor

■ Volumetric Fog
Wenn Sie die Nebelschwaden berech-
nen, kommen Sie mit volumetrische Ne-
beleffekten zu eindrucksvollen Bildern.

Lesen Sie, wie Sie diese Effekte ohne
die OpenGL-Fog-Funktionalität gestal-
ten. Als mögliche Volumina für den Ne-
bel kommen einfache geometrische Pri-
mitive wie Quader, Zylinder oder Ku-

geln oder daraus zu-
sammengesetzte Pri-
mitive in Betracht.
Das befähigt Sie, den
Nebel schnell zu be-
rechnen. Der Trick
besteht darin, für je-
den Vertex der sicht-
baren 3D-Objekte
die Nebelintensität zu
berechnen. Diese In-
tensität hängt davon
ab, wieviel Nebel sich
zwischen Kamera
und Objekt befindet.
Da Sie die Intensität
pro Vertex berech-
nen, bestimmen q

Rendering von Nebeleffekten

Nacht und Nebel
Mit wenig Aufwand können Sie Nebeleffekte darstellen, die über das, was
die 3D-Hardware bietet, hinausgehen. Programmieren Sie volumetrische
Nebeleffekte, wie sie in Ego-Shootern zu sehen sind.

AUF CD
Die Quelltexte sowie die fertig übersetzten

Routinen finden Sie im Verzeichnis Heft Add-
ons/Programmierung/PC Underground.

MORGENDLICHER FRÜHNEBEL taucht diese 3D-Szene in ge-
heimnisvolles Licht.

DIESEN BODENNEBEL gestaltet das Beispielprogramm.

P C U N D E R G R O U N D
P R A X I S

176 PC Magazin 7/2002

Sie zunächst die Halbgerade (Strahl), be-
ginnend bei der Kameraposition in
Richtung des Vertex.

Anschließend berechnen Sie alle
Schnittpunkte des Strahls und der Ne-
belvolumina. Es gibt nicht für jeden
Strahl einen Schnittpunkt. An Hand der
Schnittpunkte können Sie die Länge der
im Nebel zurückgelegten Strecken und
somit die Nebelintensität bestimmen.

Wir zeigen Ihnen Schritt für Schritt,
wie Sie das Grundprinzip umsetzen, um
quader- und kugelförmige Nebelvolu-
mina darzustellen. Voraussetzung ist,
dass Sie ein geladenes 3D-Objekt im
Speicher haben, bestehend aus einer
Vertex und einer Flächen-Index-Liste:

typedef struct
{

float x, y, z;
}VERTEX3D;

typedef struct
{

int a, b, c;
VERTEX3D normal;

}FACE;

VERTEX3D *pVertexList;
FLOAT *pFogList;
VERTEX3D *pNormalList;
FACE *pFaceList;

int nVertices, nFaces;

Bestimmen Sie für jeden Vertex – für je-
den Frame – die Nebelintensität. Dazu
benötigen Sie eine Halbgerade, die sich
aus Koordinaten der Vertex- und der
Kameraposition bestimmen lässt. Beide
Koordinaten müssen Sie in dasselbe Ko-
ordinatensystem transformieren. Dazu
bieten sich zwei Wege an:
• Sie führen alle Berechnungen im Ob-
jektspace durch und transformieren die
Kamera in den Objectspace,
• oder Sie transformieren alle Vertices in
den Worldspace, in dem sich die Kame-
ra befindet.

Die erste Variante
ist weniger zeitauf-
wändig, da nur die
Kameraposition
transformiert werden
muss. Beginnen Sie
mit der Kameratrans-
formation:
typedef struct
{

// Ursprung,
Richtung

VERTEX3D from,
d;
}RAY3D;

MATRIX44 modelView,
invModelView;

// Modelview Matrix
holen...

glGetFloatv
(GL_MODELVIEW_MATRIX,

modelView);

// ... invertieren
InverseMatrixAnglePreserving
(modelView, invModelView);

// Kameraposition aus den
// Kameraeinstellungen bekannt!
VERTEX3D camPos =

{ 0.0f, 0.0f, 70.0f };

