
P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R

Ab DirectX 8 unterstützt Di-
rect3D Pixel-Shader. Damit
können Sie in einer Art Assem-

blersprache festlegen, wie die Grafikkar-
te Texturen ausliest. Davon hängt ab,
wie die Farben von den ausgelesenen Te-
xeln und der Beleuchtungsberechnung
zusammengefügt werden, um einen ge-
rasterten Pixel zu färben.

Diese Features werden von neuen
Grafikkarten wie nVidia-GeForce-3/4
und ATI-Radeon-8500 unterstützt. Al-
lerdings sind Anzahl und Art der ver-
wendeten Befehle beschränkt. Die
Funktionsweise erkennen Sie besser,
wenn Sie die OpenGL-Extensions von
nVidia betrachten, die Ihnen dieser Bei-
trag vorstellt. Dabei teilt sich die Funk-
tionalität der Pixel-Shader in zwei Auf-
gabengebiete:
• Sie steuern mit Textur-Shadern, wie
und an welcher Koordinate die Texturen
ausgelesen werden.
• Die zweite Stufe sind die Register-
Combiner, die für das Texture Blending
verantwortlich sind. Damit können Sie
festlegen, wie aus den ausgelesenen Te-
xeln die endgültige Pixelfarbe wird.

Um diese Features einfach zu handha-
ben, stellen wir Ihnen eine Bibliothek
von nVidia vor, mit der Sie die Einstel-
lungen der Textur-Shader und Register-
Combiner in einer Art Pseudo-Pro-
grammiersprache vornehmen können:
die nvparse Bibliothek.

■ Textur-Shader

Wir gehen von der Hardware einer Ge-
Force-3-Karte bzw. einer ähnlich leis-
tungsfähigen Karte aus. Lediglich die
Anzahl der verfügbaren Textur-Units
(maximale Anzahl von gleichzeitig
adressierbaren Texturen), Register-
Combinerb und Textur-Shader-Modi
kann im Vergleich zu anderen modernen
Grafikkarten variieren. Das Bild unten
verdeutlicht, wo die Textur-Shader in
der Grafikpipeline zu finden sind.

Um die Textur-Shader zu verwenden,
müssen Sie die OpenGL Extensions ab-
fragen und die Zeiger auf die benötigten
Funktionen holen. Diese Initialisie-
rungsarbeit finden Sie im Sourcecode zur
aktuellen Ausgabe. Die Textur-Shader
können nur für alle Textur-Units zusam-
men aktiviert werden – mit dem Befehl:

glEnable
(GL_TEXTURE_SHADER_NV);

Die Betriebsmodi der einzelnen Textur-
Units lassen sich in vier Gruppen unter-
teilen:

• Herkömmliche Lookups (Auslesen),
wie 1D/2D/Cubemap-Texturen,
• Spezialfälle wie Pass Through (Textur-
koordinaten in RGB-Werte umwan-
deln) oder Cull Fragment, womit Sie
einzelne Pixel beim Zeichnen auslassen
können,
• Textur auslesen in Abhängigkeit von
den Lookups anderer Texturen,
• Abhängigkeit mit zusätzlichem Ska-
larprodukt.

In dieser Ausgabe verwenden Sie vor-
rangig herkömmliche Lookups sowie
Textur auslesen.

Um die Textur-Shader zu verwenden,
müssen Sie für je vier Textur-Units die
verwendete Instruktion angeben oder
deaktivieren. Um eine Instruktion anzu-
geben, verwenden Sie glTexEnv[i,f](...)-
Befehle oder nvparse. Letzteres Verfah-
ren übergibt Instruktionen in einem
String als Pseudocode.

Als einfaches Beispiel aktivieren Sie
2D Texture Mapping über Textur-Sha-
der. Über glTexEnvi(...) wählen Sie das
Textur-Shader-Environment und setzen
als Shader-Operation Texture Mapping:

glActiveTextureARB
(GL_TEXTURE0_ARB);

glTexEnvi
(GL_TEXTURE_SHADER_NV,
GL_SHADER_OPERATION_NV,
GL_TEXTURE_2D);

Alle anderen Textur-Units (hier Unit 1)
deaktivieren Sie mit

glActiveTextureARB
(GL_TEXTURE1_ARB);

glTexEnvi
(GL_TEXTURE_SHADER_NV,
GL_SHADER_OPERATION_NV,
GL_NONE);

Mit den Textur-Shadern bestimmen Sie
nur die Art der Adressierung der Textu-
ren. Die Texturen müssen Sie nach wie
vor selbst mit dem glBindTexture(...)-
Befehl setzen.

