
P C U N D E R G R O U N D
P R A X I S

9/2002 PC Magazin 177

C A R S T E N D A C H S B A C H E R

Regelmäßige PC-Underground-
Leser kennen die Grundlagen zu
Environment Mapping und Ren-

dering von Spiegelungen. Mit dieser
Ausgabe erweitern Sie diese Techniken
um die Echtzeitdarstellung von Licht-
brechung. Sie sehen, wie verschiedene
Materialien Licht reflektieren und bre-
chen. Diese Eigenschaften nutzen Sie,
um Ihre 3D-Objekte realistisch wirken
zu lassen. Um optimale Performance zu
erreichen, verwenden Sie die OpenGL
Vertex Shaders, Register Combiners
und Cubemaps, die GeForce-Grafik-
karten unterstützen.

Grundlagen liefert die Geometrie der
Reflexion. Das Bild oben zeigt die im
Folgenden beschriebenen Vektoren in
ihrem Zusammenhang. Wichtig für das
Rendering von Spiegelungseffekten sind
die Oberflächennormale N, der Vektor
zur Lichtquelle I, zum Betrachter V und
der Halfway- bzw. Halb-Vektor H, den
Sie mit der Formel

H = (I + V) / | I + V |

berechnen. Alle Vektoren sind normiert.
Einen reflektierten Vektor zu einem be-

liebigen Vektor X an der Oberfläche mit
der Normalen N berechnen Sie mit der
Formel

R(X) = X - 2*(X dot N)*N

Der Wert dot steht für das Skalarpro-
dukt.

Bei dieser Formel gilt: Einfallswinkel
gleich Ausfallswinkel. Unser Beispiel
beschreibt eine ideale Reflexion, weil der
Strahl auf einen planaren, perfekten
Spiegel trifft.

Die ideale Lichtbrechung folgt dem
Snell’schen Gesetz. Lichtbrechung tritt
an der Grenzfläche zweier Medien (etwa
Luft und Wasser) auf. Dabei passiert ein
Lichtstrahl nicht einfach die Grenz-
fläche, sondern ändert auch seine Rich-
tung. Diese setzt die Richtung des ein-
fallenden Lichtstrahls zu der des gebro-
chenen in Zusammenhang. Die Richtun-
gen hängen auch von der Brechzahl der
Medien ab. Die Brechzahl ist ein Maß,
wie stark Licht abgelenkt werden kann.
Wasser hat eine höhere Brechzahl als
Luft.

Wenn ein Strahl von einem Medium A
ins Medium B eindringt, gilt:

eta = (Brechzahl Medium A) /
➥(Brechzahl Medium B)
sin(theta_i)/sin(theta_t) = eta

Die Richtung des gebrochenen Strahls
berechnen Sie wie folgt:

IdotN = - I * N

Wenn der Term
(1 - eta 2 * (1 - IdotN 2))

kleiner Null ist, liegt eine Totalreflexion
vor. Dabei existiert kein gebrochener
Strahl, weil das Licht an der Oberfläche
reflektiert wird. Dieses Phänomen be-
obachten Sie auch an den Rändern von
Luftblasen unter Wasser. Berechnen Sie
einfach den resultierenden Vektor mit

T = eta * I + (eta * IdotN
- sqrt(1 - eta 2 *(1- IdotN 2)))*N

Mit den Richtungen der Lichtstrahlen
aus Spiegelung und Lichtbrechung kön-
nen Sie mit der Grafik-Hardware die
Farbwerte bestimmen.
Zuvor ein Gesetz der Physik, das Sie ver-
einfacht einsetzen: Das Fresnel’sche-
Gesetz beschreibt, wie die Lichtin- q

Gespiegeltes, gebrochenes Licht

GeForce, OpenGL
und Spiegeleffekte
Spiegeln will gelernt sein. Mit ein wenig mathematischem und physikali-
schem Hintergrundwissen entlocken Sie Ihrer GeForce-Grafikkarte mit
OpenGL realistische Spiegelungs- und Lichtbrechungseffekte.

AUF CD
Die Quelltexte sowie die fertig übersetzten

Routinen finden Sie im Verzeichnis Heft Add-
ons/Programmierung/PC Underground.

DIESE VEKTOREN sind für die Reflexion
wichtig.

SO SETZT SICH DIE RICHTUNG eines ge-
spiegelten Vektors zusammen.

DAS SNELL’SCHE GESETZ berechnet die
Lichtbrechung.

