o-E]

PRAXIS

Pixel-Shader in OpenGL

Zum schnellen,
schonen

Mit Pixel-Shadern und OpenGL programmieren

Sie die neuen GeForce-3 und -4-Grafikkarten und

, wie sie sich bisher nicht in Hard-

ware rendern lieBen. Lernen Sie die Techniken der

neuen 3D-Spiele kennen.

CARSTEN DACHSBACHER

b DirectX 8 unterstitzt Di-
Arect3D Pixel-Shader. Damit

kdnnen Sie in einer Art Assem-
blersprache festlegen, wie die Grafikkar-
te Texturen ausliest. Davon hangt ab,
wie die Farben von den ausgelesenen Te-
xeln und der Beleuchtungsberechnung
zusammengefugt werden, um einen ge-
rasterten Pixel zu farben.

Diese Features werden von neuen
Grafikkarten wie nVidia-GeForce-3/4
und ATI-Radeon-8500 unterstitzt. Al-
lerdings sind Anzahl und Art der ver-
wendeten Befehle beschrankt. Die
Funktionsweise erkennen Sie besser,
wenn Sie die OpenGL-Extensions von
nVidia betrachten, die Ihnen dieser Bei-
trag vorstellt. Dabei teilt sich die Funk-
tionalitat der Pixel-Shader in zwei Auf-
gabengebiete:

e Sie steuern mit Textur-Shadern, wie
und an welcher Koordinate die Texturen
ausgelesen werden.

e Die zweite Stufe sind die Register-
Combiner, die flr das Texture Blending
verantwortlich sind. Damit kdnnen Sie

Wir gehen von der Hardware einer Ge-
Force-3-Karte bzw. einer dhnlich leis-
tungsfahigen Karte aus. Lediglich die
Anzahl der verfugbaren Textur-Units
(maximale Anzahl von gleichzeitig
adressierbaren Texturen), Register-
Combinerb und Textur-Shader-Modi
kannim Vergleich zu anderen modernen
Grafikkarten variieren. Das Bild unten
verdeutlicht, wo die Textur-Shader in
der Grafikpipeline zu finden sind.

Um die Textur-Shader zu verwenden,
mussen Sie die OpenGL Extensions ab-
fragen und die Zeiger auf die benétigten
Funktionen holen. Diese Initialisie-
rungsarbeit finden Sie im Sourcecode zur
aktuellen Ausgabe. Die Textur-Shader
koénnen nur fir alle Textur-Units zusam-
men aktiviert werden — mit dem Befehl:

glEnable

(GL_TEXTURE_SHADER_NV);
Die Betriebsmodi der einzelnen Textur-
Units lassen sich in vier Gruppen unter-
teilen:

Vertex

‘o

£ ~ Die Quelltexte sowie die fertig ubersetzten
Routinen finden Sie im Verzeichnis Heft Add-
ons/Programmierung/PC Underground.

e Herkdmmliche Lookups (Auslesen),
wie 1D/2D/Cubemap-Texturen,
 Spezialfalle wie Pass Through (Textur-
koordinaten in RGB-Werte umwan-
deln) oder Cull Fragment, womit Sie
einzelne Pixel beim Zeichnen auslassen
konnen,

e Textur auslesen in Abhédngigkeit von
den Lookups anderer Texturen,

* Abhéangigkeit mit zusatzlichem Ska-
larprodukt.

In dieser Ausgabe verwenden Sie vor-
rangig herkdmmliche Lookups sowie
Textur auslesen.

Um die Textur-Shader zu verwenden,
mussen Sie fur je vier Textur-Units die
verwendete Instruktion angeben oder
deaktivieren. Um eine Instruktion anzu-
geben, verwenden Sie glTexEnv[i,f](...)-
Befehle oder nvparse. Letzteres Verfah-
ren Ubergibt Instruktionen in einem
String als Pseudocode.

Als einfaches Beispiel aktivieren Sie
2D Texture Mapping Uber Textur-Sha-
der. Uber glTexEnvi(...) wéhlen Sie das
Textur-Shader-Environment und setzen
als Shader-Operation Texture Mapping:

glActiveTextureARB
(GL_TEXTUREO_ARB);
glTexEnvi
(GL_TEXTURE_SHADER_NV,
GL_SHADER_OPERATION_NV,
GL_TEXTURE_2D);
Alle anderen Textur-Units (hier Unit 1)
deaktivieren Sie mit

glActiveTextureARB
(GL_TEXTURE1_ARB);
glTexEnvi
(GL_TEXTURE_SHADER_NV,
GL_SHADER_OPERATION_NV,
GL_NONE);
Mit den Textur-Shadern bestimmen Sie
nur die Art der Adressierung der Textu-
ren. Die Texturen missen Sie nach wie
vor selbst mit dem gIBindTexture(...)-
Befehl setzen.

