. W

—a
)

~ PC UNDERGROUND

o

PRAXIS

AUF CD

~ Die Quelltexte sowie die fertig ibersetzten
Routinen finden Sie im Verzeichnis Heft Add-

o —~ ons/Programmierung/PC Underground.

Gespiegeltes, gebrochenes Licht fr %

GeForce, OpenGL

und

Spiegeln will gelernt sein. Mit ein wenig mathematischem und physikali-
schem Hintergrundwissen entlocken Sie Ihrer GeForce-Grafikkarte mit
OpenGL realistische Spiegelungs- und Lichtbrechungseffekte.

CARSTEN DACHSBACHER

egelmdRige PC-Underground-
R Leser kennen die Grundlagen zu

Environment Mapping und Ren-
dering von Spiegelungen. Mit dieser
Ausgabe erweitern Sie diese Techniken
um die Echtzeitdarstellung von Licht-
brechung. Sie sehen, wie verschiedene
Materialien Licht reflektieren und bre-
chen. Diese Eigenschaften nutzen Sie,
um lhre 3D-Objekte realistisch wirken
zu lassen. Um optimale Performance zu
erreichen, verwenden Sie die OpenGL
Vertex Shaders, Register Combiners
und Cubemaps, die GeForce-Grafik-
karten unterstiitzen.

Lichiquelle

Betrachiar

DIESE VEKTOREN sind fur die Reflexion
wichtig.

Grundlagen liefert die Geometrie der
Reflexion. Das Bild oben zeigt die im
Folgenden beschriebenen Vektoren in
ihrem Zusammenhang. Wichtig fur das
Rendering von Spiegelungseffekten sind
die Oberflachennormale N, der Vektor
zur Lichtquelle I, zum Betrachter V und
der Halfway- bzw. Halb-Vektor H, den
Sie mit der Formel

H=(1+V)/]I+V]
berechnen. Alle VVektoren sind normiert.
Einen reflektierten Vektor zu einem be-

liebigen Vektor X an der Oberflache mit
der Normalen N berechnen Sie mit der
Formel

R(X) = X - 2*(X dot N)*N
Der Wert dot steht fir das Skalarpro-
dukt.

b

SO SETZT SICH DIE RICHTUNG eines ge-
spiegelten Vektors zusammen.

Bei dieser Formel gilt: Einfallswinkel
gleich Ausfallswinkel. Unser Beispiel
beschreibt eine ideale Reflexion, weil der
Strahl auf einen planaren, perfekten
Spiegel trifft.

Die ideale Lichtbrechung folgt dem
Snell’schen Gesetz. Lichtbrechung tritt
an der Grenzflache zweier Medien (etwa
Luft und Wasser) auf. Dabei passiert ein
Lichtstrahl nicht einfach die Grenz-
flache, sondern andert auch seine Rich-
tung. Diese setzt die Richtung des ein-
fallenden Lichtstrahls zu der des gebro-
chenen in Zusammenhang. Die Richtun-
gen hé&ngen auch von der Brechzahl der
Medien ab. Die Brechzahl ist ein MaR,
wie stark Licht abgelenkt werden kann.
Wasser hat eine hohere Brechzahl als
Luft.

Wenn ein Strahl von einem Medium A
ins Medium B eindringt, gilt:

eta = (Brechzahl Medium A) /

0 (Brechzahl Medium B)

sin(theta_i)/sin(theta_t) = eta
Die Richtung des gebrochenen Strahls
berechnen Sie wie folgt:

IdotN =-1*N
Wenn der Term
(1-eta 2 *(1-IdotN 2y

kleiner Null ist, liegt eine Totalreflexion
vor. Dabei existiert kein gebrochener
Strahl, weil das Licht an der Oberflache
reflektiert wird. Dieses Phanomen be-
obachten Sie auch an den Randern von
Luftblasen unter Wasser. Berechnen Sie
einfach den resultierenden Vektor mit

T=eta*|+ (eta*IdotN

-sqrt(1 - eta 2 *(1- IdotN 2)))*N
Mit den Richtungen der Lichtstrahlen
aus Spiegelung und Lichtbrechung kdn-
nen Sie mit der Grafik-Hardware die
Farbwerte bestimmen.
Zuvor ein Gesetz der Physik, das Sie ver-
einfacht einsetzen: Das Fresnel’sche-
Gesetz beschreibt, wie die Lichtin- ©

"

Medium A
Medium B

DAS SNELL'SCHE GESETZ berechnet die
Lichtbrechung.