P C U N D E R G R O U N D
P R A X I S

178 PC Magazin 9/2002

tensitäten aus Reflexion und Refraktion
(Brechung) die sichtbare Farbe ergeben.
Ein Beispiel: An einem sonnigen Tag be-
trachten Sie die lackierten Teile eines
sauber polierten Autos. Wenn Sie senk-
recht auf Flächen blicken, sehen Sie die
Farbe des Lacks. Wenn Sie aber in einem
sehr flachen Winkel auf eine lackierte
Partie sehen, sehen Sie weniger die Far-
be als ein Spiegelbild. Bei flachen Win-
keln spiegeln solche Flächen eben.

Der Fresnel-Term für unpolarisiertes
Licht bestimmt den Bruchteil des ge-
spiegelten Lichts, das der Betrachter
wahrnimmt, abhängig von der Wellen-
länge lambda des Lichts:

F(lambda)=0.5*(g-c) 2 /(g+c) 2 *
(1 + [c(g+c)-1] 2 /[c(g-c)+1] 2)

mit
c=cos(theta_i)=L dot H,
g2 = eta(lambda) 2

+ c 2 -1

Wir wollen an dieser Stelle nur den Fres-
nel-Term in einer Näherung betrachten,
da die exakte Berechnung nicht für Echt-
zeit-Rendering einzusetzen und für den
optischen Effekt auch nicht notwendig
ist. Betrachten Sie dazu die zwei Fresnel-
Reflectance-Kurven im Bild.

Um den Fresnel-Effekt in einem Ver-
tex Shader einfach und schnell simulie-
ren zu können, verwenden Sie eine sim-
ple Näherung, die für Glas und andere
nicht metallische Materialien einsetzbar
ist:

F = Fresnelkonstante *
((1 - (I dot N)) ^ p)

p ist ein Exponent, im Beispielpro-
gramm ist p = 2.

Diese wenigen einfachen Formeln genü-
gen für beachtliche Resultate, wie die
Screenshots unseres Beispielprogramms
beweisen..

Einen wesentlichen
Beitrag dazu leisten
die Cubemap-Fea-
tures der modernen
Grafikkarten. Sie
können die Umge-
bung eines 3D-Ob-
jektes in sechs Textu-
ren repräsentieren,
die Sie sich wie einen
aufgefalteten Würfel
vorstellen können.

Die 3D-Hardware
kann diese Texturen
zusammen adressie-
ren, wobei Sie diese
als Environment Tex-
tures verwenden kön-

nen. Die Adressierung der Texel dieser
Texturen erfolgt über einen 3D-Vektor,
was optimal für Ihre Spiegelungen und
Lichtbrechungen ist. Aus der Richtung
eines Lichtstrahls bekommen Sie mit
den Cubemaps den entsprechenden
Farbwert! Ausgabe 4/02 behandelt ab S.

206 die notwendigen Initialisierungen,
wobei er sich auf das Vertex Programm
und die Register Combiner konzen-
triert.

Als erstes legen Sie die Cubemap Tex-
ture mit Skybox-Texturen an, die die
Umgebung des 3D-Objekts beinhalten.
Als nächstes widmen
Sie sich der Entwick-
lung des Vertex- Pro-
gramms. Ein Vertex-
Programm (Ausgabe
02/02, S. 191) überge-
ben Sie so an
OpenGL:

unsigned int
vpFresnelCubemap;

const unsigned
char

vpFresnelCube-
mapTxt [] =
„...“;
// Vertex Pro-
gramm erzeugen...
glGenProgramsNV

(1, &vpFresnel-
Cubemap);
// ... auswählen
und übergeben
glBindProgramNV

(GL_VERTEX_PROGRAM_NV,
vpFresnelCubemap);

glLoadProgramNV
(GL_VERTEX_PROGRAM_NV,
vpFresnelCubemap, strlen

((char*)vpFresnelCubemapTxt),
vpFresnelCubemapTxt);

// und aktivieren
glEnable(GL_VERTEX_PROGRAM_NV);

Als Parameter können Sie einem Vertex-
Programm die OpenGL-Matrizen oder
feste Parameter übergeben. Unser Bei-
spielprogramm benötigt folgende Daten:

// OpenGL Matrizen
glTrackMatrixNV(

GL_VERTEX_PROGRAM_NV, 0,
GL_MODELVIEW_PROJECTION_NV,
GL_IDENTITY_NV);

glTrackMatrixNV(
GL_VERTEX_PROGRAM_ NV, 4,
GL_MODELVIEW,
GL_INVERSE_TRANSPOSE_NV);

glTrackMatrixNV(
GL_VERTEX_PROGRAM_

NV, 8,
GL_MODELVIEW,

GL_IDENTITY_NV);