Damit kdnnen Sie das Beispiel aus-
bauen. Wir wollen auf die erste Textur-
Unit eine Verschiebungstextur (DSDT-
Textur) legen. Die Werte aus dieser Tex-

festlegen, wie aus den ausgelesenen Te-
xeln die endgultige Pixelfarbe wird.

Um diese Features einfach zu handha-
ben, stellen wir lhnen eine Bibliothek

D Obe asteriz exture extur: Frame
flache rogra Setup Shader lendin Buffer

Per-Pixel Shading (Pixel Shader
bzw. Texture Shader und Register

Berechnung von
Geometrie und

- Shading auf s
von nVidia vor, mit der Sie die Einstel- Basis ein!;elner Combiner): Steuerung des
Vertices Texture Fetch und des Blendings

lungen der Textur-Shader und Register-
Combiner in einer Art Pseudo-Pro-
grammiersprache vornehmen konnen:
die nvparse Bibliothek.

DIE KOMPONENTEN der Grafik-Pipeline in einer modernen 3D-Karte

160 PC Magazin 8/2002

Operation
GL_TEXTURE_1D

nvparse Befehl
texture_1d();

Zweck
1D-Textur auslesen

GL_TEXTURE_2D

texture_2d();

2D-Textur auslesen

GL_TEXTURE_3D

texture_3d();

3D-Textur auslesen

GL_TEXTURE_CUBE_MAP_ARB

texture_cube_map();

Cube-Map-Textur auslesen

GL_CULL_FRAGMENT_NV

cull_fragment(...);

Vergleich, Pixel nicht zeichnen

GL_PASS_THROUGH_NV

pass_through();

STRQ nach RGBA kopieren

GL_OFFSET_TEXTURE_2D_NV

offset_2d(tex?,...)

EnvBump-Mapping

GL_DEPENDENT_AR_TEXTURE_
2D_NV

dependent_ar(tex?)

AR-Farbvergleich als ST verwenden

GL_DEPENDENT_GB_TEXTURE_
2D_NV

tur kdnnen Sie verwenden, um die Tex-
tur-Koordinaten der nachfolgenden
Unit zu modifizieren. Dabei handelt es
sich um den Environment-Bumpmap-
ping-Effekt, wenn die Textur der zwei-
ten Unit die gespiegelte Umgebung des
3D-Objekts enthdlt. Der Textur-Sha-
der-Befehl hierzu lautet GL_OFF-
SET_TEXTURE_2D_NV.

Wenn Sie einer Textur-Uniteine Ope-
ration zuweisen, die einen Input- Wert
aus einer vorherigen Unit bendtigt (wie
es hier der Fall ist), geben Sie diese an:

/I Unit 1 bekommt als Eingabe

//Daten von Unit 0

glActiveTextureARB
(GL_TEXTURE1_ARB);

/I BumpEnv Mapping

glTexEnvi(GL_TEXTURE_SHADER_NV,
GL_SHADER_OPERATION_NV,
GL_OFFSET_TEXTURE_2D_NV);

/Il Input Werte
glTexEnvi(GL_TEXTURE_SHADER_NV,
GL_PREVIOUS_TEXTURE_INPUT_NV,
GL_TEXTUREO_ARB);

Eine DSDT-Textur enthalt fiir jeden Te-
xel zwei 8-Bit-Werte, die angeben, wie
stark die Verschiebung, also die Modifi-
kation der Textur-Koordinaten ist. Die
beiden Komponenten liegen im Werte-
bereich [0..255], der auf den Bereich [-
1...1] gemapped wird. Zusammen erge-
ben die Werte einen 2D-Vektor. Die
Modifikation erfolgt nach folgender
Formel, wobei (S/T) die angegebene
Texturkoordinate der Unit 1 und S’/T’
die neue ist. Die Werte k(0..3) sind eine
2x2-Matrix, um den Verschiebungsvek-
tor aus der DSDT-Textur drehen und
skalieren zu kdnnen.