Damit können Sie das Beispiel aus-
bauen. Wir wollen auf die erste Textur-
Unit eine Verschiebungstextur (DSDT-
Textur) legen. Die Werte aus dieser Tex-

160 PC Magazin 8/2002

Pixel-Shader in OpenGL

Zum schnellen,
schönenSchein
Mit Pixel-Shadern und OpenGL programmieren
Sie die neuen GeForce-3 und -4-Grafikkarten und
zaubern Effekte, wie sie sich bisher nicht in Hard-
ware rendern ließen. Lernen Sie die Techniken der
neuen 3D-Spiele kennen.

AUF CD
Die Quelltexte sowie die fertig übersetzten

Routinen finden Sie im Verzeichnis Heft Add-
ons/Programmierung/PC Underground.

DIE KOMPONENTEN der Grafik-Pipeline in einer modernen 3D-Karte

P C U N D E R G R O U N D
P R A X I S

tur können Sie verwenden, um die Tex-
tur-Koordinaten der nachfolgenden
Unit zu modifizieren. Dabei handelt es
sich um den Environment-Bumpmap-
ping-Effekt, wenn die Textur der zwei-
ten Unit die gespiegelte Umgebung des
3D-Objekts enthält. Der Textur-Sha-
der-Befehl hierzu lautet GL_OFF-
SET_TEXTURE_2D_NV.

Wenn Sie einer Textur-Unit eine Ope-
ration zuweisen, die einen Input- Wert
aus einer vorherigen Unit benötigt (wie
es hier der Fall ist), geben Sie diese an:

// Unit 1 bekommt als Eingabe
//Daten von Unit 0
glActiveTextureARB

(GL_TEXTURE1_ARB);

// BumpEnv Mapping
glTexEnvi(GL_TEXTURE_SHADER_NV,
GL_SHADER_OPERATION_NV,
GL_OFFSET_TEXTURE_2D_NV);

// Input Werte
glTexEnvi(GL_TEXTURE_SHADER_NV,
GL_PREVIOUS_TEXTURE_INPUT_NV,
GL_TEXTURE0_ARB);

Eine DSDT-Textur enthält für jeden Te-
xel zwei 8-Bit-Werte, die angeben, wie
stark die Verschiebung, also die Modifi-
kation der Textur-Koordinaten ist. Die
beiden Komponenten liegen im Werte-
bereich [0..255], der auf den Bereich [-
1...1] gemapped wird. Zusammen erge-
ben die Werte einen 2D-Vektor. Die
Modifikation erfolgt nach folgender
Formel, wobei (S/T) die angegebene
Texturkoordinate der Unit 1 und S’/T’
die neue ist. Die Werte k(0..3) sind eine
2x2-Matrix, um den Verschiebungsvek-
tor aus der DSDT-Textur drehen und
skalieren zu können.

S’ = S + k(0) * ds + k(2) * dt
T’ = T + k(1) * ds + k(3) * dt

Die 2x2-Matrix geben Sie wie folgt an:

float mat2d[] =
{ 0.8f, 0.0f, 0.0f, 0.8f };

glTexEnvfv(GL_TEXTURE_SHADER_NV,
GL_OFFSET_TEXTURE_MATRIX_NV,

mat2d);

Einen Überblick über einen Teil der Tex-
tur-Shader-Operationen bietet Ihnen die
Tabelle oben. Mehr über den dargestell-
ten Teilbereich erfahren Sie auf den Web-
seiten der Grafikkartenhersteller.