// enthält inverse
Kameramatrix
glTrackMatrixNV
(GL_VERTEX_
PROGRAM_NV, 12,

GL_TEXTURE,
GL_IDENTITY_NV);
// Betrachterpos.
glProgram
Parameter4fNV(

GL_VERTEX_
PROGRAM_NV,

20, 0.0, 0.0, 0.0,
1.0);
// div.Konstanten
glProgram
Parameter4fNV(

GL_VERTEX_PROGRAM_NV,
23, 0.0, 1.0, 2.0, 3.0);

Als weitere Konstanen, die während der
Laufzeit geändert werden können, ver-
wenden Sie:

DIE FRESNEL REFLECTANCE für Metall und für Glas

DIE CUBEMAP-TEXTUREN nehmen die
Umgebung eines 3D-Objekts auf.

METALLISCHE OBERFLÄCHEN spiegeln nahezu unabhängig vom
Winkel zwischen Betrachtervektor und Normale.

P C U N D E R G R O U N D
P R A X I S

9/2002 PC Magazin 179

// Brechzahl
glProgramParameter4fNV(

GL_VERTEX_PROGRAM_NV, 22,
eta, eta*eta, 0.0f, 0.0f);

// Fresnelkonstante
glProgramParameter4fNV(

GL_VERTEX_PROGRAM_NV, 21,
fresnel,fresnel,fresnel,1.0f);

Jetzt führen wir Ihnen Schritt für Schritt
das Vertex-Programm vor, das in vpFres
nelCubemapTxt steht. Zunächst trans-
formieren Sie die Vertex-Koordinaten
aus dem Objectspace in die homogenen
Koordinaten des Clipspace. Dazu
benötigen Sie die Modelview-Projection
Matrix, die sich in den Vertex-Pro-
gramm-Parametern c[0] bis c[4] befin-
det:

!!VP1.0
DP4 o[HPOS].x, c[0], v[OPOS];
DP4 o[HPOS].y, c[1], v[OPOS];
DP4 o[HPOS].z, c[2], v[OPOS];
DP4 o[HPOS].w, c[3], v[OPOS];

Damit haben Sie die notwendige Arbeit
für die Geometrietransformation geleis-
tet. Jetzt geht es daran, die Texture-Ko-
ordinaten für die Cubemaps zu berech-
nen. Diese Koordinaten entsprechen
den Richtungen des Reflexions- und
Transmissionsstrahls. Für diese Berech-
nungen bringen Sie zunächst die Nor-
malen und die Vertex-Positionen in den
Eye Space (Koordinatensystem, in dem
sich der Betrachter bei (0, 0, 0, 1) befin-
det):

DP3 R5.x, c[4], v[NRML];
DP3 R5.y, c[5], v[NRML];
DP3 R5.z, c[6], v[NRML];

DP4 R0.x, c[8], v[OPOS];
DP4 R0.y, c[9], v[OPOS];
DP4 R0.z, c[10], v[OPOS];
DP4 R0.w, c[11], v[OPOS];

Den Vektor von der Vertexposition zum
Betrachter erhalten Sie durch Subtrakti-
on (-R0!) mit

#R0 = c[20] - R0

ADD R0, -R0, c[20];

Diesen gilt es zu nor-
mieren, wozu die
Vertex-Programme
die richtigen Befehle
anbieten:

DP3 R8.w, R0, R0;
R8.w=Länge 2

RSQ R8.w, R8.w;
#R8.w=1.0/
sqrt(R8.w)
MUL R8, R0, R8.w;

R8 = V

Nach diesen abge-
schlossenen Vorbe-
rechnungen bestim-
men Sie den Verlauf
des gebrochenen
Strahls. Im Folgenden

sehen Sie die schrittweise Berechnung
der obigen Formel:

R0 = NdotI
DP3 R0.x, R5, -R8;

R1.x = 1 - NdotI*NdotI
MAD R1.x, -R0.x, R0.x, c[23].y;

R1.x = eta 2 *
(1 - NdotI*NdotI)

MUL R1.x, R1.x, c[22].y;

R1.x = 1 - eta 2 *
(1 - NdotI*NdotI)

eine Vektorskalierung und -addition
durchführen müssen:

R0 = 2N
MUL R0, R5, c[23].z;

R3 = 2N * NdotI + V
DP3 R4.w, R5, R8;
MAD R3, R4.w, R0, -R8;