S =S +k(0) * ds + k(2) * dt

T =T +k() *ds +k(3) * dt
Die 2x2-Matrix geben Sie wie folgt an:

float mat2d[] =
{0.8f, 0.0f, 0.0f, 0.8f };

glTexEnviv(GL_TEXTURE_SHADER_NV,
GL_OFFSET_TEXTURE_MATRIX_NV,
mat2d);

dependent_gb(tex?)

GB-Farbvergleich als ST verwenden

Einen Uberblick tiber einen Teil der Tex-
tur-Shader-Operationen bietet Ihnen die
Tabelle oben. Mehr Uber den dargestell-
ten Teilbereich erfahren Sie auf den Web-
seiten der Grafikkartenhersteller.

Sie kennen jetzt das Handwerkszeug,
um einen Textur-Shader zu aktivieren.
Mit der nvparse-Bibliothek kdénnen Sie
mit einem String die Textur-Shader-
Operationen elegant beschreiben. Der
Parser verarbeitet diesen String, und die
Bibliothek tbernimmt fir Sie die glTe-
xEnv[i,f](...)-Aufrufe. Es gibt zwei
Schnittstellen zu nvparse:

» Der Aufruf zum Parsen (Analysieren)
lautet

void nvparse

(char *program_string);
« Die Abfrage, ob Fehler im Programm
enthalten sind, heil3t

const char

**nvparse_get_errors();

Ein Textur-Shader-Programm hat einen
festen Aufbau. Es beginnt mit einer Ken-
nung, der eine bis vier Instruktionen fol-

Diffuse Farbe
Specular Fa rbg
Fog Farbe/Faktor

Texture 0

|

Texture 1

|

Register

Texture
Units

Texture 2

|

Texture 3

|

Specular Farbe

4 RGB Inputs
4 Alpha Inputs

4 RGB Inputs
4 Alpha Inputs

3 Alpha Outputs 1

4 RGB Inputs
4 Alpha Inputs

PC UNDERGROUND
PRAXIS

gen kdnnen — eine fur jede Texture Unit.
Die Bezeichnungen der einzelnen In-
struktionen listet die Tabelle links auf.
Die zulassigen Register in einem Pro-
gramm sind tex0, tex1, tex2, tex3, womit
Sie auf die Resultate der ausgelesenen
Texturen zugreifen. Jedes Register steht
fiir ein RGBA-Quadrupel. die Werte des
Registers lassen sich expandieren, wenn
Sie jede Komponente durch den Eintrag
2*Komponente-1 ersetzen:

expand(tex0)
Das obige Beispiel kénnen Sie mit
nvparse wie folgt angeben:

nvparse(

JMTS1.0
texture_2d();
offset_2d(tex0,0.8,0.0,0.0,0.8);

nop();
nop();*);

glEnable(GL_TEXTURE_SHADER_NV);

Da nvparse mehr Rechenzeit benétigt,
sollten Sie es in dieser Form nicht in Ih-
rer Render-Pipeline stehen lassen. Ge-
nerieren Sie eine Display-L.iste, in der Sie
die Aufrufe speichern:

GLint setupBumpEnvMap;

setupBumpEnvMap = glGenList(1);
gINewList

(setupBumpEnvMap, GL_COMPILE);
glEnable(GL_TEXTURE_SHADER_NV);
nvparse(...);
glEndList();

Das in der Liste gespeicherte Setup akti-
vieren Sie mit:
glCallList(setupBumpEnvMap);

Ein Register-Combiner zeigte das vor-
ausgehende Bild beim Textur-Blen- ©

General
Combiner
0

General
Combiner

.
.

General
Combiner
7

Final

6 RGB Inputs

RGBA Farbe

T Alpha Input kcomblner

LlA

DIE REGISTER-COMBINER einer Geforce-3-Karte

872002 PC Magazin 161

o-E]

PC UNDERGROUND

PRAXIS
RGB/Alpha Input Funktion/ Output und die berechnete
Input Register Mapping Berechnun Scale/Bias Register Funktion wahlen. Als
T—-— Beispiel sehen Sie ein
Aopl einfaches Programm,
—c-[]—— ; dessen Operationen
Cop2 Sie anschlieRend be-

- -
e

DAS DIAGRAMM eines General Combiner — nur mit dem

RGB-Teil

ding. Hier werden die Farbwerte, die aus
den Texturen ausgelesen wurden und
aus der Beleuchtungs- und Fog-Berech-
nung kommen, mit einem oder mehre-
ren General-Combinern zur fertigen Pi-
xelfarbe gemischt.