// Start der Halbgerade
// = Kamera im Objectspace !
ray.from =invModelView * camPos;

Jetzt bestimmen Sie die Richtung der
Halbgeraden für jeden Vertex i:

// Richtung (normalisiert)
ray.d =

pVertexList[i] - ray.from;
~ray.d;

Anschließend berechnen Sie, ob Schnitt-
punkte mit Nebelvolumina existieren
und wenn ja, die Nebelintensität. Die
Details der verwendeten Subroutinen
betrachten Sie folgendermaßen:

// Eckpunkte des Nebelquaders
VERTEX3D minBox =

{ -100.0f, 0.0f, -100.0f };
VERTEX3D maxBox =

{ 100.0f, 10.0f, 100.0f };
// Abschnitte an der Halbgerade,
// falls es Schnittpunkte gibt
float tmin, tmax;

if (boxIntersection
(ray, &tmin, &tmax,

minBox, maxBox,
pVertexList[i]))

{
// Schnittpunkte existieren
fog =
distanceInFog(ray, tmin, tmax,

pVertexList[i]);
}

Der Rückgabewert von distanceIn-
Fog(...) ist die Strecke, die der Strahl
durch das Nebelvolumen zurücklegt.
Mit diesem Wert können Sie analog zur
OpenGL-Nebelberechnung einen li-
nearen oder exponenziellen Verlauf mo-
dellieren, wie die folgenden Beispiele
zeigen:

// linearer Nebel
// einfaches Skalieren
fog *= 0.05f;

// exponenzieller Verlauf
fog *= 0.03f;
fog = exp(fog) - 1;

// exponenziell/quadr.Verlauf
fog *= 0.04f;
fog = exp(fog * fog) - 1;

Sie können Lookup-
Tabellen verwenden,
um Nebelschwaden
darzustellen. Das fol-
gende Beispiel ver-
wendet eine Tabelle
mit 256 Einträgen für
Nebelintensität, zwi-
schen denen interpo-
liert wird:
fog *= 255.0f;
if (fog > 254)
fog = 254;
int fogi =
(int)fog;
float fogf = fog -
fogi;
fog = table[fogi
]*(1.0f-fogf)+

table[fogi+1
]*fogf;

Mit der berechneten Nebenintensität
skalieren Sie die gewünschte Farbe des
Nebels und speichern diese zusammen
mit dem ursprünglichen Wert zunächst
für jeden Vertex für das spätere Rende-
ring:

GLfloat fogColor[] =
{ 0.7f, 0.7f, 0.5f };

float *pFog = pFogList;

*(pFog++) = fog * fogColor[0];
*(pFog++) = fog * fogColor[1];
*(pFog++) = fog * fogColor[2];
*(pFog++) = fog;

DER STRAHL von der Kamera zu einem Vertex durch ein qua-
derförmiges Nebelvolumen

DIESE NEBELEFFEKTE strahlen aus einer Kugel.

P C U N D E R G R O U N D
P R A X I S

7/2002 PC Magazin 177

■ Schnittpunkt-
Berechnungen
In der Routine boxIntersection(...) ver-
birgt sich die Schnittpunkt-Berechnung
zwischen einem Strahl und einem Qua-
der mit achsenparallelen Kanten (aus
Performance-Gründen). Solche Quader
werden auch als AABB (Axis Aligned
Bounding Boxes) bezeichnet. Dafür gibt
es hochoptimierte Schnittpunktberech-
nungen, von denen wir Ihnen eine hier
vorstellen: die Slab-Methode. Slab be-
zeichnet ein paralleles Ebenenpaar. Drei
Slabs bilden einen Quader. Im zweidi-
mensionalen Fall bilden zwei Slab-Paare
ein Rechteck.