Jetzt müssen Sie die resultierenden Vek-
toren R2 und R3 nur noch mit der in-
versen Kamera-Matrix multiplizieren,
um die korrekten Cubemap-Textur-
Koordinaten zu erhalten:

DP3 o[TEX0].x, c[12], R2;
DP3 o[TEX0].y, c[13], R2;
DP3 o[TEX0].z, c[14], R2;

DP3 o[TEX1].x, c[12], R3;
DP3 o[TEX1].y, c[13], R3;
DP3 o[TEX1].z, c[14], R3;

Die letzte Aufgabe des Vertex-Pro-
gramms ist die Approximation des Fres-
nel-Terms. Auch hier verwenden Sie die
obige Formel und setzen Sie um:

ADD R4.w, c[23].y,-R4.w;
1 - VdotN

MUL R4.w, R4.w, R4.w; # () 2

MUL o[COL0],R4.w, c[21];
k*(1-VdotN) 2

END;

Das Vertex-Programm berechnet also
aus den Eingabedaten (Vertexkoordina-

ten und -Normalen)
die homogenen Clip-
koordinaten, die Tex-
tur-Koordinaten und
den Fresnel-Term,
der in der Primärfarbe
(COL0) gespeichert
ist.

Jetzt gilt es, die be-
rechneten Daten sinn-
voll einzusetzen, aus
den Farbwerten, den
Cubemaps und dem
Fresnel-Term die
endgültigen Farbwer-
te zu berechnen. Am
einfachsten erledigen
Sie diese Aufgabe,
wenn Sie die NVPar-

se-Bibliothek für Register Combiners
verwenden (Ausgabe 07/02, S. 175).

Es gibt verschiedene Optionen, die
Materialeigenschaften zu bestimmen.
Die einfachsten Varianten sind entweder
eine reine Spiegelung, wie bei metalli-
schen Gegenständen oder eine reine
Lichtbrechung. Die dazugehörigen Re-
gister Combiners (die den Fresnel-Term
nicht verwenden!) sehen wie folgt aus:

// nur Lichtbrechung
nvparse(

„!!RC1.0 \n“
„out.rgb = tex0; \n“

DAS GLASOBJEKT ZEIGT die Lichtbrechungen.

DAS PFERD STELLT EINE weitere Materialeigenschaft vor.

ADD R1.x, c[23].y, -R1.x;

R2.x = sqrt(R1.x)
RSQ R2.x, R1.x;

1.0 / sqrt(R1.x)
RCP R2.x, R2.x; # sqrt(R1.x)

R2.x =
eta * NdotI + sqrt(R1.x)

MAD R2.x, c[22].x, R0.x, R2.x;

R2 = N * R2.x
MUL R2, R5, R2.x;

R2 = eta * I + R2
MAD R2, c[22].x, -R8, R2;

Die Berechnung des gespiegelten Strahls
gestaltet sich deutlich einfacher, da Sie nur q

P C U N D E R G R O U N D
P R A X I S

180 PC Magazin 9/2002

);

// Metall
nvparse(

„!!RC1.0 \n“
„out.rgb = tex1; \n“

);

Wenn Sie einen gläsernen Gegenstand
darstellen wollen, bestimmt der Fresnel-
Term die Gewichtung der beiden Farben,
also eine lineare Kombination:

// color = fresnel * reflect +
// (1-fresnel) * refract

!!RC1.0
{

rgb
{

discard=
tex0*unsigned_invert(col0);
spare0 = tex1*col0;
spare1 = sum();

}
}
out.rgb = spare1;

Sie können dem Glas auch eine Eigen-
farbe verpassen. Dazu benötigen Sie ei-
nen Combiner mehr, mit dem Sie die
tex0-Farbe mit einer Konstante mi-
schen:

!!RC1.0
const0 = (0.8, 0.7, 0.4, 1.0);
{

rgb
{

discard = const0;
spare0 = tex0;
spare1 = sum();
scale_by_one_half();

}
}
{

rgb
{

discard=
spare1*unsigned_invert(col0);
spare0 = tex1*col0;
spare1 = sum();

}
}
out.rgb = spare1;

Als letzte Variante hier im Text rendern
Sie farbige 3D-Objekte mit einer Fres-
nel-Spiegelung, indem Sie tex0 durch
eine Konstante ersetzen. Alternativ
verwenden Sie statt der Cubemap-Tex-
tur in der ersten Texture-Stage her-
kömmliches Textur-Mapping, um den
Farbwert zu bestimmen. In diesem Fall
passen Sie das Vertex-Programm so an,
dass der gebrochene Lichtstrahl nicht
berechnet wird. Stattdessen werden die
Textur-Koordinaten, die Ihr 3D-Ob-
jekt dann mit sich bringt, einfach
durchgereicht.