Die Register, auf die ein General-
Combiner zugreifen kann, finden Sie in
der Tabelle unten.

Um den Uberblick zu behalten, be-
schranken wir uns auf die nvparse-Vari-
ante. Bei den Registern kdnnen Sie je-
weils getrennt auf RGB- (col0.rgb) und
Alpha-Werte (col0.a) zugreifen oder nur
mit dem Blauwert (col0.b) arbeiten. Auf
alle Input-Werte kénnen Sie ein Map-
ping anwenden. Da-
mit verdndern Sie die
Eingabewerte kom- I
ponentenweise. Die

:

trachten:

nvparse(
JIRC1.0
const0 = (0.1,
0.2,0.3,0.4);
{//Beginn des Ge-
neral Combiner
rgb {// Beginn

des RGB Teils
spare0 = col0 * tex0;
scale_by_two();

alpha { // Alpha Teil
sparel = coll * constO;

}

/I Final Combiner
final_product = spare0*tex0;
clamp_color_sum();

out.rgb = color_sum()+tex0;");

glEnable
(GL_REGISTER_COMBINERS_NV);

Sie kdnnen den General-Combiner funf
verschiedene Berechnungen durch-
fuhren lassen, die ersten drei betreffen
nur den RGB-Teil. Es folgen fiinf Pro-
gramme in nvparse-Notation, wobei das

Mappings finden Sie Bedeutung Name Zugriff]
in der Tabelle unten. —— m (ad/ write)
Sie verwenden die [use rare © il
: . Specular Farbe coll r/w
Input Mappings, in-
. Farbe aus Textur O tex0 r/w
dem Sie statt des Re-
. Farbe aus Textur 1 texl r/w
gisters den Namen des
. . Farbe aus Textur 2 tex2 r/w
Mappings und in
. Farbe aus Textur 3 tex3 r/w
Klammern den Regis- —
. Spare0 (Arbeitsregister) spare0 r/w
ternamen schreiben, - >
Sparel (Arbeitsregister) sparel r/w
z.B. expand(col0). Je-
d G -Combi Farb-Konstante constO read only
er eneral-L.ombi- Farb-Konstante constl read only
ner_hatwer InpUt__ und Fog-Farbe und Faktor fog read only RGB
d_I’EI QUtqu_RegBte_r' Register enthalt immer O zero read only
Sie Konnen Jewveils _dle Discard (Internes Register) discard write only
Register, das Mapping
Name Beispiel Funktion Wertebereich
Signed Identity tex0 f(x)=x [-10]->[-11]
Unsigned Identity unsigned(tex0) f(x)=max(0,x) [01]->[0,1]
Expand Normal expand(tex0) f(x)=2*max(0,x)-1 [01]-> [-11]
Half Bias Normal half_bias(tex0) f(x)=max(0,x)-0.5 [0,1] -> [-.5,.5]
Signed Negate -tex0 f(x)=-x [-11]->[1,-1]
Unsigned Invert unsigned_invert(tex0) f(x)=1-min(max(0,x),1) [0,1]->[1,0]
Expand Negate -expand(tex0) f(x)=-2*max(0,x)+1 [01]->[1,-1]
Half Bias Negate -half_bias(tex0) f(x)=-max(0,x)+0.5 [0,1] -> [.5,-.5]
Signed Identity tex0 f(x)=x [-10]->[-11]

162 PC Magazin 8/2002

Beispiel die col0, coll- und tex0, tex1-
Register als Input wiéhlit. Die Resultate
geben Sie ber die Spare-Register an den
nachsten General- oder den Final-Com-
biner.
» Zweifaches Skalarprodukt (Dot/Dot/
Discard):

spareQ =

expand(col0) . expand(tex0);

sparel =
expand(coll) . expand(texl);

e Skalarprodukt, komponentenweise
Multiplikation (Dot/Mult/Discard):
spareQ =

expand(col0) . expand(tex0);
sparel = coll * tex1;

« Komponentenweise Multiplikation,
Skalarprodukt (Mult/Dot/Discard):
spare0 = col0 * tex0;
sparel =
expand(coll) . expand(tex1);