Für ein Slab-Paar können Sie die bei-
den Schnittpunkte berechnen, hier für
das X-Slab-Paar:

// Strahl darf nicht parallel zu
// den Ebenen verlaufen
if (fabs(ray.d.x) > epsilon)
{
tmin_x = (minB.x - ray.from.x)

/ ray.d.x;
tmax_x = (maxB.x - ray.from.x)

/ ray.d.x;
} else

return 0; // kein Schnittpunkt

Bei geschickter Betrachtung der Schnitt-
punkte oder der berechneten tmin/
tmax-Parameter stellen Sie fest, ob der
Strahl die AABB schneidet. Berechnen
Sie für jedes der drei Slab-Paare tmin
und tmax:

tmin =
max(tmin_x, tmin_y, tmin_z)

tmax =
min(tmax_x, tmax_y, tmax_z)

Wenn tmin kleiner oder gleich tmax ist,
schneidet der Strahl den Quader, sonst
verfehlt er ihn. Betrachten Sie dazu die
zwei eingezeichneten Strahlen im vori-

gen Bild. Die ausschlaggebenden tmin-
und tmax-Werte sind rot gekennzeich-
net. Bevor Sie in der boxIntersection(...)-
Routine die Slab-Methode anwenden,
wird noch ein Trivial-Reject-Test
(Rückweisungs-Test) durchgeführt. Da-
bei überprüfen Sie mit einfachen, re-
chenzeitunkritischen Befehlen, ob der
Strahl den Quader überhaupt schneiden
könnte. Das können Sie beispielsweise
ausschließen, wenn sowohl der Ur-
sprung als auch das Ziel des Strahls über,
unter oder links bzw. rechts vom Qua-
der liegen.

Als zweites Nebelvolumen verwen-
den Sie die Kugel, für die sich die
Schnittpunkte einfach berechnen lassen.
Eine Kugel ist definiert durch ihren Mit-
telpunkt m und ihren Radius r. Alle
Punkte x auf der Oberfläche der Kugel,
also auch potenzielle Schnittpunkte mit
einer Geraden, haben den gleichen Ab-
stand vom Mittelpunkt, nämlich den Ra-
dius:

|x-m| = r
(x-m)*(x-m) = r*r

Wenn Sie die (Halb-)Geradengleichung
in die Abstandsberechnung für x einset-
zen, erhalten Sie eine quadratische Glei-
chung, deren Lösung oder Lösungen die
Parameter der Geradengleichung sind.
In C-Code sieht das Resultat wie folgt
aus:

VERTEX3D delta =
ray.from - center;

a = ray.d * ray.d;
b = ray.d * delta * 2.0f;

c = center * center +
ray.from * ray.from -

2.0f * (center * ray.from) -
radius * radius;

d = b * b - 4.0f * a * c;

if (d <= 0.0) return 0;

d = (float)sqrt(d);

a = 1.0f / (2.0f * a);

t1 = (- b + d) * a;
t2 = (- b - d) * a;

// Schnittpunktparameter
tmin = min(t1, t2);
tmax = max(t1, t2);

Mit den tmin/tmax-Parametern, also der
Information, wo der Strahl in ein Nebel-
volumen eintritt oder es verlässt, können
Sie die Strecke berechnen, die er im Ne-
bel zurücklegt. Dabei müssen Sie eine
Fallunterscheidung machen – je nach-
dem, ob sich der Betrachter und/oder
der betrachtete Vertex selbst im Volu-
men befindet. Diese Bestimmung über-
nimmt die distanceInFog(...)-Methode,

die als Parameter tmin/tmax, die Halb-
gerade ray und den betrachteten Vertex
v bekommt.

Zunächst berechnen Sie, wie weit Sie
ausgehend von der Kameraposition in
Richtung des Strahls gehen müssen, bis
Sie den Vertex v erreichen:

if (ray.d.x != 0)
tv = (v.x - ray.from.x) /
ray.d.x;
else
// ray.d.y oder ray.d.z

Anschließend folgt die Fallunterschei-
dung:

// Kamera blickt von der Box weg
if (tmax < 0)

return 0;

// Fog Volume befindet sich
// hinter dem Vertex
if (tmin > tv)

return 0;

// Vertex im Fog Volume
if (tv > tmin && tv < tmax)
{

// Kamera auch im Fog Volume ?
if (tmin < 0)

/* ja */ return tv; else
/* nein */ return tv - tmin;

} else
{

// Fog Volume befindet sich
// zw. Kamera und Vertex
return tmax - tmin;

}

■ Volumetrischen Nebel
rendern
Um volumetrischen Nebeleffekte ohne
spezielle Funktionen oder OpenGL-
Extensions zu rendern, verwenden Sie
eine 2-Pass-Methode: Sie zeichnen die
Szene zweimal.