9/2002 PC Magazin 177

@«@

S

Einen wesentlichen
Beitrag dazu leisten
die Cubemap-Fea-
tures der modernen
Grafikkarten. Sie
kdnnen die Umge-
bung eines 3D-Ob-
jektes in sechs Textu-
ren reprasentieren,
die Sie sich wie einen
aufgefalteten Waurfel
vorstellen kénnen.

Die 3D-Hardware
kann diese Texturen

PC UNDERGROUND
PRAXIS
1.0
Metall
09
08
E
@ o7
o
S 06
L
W o5
=
=l
z2 04
[T}
o=
@ 03
[v4
0.2
- Glas
0
0 10 20 30 40 50 80 70 80 %0
Winkel zur Normale in Grad

zusammen adressie-

DIE FRESNEL REFLECTANCE fur Metall und fur Glas

tensitaten aus Reflexion und Refraktion
(Brechung) die sichtbare Farbe ergeben.
Ein Beispiel: An einem sonnigen Tag be-
trachten Sie die lackierten Teile eines
sauber polierten Autos. Wenn Sie senk-
recht auf Flachen blicken, sehen Sie die
Farbe des Lacks. Wenn Sie aber in einem
sehr flachen Winkel auf eine lackierte
Partie sehen, sehen Sie weniger die Far-
be als ein Spiegelbild. Bei flachen Win-
keln spiegeln solche Flachen eben.

Der Fresnel-Term fiir unpolarisiertes
Licht bestimmt den Bruchteil des ge-
spiegelten Lichts, das der Betrachter
wahrnimmt, abhéngig von der Wellen-
lange lambda des Lichts:

F(lambda)=0.5%(g-c) . 2 /(g+c) 2 *

(1+[c(g+c)-1] 2 fle(go+1]l ?)
mit

c=cos(theta_i)=L dot H,

g2 = eta(lambda)

+c? 1
Wir wollen an dieser Stelle nur den Fres-
nel-Term in einer N&herung betrachten,
dadie exakte Berechnung nicht fir Echt-
zeit-Rendering einzusetzen und fir den
optischen Effekt auch nicht notwendig
ist. Betrachten Sie dazu die zwei Fresnel-
Reflectance-Kurven im Bild.

Um den Fresnel-Effekt in einem Ver-
tex Shader einfach und schnell simulie-
ren zu kénnen, verwenden Sie eine sim-
ple Néherung, die fur Glas und andere
nicht metallische Materialien einsetzbar
ist:

F = Fresnelkonstante *

((1-(1dotN))"p)

p ist ein Exponent, im Beispielpro-
gramm istp = 2.

Diese wenigen einfachen Formeln genu-
gen fir beachtliche Resultate, wie die
Screenshots unseres Beispielprogramms
beweisen..

178 PC Magazin 92002

ren, wobei Sie diese
als Environment Tex-
tures verwenden kon-
nen. Die Adressierung der Texel dieser
Texturen erfolgt Gber einen 3D-Vektor,
was optimal fur Ihre Spiegelungen und
Lichtbrechungen ist. Aus der Richtung
eines Lichtstrahls bekommen Sie mit
den Cubemaps den entsprechenden
Farbwert! Ausgabe 4/02 behandelt ab S.

DIE CUBEMAP-TEXTUREN nehmen die
Umgebung eines 3D-Objekts auf.

206 die notwendigen Initialisierungen,
wobei er sich auf das Vertex Programm
und die Register Combiner konzen-
triert.