« Komponentenweise ~ Multiplikation
mit Vergleich, wobei discard ein internes
Temporar-Register darstellt:
mux(AB,CD) =
(Spare0.a < 0.5) ? AB:CD;
discard = col0 * tex0;
discard = coll * tex1;
sparel = mux();
* Komponentenweise
mit Addition:

(sparel=discard+spare0)
discard = col0 * tex0;
spare0 = coll * tex1;
sparel = sum();

Multiplikation

Die Resultate der Berechnung kénnen
Sie anschlieRend skalieren und verschie-
ben (Scale/Bias), wozu Sie entsprechen-
de Befehle eingeben. Die Scale/Bias-Op-
tionen entnehmen Sie der Tabelle auf der
nachsten Seite.

Das Ergebnis eines General-Combi-
ners kdnnen Sie im nachsten verwenden.
Wenn Sie alle Berechnungen durchge-
fihrt haben, setzen Sie die Resultate im
Final-Combiner zusammen.

Der Final-Combiner kennt die gleichen
Register wie ein General- Combiner, al-
lerdings sind alle Werte hier nur lesbar.
Als Input-Werte werden das spare0-Re-
gister, die Specular-Farbe, sechs weitere
RGB-Inputs und ein Alpha-Wert ak-
zeptiert. Als Input-Mappings stehen nur
unsigned(...) und unsigned_invert(...)
zur Verfugung. Der Ablauf der Berech-
nung im Final-Combiner gestattet es Ih-
nen, Teile auszulassen.

Zunéchst konnen Sie das Final Pro-
duct berechnen. Dabei multiplizieren
Sie zwei beliebige Input-Register. Das
Ergebnis steht fir weitere Berechnun-

gen zur Verfligung. Sie greifen darauf auf
ein Register mit dem Namen final_pro-
duct zu.

final_product =

colO * unsigned_invert(tex0);

Weiterhin berechnen Sie die Final Color
Sum. Diese addiert komponentenweise
die Werte von spare0.rgb+coll.rgb. Da
sich der Wertebereich Uber [0;2] er-
streckt, kdnnen Sie das so genannte
Clamping aktivieren: Werte grofer als 1
werden auf 1 gesetzt. Dazu verwenden
Sie den clamp_color_sum()-Befehl.

Alle Register, zusammen mit final_
product und color_sum, stehen nun zur
Verfugung, um das RGB-Tripel der end-
gultigen Farbe mit der Final-Combiner-
Funktion zu berechnen. Diese Funktion
kann zwischen zwei Farben linear inter-
polieren und die Werte addieren:

A*B+(1-A)*C+D
Fur A, B, C und D nutzen Sie alle Regi-
ster mit der Ausnahme, dass A nicht co-
lor_sum sein darf. In nvparse weisen Sie
die resultierende Farbe dem out-Regi-
ster zu. Die Zuweisung kann verschie-
dene Formen annehmen, die Spezialfélle
der obigen Formel darstellen. Verschie-
dene Beispiele sehen Sie hier, die Map-
pings fur A, B, C und D sind dahinter an-
gegeben:

/I Zuweisung
/I A=zero, B=zero, C=zero,D=tex0
out.rgb = tex0;

/I Produkt: A=zero, B=egal,
/I C=final_product, D=zero
out.rgb = tex0 * final_product;

/I Summe: A=zero, B=egal,
/I C=tex0, D=final_product
out.rgb = tex0 + final_product

/I Interpolation und Summe

Il A=tex1.a, B=tex0,

/IC=color_sum, D=const1

out.rgb = lerp

(tex1.a, tex0, color_sum)+constl
Fur den Alpha-Input-Wert fuhrt der Fi-
nal-Combiner nur ein Mapping durch.
Sie kdnnen diesen Wert also nicht weiter
modifizieren. Die Konstanten const0
und constl kénnen Sie am Anfang des
nvparse-Programms angeben, diese gel-

ten dann fur den Final- und die General-
Combiner. Bei einer neuen GeForce-
3/4-Karte kdnnen Sie die Konstanten flr
jeden General-Combiner separat spezi-
fizieren.

Das Programm zu dieser Ausgabe er-
zeugt eine animierte DSDT-Textur. Die
Textur-Units werden mit nvparse und
dem Register- Combiner konfiguriert.