■ Zusammenbau
Um alle bisher beschriebenen Teile in
der Renderloop zusammenzufassen,
muss dies eine bestimmte Abfolge ein-
halten. Zu Beginn setzen Sie die Kame-

ratransformation, deren Matrix Sie in-
vertieren müssen. Die inverse Matrix
wird vom obigen Vertex-Programm und
beim Zeichnen der Skybox benötigt.

glClear(GL_COLOR_ BUFFER_BIT |
GL_DEPTH_BUFFER_BIT);

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

// Kamera Transformation
glRotatef(...);

//KameraMatrix holen+invertieren
glGetFloatv(GL_MODELVIEW_MATRIX,

cameraMatrix);

InverseMatrixAnglePreserving(
cameraMatrix,
cameraMatrixInverse);

Dann zeichnen Sie die Skybox, die Sie
gleich mit den Cubemaps rendern. Ver-
wenden Sie die Normalen eines 3D-Ob-
jektes per OpenGL als Textur-Koordi-
naten. Damit ersparen Sie sich zusätzli-
chen Aufwand für das Rendern einer
klassischen Skybox. Rendern Sie eine
Skysphere, also eine Kugel und keinen
Würfel, die aber denselben optischen Ef-
fekt wie eine Skybox hat:

// deaktivieren von Vertex
// RCs und Z-Buffer
glDisable

(GL_VERTEX_PROGRAM_NV);
glDisable

(GL_REGISTER_COMBINERS_NV);
glDisable(GL_DEPTH_TEST);

// CubemapTexture ->einer Stage
glActiveTextureARB

(GL_TEXTURE1_ARB);
glDisable

(GL_TEXTURE_CUBE_MAP_ARB);

glActiveTextureARB
(GL_TEXTURE0_ARB);

glBindTexture
(GL_TEXTURE_CUBE_ MAP_ARB,

cubeMap);
glEnable

(GL_TEXTURE_CUBE_MAP_ARB);

// Text-koordinate
glTexGeni
//s. Quellcode...

Anschließend zeich-
nen Sie das 3D-Ob-
jekt, für das Sie jetzt
noch eine beliebige
Transformation in
der Modelview-Ma-
trix durchführen
können. Aktivieren
Sie die Cubemaps für
die Texturen Stages 0
und 1 und aktualisie-
ren Sie die Textur-
Matrix analog zum
obigen Code der Sky-
box bzw. Skysphere.
Mit zwei Funktionen

können Sie die Parameter für das Vertex
Programm, das Brechzahlverhältnis und
die Konstante für die Fresnel-Approxi-
mation ändern und anschließend zeich-
nen Sie das 3D-Objekt.
Unser Beispielprogramm kann 3D-Ob-
jekte aus ASCII-Dateien laden. Das
Zeichnen erfolgt mit einer zuvor ange-
legten OpenGL Display List, um relativ
performantes Rendering zu erhalten.

void setRefraction(float eta)
//s. Quellcode
void setFresnel(float fresnel)
//s. Quellcode

setFresnel(2.0f);
setRefraction(1.1f);

object->drawObject();

Sie können mit den obigen Funktionen
noch weitere wichtige Lichtbrechungs-
effekte darstellen. Wenn Sie sich an das
Snell’sche Gesetz und die Fresnel-For-
mel erinnern, fällt auf, dass die Brech-
zahl von Medien von der Wellenlänge
des Lichtes abhängig ist. Vereinfacht be-
trachtet, setzt sich das Farbbild auf
Ihrem Monitor aus Licht von drei Wel-
lenlängen zusammen: Rotes, grünes und
blaues Licht deckt bei additiver Farbmi-
schung den Farbraum ab. Sie können das
endgültige Bild aus drei einzelnen Ren-
derpasses – für jede Grundfarbe einen –
zusammensetzten.

glDepthFunc(GL_LEQUAL);
// rot
glColorMask(

GL_TRUE, GL_FALSE;
GL_FALSE, GL_FALSE);

setRefraction(1.10f);
object->drawObject();

// grün + blau
//s. Quellcode

Für jeden Renderpass können Sie eine
eigene Brechzahl festlegen und erhalten
Prismeneffekte wie im Bild oben. s E T

IM KÖRPER VERSCHIEBEN sich die Farben durch Wellenlängen-
abhängige Brechzahlen.