Als erstes legen Sie die Cubemap Tex-
ture mit Skybox-Texturen an, die die
Umgebung des 3D-Objekts beinhalten.
Als néchstes widmen

(GL_VERTEX_PROGRAM_NYV,
vpFresnelCubemap);
glLoadProgramNV
(GL_VERTEX_PROGRAM_NYV,
vpFresnelCubemap, strlen
((char*)vpFresnelCubemapTxt),
vpFresnelCubemapTxt);

/l und aktivieren
glEnable(GL_VERTEX_PROGRAM_NV);

Als Parameter kdnnen Sie einem Vertex-
Programm die OpenGL-Matrizen oder
feste Parameter Ubergeben. Unser Bei-
spielprogramm bendtigt folgende Daten:

/I OpenGL Matrizen

glTrackMatrixNV(
GL_VERTEX_PROGRAM_NV, 0,
GL_MODELVIEW_PROJECTION_NV,
GL_IDENTITY_NV);

glTrackMatrixNV/(
GL_VERTEX_PROGRAM_ NV, 4,
GL_MODELVIEW,
GL_INVERSE_TRANSPOSE_NV);

glTrackMatrixNV(
GL_VERTEX_PROGRAM_
NV, 8,
GL_MODELVIEW,
GL_IDENTITY_NV);

/I enthélt inverse
Kameramatrix
glTrackMatrixNV
(GL_VERTEX_
PROGRAM_NV, 12,
GL_TEXTURE,
GL_IDENTITY_NV);
/] Betrachterpos.
glProgram
Parameter4fNV(
GL_VERTEX_
PROGRAM_NV,
20, 0.0, 0.0, 0.0,
1.0);
/I div.Konstanten
glProgram
Parameter4fNV(
GL_VERTEX_PROGRAM_NV,
23, 0.0, 1.0, 2.0, 3.0);

Als weitere Konstanen, die wéhrend der
Laufzeit gedndert werden kdnnen, ver-
wenden Sie:

Sie sich der Entwick- [FZ, www.dachshacher.de/pcu - P Underground Fresnel Reflectance/Refraction Demo. (4)

lung des Vertex- Pro-
gramms. Ein Vertex-
Programm (Ausgabe
02/02, S. 191) Uberge-
ben Sie so an
OpenGL:

unsigned int
vpFresnelCubemap;

const unsigned

char
vpFresnelCube-

mapTxt[] =

/I Vertex Pro-
gramm erzeugen...
glGenProgramsNV
(1, &vpFresnel-
Cubemap);
/I ... auswéhlen
und Uibergeben
glBindProgramNV

flection/Refraction Dema

Keys
1.4 Objekt (Vorsicht: #4

hat ~97000 Triangles!

5.8

Materialtyp (Glas
Halbtransparent, Lack
Metall)

M Multipass Rendering
for Prisma Effekt

METALLISCHE OBERFLACHEN spiegeln nahezu unabhingig vom
Winkel zwischen Betrachtervektor und Normale.

PE; www.dachsbacher.de/pcu - PC Underground Fresnel Reflectance,/Refraction Demo = (w)(c):

Beflectinon/Refraction Damao

Keys:
1.4 Objekt (Vorsicht: #4
hat ~97000 Trizngles!

Materialtyp (Glas
Halbtransparent, Lack,
Metalt)

Multipass Rendering
for Priesma Effekt

ADD RO, -RO0, c[20];

Diesen gilt es zu nor-
mieren, wozu die
Vertex-Programme
die richtigen Befehle
anbieten:

DP3 R8.w, RO, RO;
#R8.w=Lange 2
RSQ R8.w, R8.w;
#R8.w=1.0/
sqrt(R8.w)

MUL R8, RO, R8.w;
#R8=V

Nach diesen abge-
schlossenen Vorbe-
rechnungen bestim-

DAS GLASOBJEKT ZEIGT die Lichtbrechungen.