Sie kennen jetzt das Handwerkszeug,
um einen Textur-Shader zu aktivieren.
Mit der nvparse-Bibliothek können Sie
mit einem String die Textur-Shader-
Operationen elegant beschreiben. Der
Parser verarbeitet diesen String, und die
Bibliothek übernimmt für Sie die glTe-
xEnv[i,f](...)-Aufrufe. Es gibt zwei
Schnittstellen zu nvparse:
• Der Aufruf zum Parsen (Analysieren)
lautet

void nvparse
(char *program_string);

• Die Abfrage, ob Fehler im Programm
enthalten sind, heißt

const char
**nvparse_get_errors();

Ein Textur-Shader-Programm hat einen
festen Aufbau. Es beginnt mit einer Ken-
nung, der eine bis vier Instruktionen fol-

gen können – eine für jede Texture Unit.
Die Bezeichnungen der einzelnen In-
struktionen listet die Tabelle links auf.
Die zulässigen Register in einem Pro-
gramm sind tex0, tex1, tex2, tex3, womit
Sie auf die Resultate der ausgelesenen
Texturen zugreifen. Jedes Register steht
für ein RGBA-Quadrupel. die Werte des
Registers lassen sich expandieren, wenn
Sie jede Komponente durch den Eintrag
2*Komponente-1 ersetzen:

expand(tex0)

Das obige Beispiel können Sie mit
nvparse wie folgt angeben:

nvparse(
„!!TS1.0

texture_2d();
offset_2d(tex0,0.8,0.0,0.0,0.8);

nop();
nop();“);

glEnable(GL_TEXTURE_SHADER_NV);

Da nvparse mehr Rechenzeit benötigt,
sollten Sie es in dieser Form nicht in Ih-
rer Render-Pipeline stehen lassen. Ge-
nerieren Sie eine Display-Liste, in der Sie
die Aufrufe speichern:

GLint setupBumpEnvMap;

setupBumpEnvMap = glGenList(1);
glNewList

(setupBumpEnvMap, GL_COMPILE);
glEnable(GL_TEXTURE_SHADER_NV);
nvparse(...);
glEndList();

Das in der Liste gespeicherte Setup akti-
vieren Sie mit:

glCallList(setupBumpEnvMap);

■ Register-Combiner
Ein Register-Combiner zeigte das vor-
ausgehende Bild beim Textur-Blen- q

8/2002 PC Magazin 161

DIE EINFACHEN TEXTUR-SHADER-OPERATIONEN

Operation nvparse Befehl Zweck
GL_TEXTURE_1D texture_1d(); 1D-Textur auslesen
GL_TEXTURE_2D texture_2d(); 2D-Textur auslesen
GL_TEXTURE_3D texture_3d(); 3D-Textur auslesen
GL_TEXTURE_CUBE_MAP_ARB texture_cube_map(); Cube-Map-Textur auslesen
GL_CULL_FRAGMENT_NV cull_fragment(...); Vergleich, Pixel nicht zeichnen
GL_PASS_THROUGH_NV pass_through(); STRQ nach RGBA kopieren
GL_OFFSET_TEXTURE_2D_NV offset_2d(tex?,...) EnvBump-Mapping
GL_DEPENDENT_AR_TEXTURE_ dependent_ar(tex?) AR-Farbvergleich als ST verwenden
2D_NV
GL_DEPENDENT_GB_TEXTURE_ dependent_gb(tex?) GB-Farbvergleich als ST verwenden
2D_NV

DIE REGISTER-COMBINER einer Geforce-3-Karte

P C U N D E R G R O U N D
P R A X I S

ding. Hier werden die Farbwerte, die aus
den Texturen ausgelesen wurden und
aus der Beleuchtungs- und Fog-Berech-
nung kommen, mit einem oder mehre-
ren General-Combinern zur fertigen Pi-
xelfarbe gemischt.

Die Register, auf die ein General-
Combiner zugreifen kann, finden Sie in
der Tabelle unten.

Um den Überblick zu behalten, be-
schränken wir uns auf die nvparse-Vari-
ante. Bei den Registern können Sie je-
weils getrennt auf RGB- (col0.rgb) und
Alpha-Werte (col0.a) zugreifen oder nur
mit dem Blauwert (col0.b) arbeiten. Auf
alle Input-Werte können Sie ein Map-
ping anwenden. Da-
mit verändern Sie die
Eingabewerte kom-
ponentenweise. Die
Mappings finden Sie
in der Tabelle unten.