Im ersten Renderpass zeichnen Sie die
3D-Szene mit den gewünschten Para-
metern für Beleuchtung, Texturen und
Materialien:

// Material Parameter
glEnable(GL_COLOR_MATERIAL);

glColorMaterial(...);
glMaterialfv(...);

// einfach flatshaded Zeichnen
glBegin(GL_TRIANGLES);

for (int i = 0;i < nFaces; i++)
{

glNormal3fv((float*)
&pFaceList[i].normal);

glVertex3fv((float*)
&pVertexList
[pFaceList[i].a]);

glVertex3fv((float*)
&pVertexList
[pFaceList[i].b]);

glVertex3fv((float*)
&pVertexList
[pFaceList[i].c]);

}

glEnd();

DIE SLAB-METHODE hilft, um Schnittpunk-
te mit AABBs zu bestimmen.

q

P C U N D E R G R O U N D
P R A X I S

178 PC Magazin 7/2002

Im zweiten Renderpass benötigen Sie
die oben berechneten Nebelintensitäten.
In diesem Pass zeichnen Sie ohne Be-
leuchtung und Texturen. Allerdings ak-
tivieren Sie das Blending und wählen ad-
ditives Rendering: Die Nebelfarbe hellt
das Bild auf.

glDisable(GL_TEXTURE_2D);
glDisable(GL_LIGHTING);

glEnable(GL_BLEND);
glBlendFunc(GL_ONE, GL_ONE);

// Interpolation Nebelintensität
glShadeMode(GL_SMOOTH);

Nach dieser Initialisierung zeichnen Sie
die 3D-Szene und übergeben für jeden
Vertex seine Nebelfarbe:

glBegin(GL_TRIANGLES);

for (i = 0; i < nFaces; i++)
{

glColor4fv(
(GLfloat*)

&pFogList
[pFaceList[i

].a * 4]);
glVertex3fv(

(GLfloat*)
&pVertexList
[pFaceList[i

].a]);

glColor4fv(
(GLfloat*)

&pFogList
[pFaceList[i

].b * 4]);
glVertex3fv(

(GLfloat*)
&pVertexList
[pFaceList[i

].b]);

glColor4fv((GLfloat*)
&pFogList
[pFaceList[i].c * 4]);

glVertex3fv((GLfloat*)
&pVertexList
[pFaceList[i].c]);

}

glEnd();

Die Nebenintensitäten, die Sie für die
Vertices berechnet haben, werden beim
Rendering über die Dreiecke interpo-
liert. Um eine gute Darstellungsqualität
zu erhalten, benötigen Sie Dreiecksnet-
ze, die fein tesseliert sind (= aus vielen
kleinen Dreiecken bestehen). Gegebe-
nenfalls müssen Sie mit einem 3D-Mo-
dellingprogramm vorhandene 3D-Mo-
delle verfeinern (so genanntes Subdivi-
ding). Vor allem, wenn die Grenzen von
Nebelvolumina sichtbar sind, benötigen
Sie sehr feine 3D-Modelle, oder Sie er-
halten störende Effekte.

■ Schneller im Nebel
Es gibt noch eine andere Art, die Ne-
benintensitäten zu bestimmen, als ledig-
lich die Strecke zwischen den Schnitt-

punkten des Strahls und den Nebelvolu-
mina als Wert heranzuziehen: Sie können
einem quaderförmigen Nebel eine 3D-
Textur zuweisen. Da viele 3D-Karte mit
3D-Texturen nicht arbeiten können,
müssen Sie diese Aufgabe selbst in Ihrem
Programm lösen. Dazu betrachten Sie
den Eintrittspunkt eines Strahls in ein
Nebelvolumen und den Austrittspunkt.
Dann untersuchen Sie jeden 3D-Texel
der Textur, den der Strahl im Nebelvolu-
men berührt, und summieren deren In-
tensitäten auf.