/I Brechzahl

glProgramParameter4fNV/(
GL_VERTEX_PROGRAM_NV, 22,
eta, eta*eta, 0.0f, 0.0f);

/I Fresnelkonstante
glProgramParameter4fNV(
GL_VERTEX_PROGRAM_NV, 21,

fresnel,fresnel,fresnel,1.0f);
Jetzt fihren wir Ihnen Schritt fiir Schritt
das Vertex-Programm vor, das in vpFres
nelCubemapTxt steht. Zunéchst trans-
formieren Sie die Vertex-Koordinaten
aus dem Obijectspace in die homogenen
Koordinaten des Clipspace. Dazu
bendtigen Sie die Modelview-Projection
Matrix, die sich in den Vertex-Pro-
gramm-Parametern c[0] bis c[4] befin-
det:

1IVP1.0

DP4 o[HPOS].x, c[0], v[OPOS];
DP4 o[HPOS].y, c[1], vV[OPOS];
DP4 o[HPOS].z, c[2], v[OPOS];
DP4 o[HPOS].w, c[3], V[OPOS];

Damit haben Sie die notwendige Arbeit
flr die Geometrietransformation geleis-
tet. Jetzt geht es daran, die Texture-Ko-
ordinaten fiir die Cubemaps zu berech-
nen. Diese Koordinaten entsprechen
den Richtungen des Reflexions- und
Transmissionsstrahls. Fur diese Berech-
nungen bringen Sie zunéchst die Nor-
malen und die Vertex-Positionen in den
Eye Space (Koordinatensystem, in dem
sich der Betrachter bei (0, 0, 0, 1) befin-
det):
DP3 R5.x, c[4], VINRML];

DP3 R5.y, c[5], VINRML];
DP3 R5.z, c[6], VINRML];

DP4 RO.x, c[8], V[OPOS];
DP4 RO0.y, c[9], V[OPOS];
DP4 RO0.z, c[10], v[OPOS];
DP4 RO.w, c[11], V[OPOS];

Den Vektor von der VVertexposition zum
Betrachter erhalten Sie durch Subtrakti-
on (-R0O!) mit

#RO = ¢[20] - RO

men Sie den Verlauf
des gebrochenen
Strahls. Im Folgenden
sehen Sie die schrittweise Berechnung
der obigen Formel:

RO = Ndotl
DP3 RO.x, R5, -R8;

R1.x =1 - Ndotl*Ndotl
MAD R1.x, -R0.x, RO.X, c[23].y;

#Rlx=eta 2 *

(1 - Ndoti*Ndot!)
MUL R1.x, R1.x, c[22].y;
#R1x=1-eta 2«
(1 - Ndoti*Ndot!)

S wwwr.dachsbacher.de, pcu - PC Underground Fresnel Reflectance/Refraction Demo = (s)(e

Reflecti

Keys:

1.4

DAS PFERD STELLT EINE weitere Materialeigenschaft vor.

ADD R1.x, c[23].y, -RLX;

#R2.x =sqgrt(R1.x)
RSQ R2.x, R1.x;
#1.0/sqrt(R1.x)
RCP R2.x, R2.x; # sqrt(R1.x)

#R2.x =
eta * Ndotl + sqrt(R1.x)
MAD R2.x, c[22].x, RO.x, R2.x;

#R2=N*R2x
MUL R2, R5, R2.x;

#R2=eta*|+R2
MAD R2, c[22].x, -R8, R2;

Die Berechnung des gespiegelten Strahls
gestaltet sich deutlich einfacher, da Sie nur

nn/Refract

"PC UNDERGROUND
PRAXIS

eine Vektorskalierung und -addition
durchfiihren missen:

#R0 = 2N

MUL RO, R5, c[23].z;

#R3 = 2N * Ndotl + V

DP3 R4.w, R5, R8;

MAD R3, R4.w, RO, -R8;
Jetzt mussen Sie die resultierenden Vek-
toren R2 und R3 nur noch mit der in-
versen Kamera-Matrix multiplizieren,
um die korrekten Cubemap-Textur-
Koordinaten zu erhalten:

DP3 o[TEX0].x, ¢[12], R2;

DP3 o[TEXO].y, c[13], R2;
DP3 o[TEXO].z, c[14], R2;

DP3 o[TEX1].x, c[12], RS3;

DP3 o[TEX1].y, c[13], R3;

DP3 o[TEX1].z, c[14], R3;

Die letzte Aufgabe des Vertex-Pro-
gramms ist die Approximation des Fres-
nel-Terms. Auch hier verwenden Sie die
obige Formel und setzen Sie um:

ADD R4.w, c[23].y,-R4.w;

#1 - VdotN
MUL R4.w, R4.w, RA.W; # () 2
MUL o[COLO],R4.w, c[21];

k*(1-VdotN)

END;

Das Vertex-Programm berechnet also
aus den Eingabedaten (Vertexkoordina-
ten und -Normalen)
die homogenen Clip-
koordinaten, die Tex-
tur-Koordinaten und
den Fresnel-Term,
derin der Primérfarbe
(COLO0) gespeichert
ist.