Sie verwenden die
Input Mappings, in-
dem Sie statt des Re-
gisters den Namen des
Mappings und in
Klammern den Regis-
ternamen schreiben,
z.B. expand(col0). Je-
der General-Combi-
ner hat vier Input- und
drei Output-Register.
Sie können jeweils die
Register, das Mapping

und die berechnete
Funktion wählen. Als
Beispiel sehen Sie ein
einfaches Programm,
dessen Operationen
Sie anschließend be-
trachten:
nvparse(

„!!RC1.0
const0 = (0.1,
0.2, 0.3, 0.4);

{ //Beginn des Ge-
neral Combiner

rgb { // Beginn
des RGB Teils

spare0 = col0 * tex0;
scale_by_two();

}
alpha { // Alpha Teil

spare1 = col1 * const0;
}

}
// Final Combiner
final_product = spare0*tex0;
clamp_color_sum();

out.rgb = color_sum()+tex0;“);

glEnable
(GL_REGISTER_COMBINERS_NV);

Sie können den General-Combiner fünf
verschiedene Berechnungen durch-
führen lassen, die ersten drei betreffen
nur den RGB-Teil. Es folgen fünf Pro-
gramme in nvparse-Notation, wobei das

Beispiel die col0, col1- und tex0, tex1-
Register als Input wählt. Die Resultate
geben Sie über die Spare-Register an den
nächsten General- oder den Final-Com-
biner.
• Zweifaches Skalarprodukt (Dot/Dot/
Discard):

spare0 =
expand(col0) . expand(tex0);

spare1 =
expand(col1) . expand(tex1);

• Skalarprodukt, komponentenweise
Multiplikation (Dot/Mult/Discard):

spare0 =
expand(col0) . expand(tex0);

spare1 = col1 * tex1;

• Komponentenweise Multiplikation,
Skalarprodukt (Mult/Dot/Discard):

spare0 = col0 * tex0;
spare1 =

expand(col1) . expand(tex1);

• Komponentenweise Multiplikation
mit Vergleich, wobei discard ein internes
Temporär-Register darstellt:

mux(AB,CD) =
(Spare0.a < 0.5) ? AB:CD;

discard = col0 * tex0;
discard = col1 * tex1;
spare1 = mux();

• Komponentenweise Multiplikation
mit Addition:

(spare1=discard+spare0)
discard = col0 * tex0;
spare0 = col1 * tex1;
spare1 = sum();

Die Resultate der Berechnung können
Sie anschließend skalieren und verschie-
ben (Scale/Bias), wozu Sie entsprechen-
de Befehle eingeben. Die Scale/Bias-Op-
tionen entnehmen Sie der Tabelle auf der
nächsten Seite.

Das Ergebnis eines General-Combi-
ners können Sie im nächsten verwenden.
Wenn Sie alle Berechnungen durchge-
führt haben, setzen Sie die Resultate im
Final-Combiner zusammen.

■ Der Final Combiner
Der Final-Combiner kennt die gleichen
Register wie ein General- Combiner, al-
lerdings sind alle Werte hier nur lesbar.
Als Input-Werte werden das spare0-Re-
gister, die Specular-Farbe, sechs weitere
RGB-Inputs und ein Alpha-Wert ak-
zeptiert. Als Input-Mappings stehen nur
unsigned(...) und unsigned_invert(...)
zur Verfügung. Der Ablauf der Berech-
nung im Final-Combiner gestattet es Ih-
nen, Teile auszulassen.

Zunächst können Sie das Final Pro-
duct berechnen. Dabei multiplizieren
Sie zwei beliebige Input-Register. Das
Ergebnis steht für weitere Berechnun-

162 PC Magazin 8/2002

DIE INPUT MAPPINGS DER GENERAL-COMBINER
BEI INPUT WERT X

Name Beispiel Funktion Wertebereich
Signed Identity tex0 f(x)=x [-1,1] -> [-1,1]
Unsigned Identity unsigned(tex0) f(x)=max(0,x) [0,1] -> [0,1]
Expand Normal expand(tex0) f(x)=2*max(0,x)-1 [0,1] -> [-1,1]
Half Bias Normal half_bias(tex0) f(x)=max(0,x)-0.5 [0,1] -> [-.5,.5]
Signed Negate -tex0 f(x)=-x [-1,1] -> [1,-1]
Unsigned Invert unsigned_invert(tex0) f(x)=1-min(max(0,x),1) [0,1] -> [1,0]
Expand Negate -expand(tex0) f(x)=-2*max(0,x)+1 [0,1] -> [1,-1]
Half Bias Negate -half_bias(tex0) f(x)=-max(0,x)+0.5 [0,1] -> [.5,-.5]
Signed Identity tex0 f(x)=x [-1,1] -> [-1,1]