So könnten Sie Nebelschwaden und
komplexe Strukturen im Nebel darstel-
len. Allerdings ist diese Methode sehr
rechnenzeitintensiv und bedarf einiger
Optimierung.

Beschleunigt rendern Sie anders: Mit
einer OpenGL Extension EXT_fog_co-

ord, die Sie beim OpenGL-Treiber an-
fragen können, gelingt es, einen der Ren-
derpasses einzusparen. Diese Extension
erlaubt es, für jeden Vertex eine selbst-
berechnete Nebelintensität anzugeben.
Ohne diese Erweiterung berechnet
OpenGL bei angeschaltetem Fogging
diesen Wert selbst. Mit folgenden Be-
fehlen befragen Sie Ihren Grafikkarten-
Treiber, ob er diese Extension anbietet:

const GLubyte *glExtString;
char glExtName[] =

„EXT_fog_coord“;

glExtString =
glGetString(GL_EXTENSIONS);

if (strstr(glExtString,
glExtName) == NULL)

{
// nicht unterstützt !!!
return false;

}

// sonst Adresse holen:
glFogCoordfEXT = (void*)

wglGetProcAddress
(„glFogCoordfEXT“);

Zu dieser Extension gehören einige wei-
tere Funktionen für das Rendering mit

Streaming- und Interleaved-Daten. Die-
se finden Sie zusammen mit den benötig-
ten Konstantendefinitionen in der
glext.h-Datei.

Bei dieser 1-Pass-Rendering Methode
aktivieren Sie wieder das OpenGL-Ren-
dering und teilen ihm mit, dass Sie die
Nebelintensitäten selbst berechnen:

glEnable(GL_FOG);
glFogi(GL_FOG_MODE, GL_LINEAR);
glFogfv(GL_FOG_COLOR,fogColor);
glFogf(GL_FOG_START, 0.0f);
glFogf(GL_FOG_END, 100.0f);
glFogi

(GL_FOG_COORDINATE_SOURCE_EXT,
GL_FOG_COORDINATE_EXT);

Damit reduziert sich das Rendering auf
folgende Schleife (analog zum obigen er-
sten Renderpass):

// Material Parameter
glEnable(GL_COLOR_MATERIAL);

glColorMaterial(...);
glMaterialfv(...);

// einfach flatshaded Zeichnen
glBegin(GL_TRIANGLES);

for (int i = 0; i < nFaces; i++)
{

glNormal3fv((float*)
&pFaceList[i].normal);

glFogCoordfEXT(
pFogList

[pFaceList[i].a * 4]);
glVertex3fv((float*)

&pVertexList
[pFaceList[i].a]);

glFogCoordfEXT(
pFogList

[pFaceList[i].b * 4]);
glVertex3fv((float*)

&pVertexList
[pFaceList[i].b]);

glFogCoordfEXT(
pFogList

[pFaceList[i].c * 4]);
glVertex3fv((float*)

&pVertexList
[pFaceList[i].c]);

}

glEnd();

Wie Sie in der obigen Programmschleife
sehen, müssten Sie nicht einmal selbst
die Farbe des Nebels mit der Intensität
skalieren, da OpenGL das automatisch
mit der eingestellten Fog-Farbe tut. So-
mit würde die pFogList nur noch ein
Viertel der Einträge benötigen. s E T

Literatur und Web-Verweise:
Advanced Rendering Techniques Using OpenGL,
SIGGRAPH 99 Course Notes

www.dachsbacher.de/pcu
www.pouet.net/prod.php?which=5624
www.opengl.org/developers/code/sig99/index.
html

DAS 3D-MODELL des Bodens ist nicht fein genug tesseliert.