Jetzt gilt es, die be-
rechneten Daten sinn-
voll einzusetzen, aus
den Farbwerten, den
Cubemaps und dem
Fresnel-Term die
endgliltigen Farbwer-
te zu berechnen. Am
einfachsten erledigen
Sie diese Aufgabe,
wenn Sie die NVPar-
se-Bibliothek fir Register Combiners
verwenden (Ausgabe 07/02, S. 175).

Es gibt verschiedene Optionen, die
Materialeigenschaften zu bestimmen.
Die einfachsten Varianten sind entweder
eine reine Spiegelung, wie bei metalli-
schen Gegenstdnden oder eine reine
Lichtbrechung. Die dazugehorigen Re-
gister Combiners (die den Fresnel-Term
nicht verwenden!) sehen wie folgt aus:

Demag

Objekt (Vorsicht: #4
hat ~97000 Trizngles!

Materialtyp (Glas
Halbtransparent, | ack
Metall)

Multipass Rendering
for Prisma Effelt

/I nur Lichtbrechung
nvparse(
JIRC1.0 \n*
,out.rgb = tex0; \n“ >

9,2002 PC Magazin 179

) B0

PC UNDERGROUND

PRAXIS
)
/I Metall
nvparse(

JIRC1.0 \n“

Lout.rgb = tex1; \n“

Wenn Sie einen glésernen Gegenstand
darstellen wollen, bestimmt der Fresnel-
Term die Gewichtung der beiden Farben,
also eine lineare Kombination:

/I color = fresnel * reflect +
1 (1-fresnel) * refract

IRC1.0

{
rgb
{

discard=
tex0*unsigned_invert(col0);
spare0 = tex1*col0;

sparel = sum();

}

out.rgb = sparel,;
Sie kdnnen dem Glas auch eine Eigen-
farbe verpassen. Dazu bendtigen Sie ei-
nen Combiner mehr, mit dem Sie die
tex0-Farbe mit einer Konstante mi-
schen:

IIRC1.0

const0 =(0.8,0.7,0.4,1.0);

{
rgb
{
discard = const0;
spare0 = tex0;
sparel = sum();
scale_by_one_half();

}
}
{
rgb
{
discard=
sparel*unsigned_invert(col0);
spare0 = tex1*col0;
sparel = sum();

lJut.rgb = sparel;

Als letzte Variante hier im Text rendern
Sie farbige 3D-Objekte mit einer Fres-
nel-Spiegelung, indem Sie tex0 durch
eine Konstante ersetzen. Alternativ
verwenden Sie statt der Cubemap-Tex-
tur in der ersten Texture-Stage her-
kdmmliches Textur-Mapping, um den
Farbwert zu bestimmen. In diesem Fall
passen Sie das Vertex-Programm so an,
dass der gebrochene Lichtstrahl nicht
berechnet wird. Stattdessen werden die
Textur-Koordinaten, die Ihr 3D-Ob-
jekt dann mit sich bringt, einfach
durchgereicht.

Um alle bisher beschriebenen Teile in
der Renderloop zusammenzufassen,
muss dies eine bestimmte Abfolge ein-
halten. Zu Beginn setzen Sie die Kame-

180 PC Magazin 9./2002

. www.dachsbacher.de/pcu - PC Underground Fresnel Reflectance,/Refraction Demo.