DIE REGISTER EINES
GENERAL-COMBINER

Bedeutung Name Zugriff
(read/write)

Diffuse Farbe col0 r/w
Specular Farbe col1 r/w
Farbe aus Textur 0 tex0 r/w
Farbe aus Textur 1 tex1 r/w
Farbe aus Textur 2 tex2 r/w
Farbe aus Textur 3 tex3 r/w
Spare0 (Arbeitsregister) spare0 r/w
Spare1 (Arbeitsregister) spare1 r/w
Farb-Konstante const0 read only
Farb-Konstante const1 read only
Fog-Farbe und Faktor fog read only RGB
Register enthält immer 0 zero read only
Discard (Internes Register) discard write only

DAS DIAGRAMM eines General Combiner – nur mit dem
RGB-Teil

P C U N D E R G R O U N D
P R A X I S

gen zur Verfügung. Sie greifen darauf auf
ein Register mit dem Namen final_pro-
duct zu.

final_product =
col0 * unsigned_invert(tex0);

Weiterhin berechnen Sie die Final Color
Sum. Diese addiert komponentenweise
die Werte von spare0.rgb+col1.rgb. Da
sich der Wertebereich über [0;2] er-
streckt, können Sie das so genannte
Clamping aktivieren: Werte größer als 1
werden auf 1 gesetzt. Dazu verwenden
Sie den clamp_color_sum()-Befehl.

Alle Register, zusammen mit final_
product und color_sum, stehen nun zur
Verfügung, um das RGB-Tripel der end-
gültigen Farbe mit der Final-Combiner-
Funktion zu berechnen. Diese Funktion
kann zwischen zwei Farben linear inter-
polieren und die Werte addieren:

A * B + (1 - A) * C + D

Für A, B, C und D nutzen Sie alle Regi-
ster mit der Ausnahme, dass A nicht co-
lor_sum sein darf. In nvparse weisen Sie
die resultierende Farbe dem out-Regi-
ster zu. Die Zuweisung kann verschie-
dene Formen annehmen, die Spezialfälle
der obigen Formel darstellen. Verschie-
dene Beispiele sehen Sie hier, die Map-
pings für A, B, C und D sind dahinter an-
gegeben:

// Zuweisung
// A=zero, B=zero, C=zero,D=tex0
out.rgb = tex0;

// Produkt: A=zero, B=egal,
// C=final_product, D=zero
out.rgb = tex0 * final_product;

// Summe: A=zero, B=egal,
// C=tex0, D=final_product
out.rgb = tex0 + final_product

// Interpolation und Summe
// A=tex1.a, B=tex0,
//C=color_sum, D=const1
out.rgb = lerp
(tex1.a, tex0, color_sum)+const1

Für den Alpha-Input-Wert führt der Fi-
nal-Combiner nur ein Mapping durch.
Sie können diesen Wert also nicht weiter
modifizieren. Die Konstanten const0
und const1 können Sie am Anfang des
nvparse-Programms angeben, diese gel-

ten dann für den Final- und die General-
Combiner. Bei einer neuen GeForce-
3/4-Karte können Sie die Konstanten für
jeden General-Combiner separat spezi-
fizieren.

■ Das Beispiel-Programm
Das Programm zu dieser Ausgabe er-
zeugt eine animierte DSDT-Textur. Die
Textur-Units werden mit nvparse und
dem Register- Combiner konfiguriert.