In der Initialisierungsphase wird eine
Heightmap, eine 8-Bit-Graustufen-Bit-
map, geladen und daraus eine RGB-Tex-
tur generiert, die fur jeden Pixel der
Heightmap die Hohendifferenzen in x-
und y-Richtung in der Griin- und Blau-
komponente enthélt:

/I Heightmap Daten
GLubyte heightMap[256*256];

/Il RGBA Texture
GLubyte deltaMap[256*256*4];
memset(delta, 0, 256*256%4);

for (j=0;] < 256; j++)
for (i=0;i<256;i++)
{

intofs=i+(j<<8);

h = heightMap] ofs];
dx=heightMap][(ofs+1)&65535]-h;
dy=heightMap[(ofs+256)&65535]-h;

dx += 64;

dy +=64;

delta[ofs * 4 + 1] = dx;

delta ofs *4 + 2] =dy;

}

Bevor Sie einen neuen Frame rendern,
setzen Sie den Viewport von OpenGL
auf eine GroRe von 256 x 256 Pixel. Dort
zeichnen Sie diese Textur viermal Ube-
reinander mit additivem Blending und
zeitlich abhéngiger Verschiebung der
Textur-Koordinaten. Das Blending
konfigurieren Sie mit den Register-
Combinern. Die vier Textur-Units akti-
vieren Sie mit;

nvpase(,!!'TS1.0 texture_2d();
texture_2d(); texture_2d();
texture_2d();");

Durch das vierfache Zeichnen mit Blen-
ding ergeben sich stdndig wechselnde

Farbmuster. Die Farben sind griinblau,
da in diesen Texture-Farbkanalen die

Differenzen der
Heightmap gespei-
chert sind. Diese
Farbmuster sollen
Name Befehl Funktion nur als animerte
No Scale - fx) =x DSDT-Texturen ver-
Scale by 1/2 scale_by_one_half{(); f(x) = 0.5x wendet werden. Dazu
Scale by 2 scale_by_two(); f(x) = 2x kopieren Sie die RG-
Scale by 4 scale_by_four(); f(x) = 4x BA-Daten zunichst
B!as by -172 b!as_by_negat!ve_one_half(); f(x)=x-05 in den Speicher und
Bias by -1/2, bias_by_negative_one_half_ f(x) = 2(x-0.5) d di
Scale by 2 scale_by_two(); erzeugen caraus die

DSDT-Textur:

PC UNDERGROUND
PRAXIS

/I Speicherbereich

GLubyte deltaMap32[256*256*4];
glReadPixels(0, 0, 256, 256,
GL_RGBA, GL_UNSIGNED_BYTE,
deltaMap32);

/l DSDT Bumpmap
GLubyte bumpMap[256*256*2];

/| DSDT Map erzeugen

GLubyte *bumpy = bumpMap;
GLubyte *bumpy32 = deltaMap32;
for (i=0;i<256*256; i++)

*(bumpy++) = *(bumpy32++);

*(bumpy++) = *(bumpy32++);
bumpy32+=2;

/I und an OpenGL Ubergeben

glBindTexture(GL_TEXTURE_2D,
bumpMapTexture);

glTeximage2D(GL_TEXTURE_2D, 0,
GL_DSDT_NV, 256,256, 0,
GL_DSDT_NV, GL_UNSIGNED_BYTE,
bumpMap);

Wabhlen Sie anschlieRend die DSDT-
Map fur Textur-Unit 0 und eine beliebi-
ge 2D-Textur fur Unit 1, erhalten Sie ei-
nen Bump-Mapping-Effekt. Aktivieren
Sie die Textur-Shader, wie zu Beginn des
Artikels vorgestellt, ist der Effekt aus
unserem Beispielprogramm fertig.

DIE DSDT-TEXTUR aus dem Beispiel-
programm als Grun-Blau-Textur

Die Anwendungen der Textur-Shader
und Register-Combiner sind sehr viel-
faltig. Vor allem die komplexen Features
wie Dot-Product-Bumpmapping erfor-
dern zusatzliche Vertex-Programme.
Der Grund: Bestimmte Effekte brau-
chen Normalen-Vektoren. Diese wer-
den als Farbwerte Ubergeben, was Ver-
tex-Programme vorbereiten. ET

Links und Literatur:

www.dachsbacher.de/pcu
www.nvidia.com

www.ati.com
www.3dconcept.ch/cgi-bin/showarchiv.

cgi?show=2130

872002 PC Magazin 163

| —+@