Reflection/Refraction Demag

Keys:
1.4

5.8

M

IM KORPER VERSCHIEBEN sich die Farben durch Wellenlangen-

abhangige Brechzahlen.

ratransformation, deren Matrix Sie in-
vertieren mussen. Die inverse Matrix
wird vom obigen Vertex-Programm und
beim Zeichnen der Skybox bendtigt.

glClear(GL_COLOR_ BUFFER_BIT |
GL_DEPTH_BUFFER_BIT);

glMatrixMode(GL_MODELVIEW);
glLoadldentity();

/I Kamera Transformation
glRotatef(...);

/IKameraMatrix holen+invertieren
glGetFloatv(GL_MODELVIEW_MATRIX,
cameraMatrix);

InverseMatrixAnglePreserving(
cameraMatrix,
cameraMatrixInverse);

Dann zeichnen Sie die Skybox, die Sie
gleich mit den Cubemaps rendern. Ver-
wenden Sie die Normalen eines 3D-Ob-
jektes per OpenGL als Textur-Koordi-
naten. Damit ersparen Sie sich zusatzli-
chen Aufwand flr das Rendern einer
klassischen Skybox. Rendern Sie eine
Skysphere, also eine Kugel und keinen
Wiirfel, die aber denselben optischen Ef-
fekt wie eine Skybox hat:

/I deaktivieren von Vertex
/I RCs und Z-Buffer
glDisable

(GL_VERTEX_PROGRAM_NV);
glDisable

(GL_REGISTER_COMBINERS_NV);
glDisable(GL_DEPTH_TEST);

/I CubemapTexture ->einer Stage
glActiveTextureARB
(GL_TEXTURE1_ARB);
glDisable
(GL_TEXTURE_CUBE_MAP_ARB);

glActiveTextureARB
(GL_TEXTUREO_ARB);
glBindTexture
(GL_TEXTURE_CUBE_ MAP_ARB,
cubeMap);
glEnable
(GL_TEXTURE_CUBE_MAP_ARB);

/I Text-koordinate
glTexGeni
/Is. Quellcode...

AnschlieBend zeich-
nen Sie das 3D-Ob-
jekt, fur das Sie jetzt
noch eine beliebige
Transformation in
der Modelview-Ma-
trix durchfiihren
konnen. Aktivieren
Sie die Cubemaps fir
die Texturen Stages 0
und 1 und aktualisie-
ren Sie die Textur-
Matrix analog zum
obigen Code der Sky-
box bzw. Skysphere.
Mit zwei Funktionen
koénnen Sie die Parameter fur das Vertex
Programm, das Brechzahlverhaltnis und
die Konstante fir die Fresnel-Approxi-
mation andern und anschlief3end zeich-
nen Sie das 3D-Objekt.

Unser Beispielprogramm kann 3D-Ob-
jekte aus ASCII-Dateien laden. Das
Zeichnen erfolgt mit einer zuvor ange-
legten OpenGL Display List, um relativ
performantes Rendering zu erhalten.

void setRefraction(float eta)
IIs. Quellcode

void setFresnel(float fresnel)
/Is. Quellcode

Objekt (Vorsicht: #4
hat ~07000 Triangles!
Materialtyp (Glas
Halbtransparent, Lack|
Metalt)

Multipass Rendering
for Prisma Effelt

setFresnel(2.0f);
setRefraction(1.1f);

object->drawObject();

Sie kdnnen mit den obigen Funktionen
noch weitere wichtige Lichtbrechungs-
effekte darstellen. Wenn Sie sich an das
Snell’sche Gesetz und die Fresnel-For-
mel erinnern, fallt auf, dass die Brech-
zahl von Medien von der Wellenlange
des Lichtes abhéngig ist. Vereinfacht be-
trachtet, setzt sich das Farbbild auf
Ihrem Monitor aus Licht von drei Wel-
lenldngen zusammen: Rotes, griines und
blaues Licht deckt bei additiver Farbmi-
schung den Farbraum ab. Sie kdnnen das
endgultige Bild aus drei einzelnen Ren-
derpasses — fur jede Grundfarbe einen —
zusammensetzten.

glDepthFunc(GL_LEQUAL);
Il rot
glColorMask(
GL_TRUE, GL_FALSE;
GL_FALSE, GL_FALSE);
setRefraction(1.10f);
object->drawObject();

// griin + blau

/Is. Quellcode
Fir jeden Renderpass kénnen Sie eine
eigene Brechzahl festlegen und erhalten
Prismeneffekte wie im Bild oben. @ T