In der Initialisierungsphase wird eine
Heightmap, eine 8-Bit-Graustufen-Bit-
map, geladen und daraus eine RGB-Tex-
tur generiert, die für jeden Pixel der
Heightmap die Höhendifferenzen in x-
und y–Richtung in der Grün- und Blau-
komponente enthält:

// Heightmap Daten
GLubyte heightMap[256*256];

// RGBA Texture
GLubyte deltaMap[256*256*4];
memset(delta, 0, 256*256*4);

for (j = 0; j < 256; j++)
for (i = 0; i < 256; i++)
{

int ofs = i + (j << 8);
h = heightMap[ofs];

dx=heightMap[(ofs+1)&65535]-h;
dy=heightMap[(ofs+256)&65535]-h;

dx += 64;
dy += 64;
delta[ofs * 4 + 1] = dx;
delta[ofs * 4 + 2] = dy;

}

Bevor Sie einen neuen Frame rendern,
setzen Sie den Viewport von OpenGL
auf eine Größe von 256 x 256 Pixel. Dort
zeichnen Sie diese Textur viermal übe-
reinander mit additivem Blending und
zeitlich abhängiger Verschiebung der
Textur-Koordinaten. Das Blending
konfigurieren Sie mit den Register-
Combinern. Die vier Textur-Units akti-
vieren Sie mit:

nvpase(„!!TS1.0 texture_2d();
texture_2d(); texture_2d();

texture_2d();“);

Durch das vierfache Zeichnen mit Blen-
ding ergeben sich ständig wechselnde
Farbmuster. Die Farben sind grünblau,
da in diesen Texture-Farbkanälen die

Differenzen der
Heightmap gespei-
chert sind. Diese
Farbmuster sollen
nur als animerte
DSDT-Texturen ver-
wendet werden. Dazu
kopieren Sie die RG-
BA-Daten zunächst
in den Speicher und
erzeugen daraus die
DSDT-Textur:

// Speicherbereich
GLubyte deltaMap32[256*256*4];
glReadPixels(0, 0, 256, 256,
GL_RGBA, GL_UNSIGNED_BYTE,
deltaMap32);

// DSDT Bumpmap
GLubyte bumpMap[256*256*2];

// DSDT Map erzeugen
GLubyte *bumpy = bumpMap;
GLubyte *bumpy32 = deltaMap32;
for (i = 0; i < 256*256; i++)
{

*(bumpy++) = *(bumpy32++);
*(bumpy++) = *(bumpy32++);
bumpy32+=2;

}

// und an OpenGL übergeben
glBindTexture(GL_TEXTURE_2D,

bumpMapTexture);
glTexImage2D(GL_TEXTURE_2D, 0,

GL_DSDT_NV, 256,256, 0,
GL_DSDT_NV, GL_UNSIGNED_BYTE,
bumpMap);

Wählen Sie anschließend die DSDT-
Map für Textur-Unit 0 und eine beliebi-
ge 2D-Textur für Unit 1, erhalten Sie ei-
nen Bump-Mapping-Effekt. Aktivieren
Sie die Textur-Shader, wie zu Beginn des
Artikels vorgestellt, ist der Effekt aus
unserem Beispielprogramm fertig.

Die Anwendungen der Textur-Shader
und Register-Combiner sind sehr viel-
fältig. Vor allem die komplexen Features
wie Dot-Product-Bumpmapping erfor-
dern zusätzliche Vertex-Programme.
Der Grund: Bestimmte Effekte brau-
chen Normalen-Vektoren. Diese wer-
den als Farbwerte übergeben, was Ver-
tex-Programme vorbereiten. s E T

8/2002 PC Magazin 163

Links und Literatur:
www.dachsbacher.de/pcu
www.nvidia.com
www.ati.com
www.3dconcept.ch/cgi-bin/showarchiv.
cgi?show=2130

DIE SCALE/BIAS-OPTIONEN DER
GENERAL-COMBINER

Name Befehl Funktion
No Scale – f(x) = x;
Scale by 1/2 scale_by_one_half(); f(x) = 0.5x
Scale by 2 scale_by_two(); f(x) = 2x
Scale by 4 scale_by_four(); f(x) = 4x
Bias by -1/2 bias_by_negative_one_half(); f(x) = x - 0.5
Bias by -1/2, bias_by_negative_one_half_ f(x) = 2(x-0.5)
Scale by 2 scale_by_two();

DIE DSDT-TEXTUR aus dem Beispiel-
programm als Grün-Blau-Textur

