Constructive Solid Geometry, Texturen in OpenGL% -

Glanz 1Im

Bringen Sie lhrer Grafikkarte Boolesche Operatio-
nen bei und rendern Sie damit Constructive-So-
lid-Geometry-Objekte. Mit einfachen Textur-

Tricks erhalten Sie

CARSTEN DACHSBACHER

ernen Sie die Booleschen Opera-
Ltionen fir 3D-Korper kennen, die
eigentlich nicht fir polygonal de-
finierte, sondern mathematisch be-
schriebenen Korper eingeflihrt wurden.
Die drei primaren Booleschen Opera-
tionen sind:
< die Subtraktion,
e die Vereinigung
< und die Schnittberechnung.
Die letzteren beiden werden auch —
analog zur Mengenlehre — als Oder-
bzw. Und-Verknlpfung bezeichnet.

sich Objekte intuitiv gestalten lassen,
oder dazu, um 3D-Grafik in Echtzeit
aufzubauen. Wir zeigen lhnen den spie-
lerischen Einsatz, unterstiitzt von inter-
essanten Textur-Effekten.

Als ersten wollen wir die CSG-Operatio-
nen mit polygonalen Techniken durch-
fuhren, also die Dreiecke des einen Ob-
jekts mit den Dreiecken des anderen
schneiden und die richtigen Dreiecke aus-
wahlen. Es sind die Dreiecke richtig, die
als Menge der Ausgangs- und durch
Schnittberechnungen entstandenen Drei-
ecke entstehen. Diese resultieren aus der

598 «

Ausgangsprimitive

A oder B Aund B

DIE BEI CONSTRUCTIVE SOLID GEOMETRY moglichen Operationen in zwei Dimensionen

Die Subtraktion schneidet das VVolumen
bzw. die Form eines Objekts aus einem
anderen Objekt heraus. Die Oder-Ope-
ration vereinigt die beiden Objekte. Die
Und-Operation resultiert in Volumen,
das von beiden Objekten belegt ist. Als
Schreibweise verwenden Sie A — B, A or
B oder A and B. CSG-Operationen
(Constructive Solid Geometry) finden
Sie in 3D-Modelling-Paketen, mit denen

CSG-Operation. Ergebnisse liefern ver-
schiedene Ansétze. Fur 3D-Modelling-
Programme gibt es zwei bekannte und
gute Referenzen.

» Der erste Ansatz verwendet die so ge-
nannten BSP-Trees (Binary Space Parti-
tioning). Er wird in Set Operations on
Polyhedra Using Binary Space Partitio-
ning Trees von Thibault und Naylor be-
schrieben.

PC UNDERGROUND
PRAXIS

\@

Dle Quelltexte sowie die fertig tbersetzten
Routinen finden Sie im Verzeichnis Heft Add-
~ ons/Programmierung/PC Underground.

» Die zweite Technik stellt das Arbeits-
papier Constructive Solid Geometry for
Polyhedral Objects vor. Beide Doku-
mente finden Sie im Internet, wobei
http://citeseer.com/ eine sehr gute
Ausgangslage bietet. Auch das Stan-
dardwerk der Computergrafik (Compu-
ter Graphics Principles and Practice)
widmet sich ausfiihrlich diesen beiden
Techniken. Wenn Sie allerdings nur das
Rendering der CSG-Objekte behandeln
wollen, kénnen Sie sich sehr viel Arbeit
sparen, indem Sie keine Polygonale-
sondern eine Render-Technik ver-
wenden.

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

i Wenn Sie einfache konvexe Primitive
| wie Kugeln, Quader, Kegel oder Zylin-
I der einsetzen, lassen sich die CSG-Ope-
i rationen durchftihren, ohne deren Geo-
! metrie bearbeiten zu mussen. Es handelt
| sich dabei um ein Rendering-Verfahren
| mit Tricks. Es bedient sich der Stencil
| Buffers.

i Stencil Buffering (vgl. PC Underground
! in Heft 5/02 und 6/02) setzen Sie ein, um
| Spiegelungen und Schatten in 3D-Sze-
i nen zurendern. Inder Tat ist das im Fol-
' genden vorgestellte Verfahren verwandt
i mit den Stencil-Buffer-Schatten.

! Mit einem Stencil Buffer steuern Sie
| das Rendering auf Pixelbasis, also fur
i einzelne Pixel. Sie konnen das Setzen ei-
' nes Pixels, abhangig vom Ergebnis von
i bestimmten Vergleichsoperationen, ge-
| statten oder verbieten. Zusétzlich zum
i Frame- (bzw. Color-)Buffer und zum
i Z-Buffer fur Farb-/Alpha- und Tiefen-
i information, die Sie zumeist beim Ren-
! dering verwenden, kdnnen Grafikkarten
! den Stencil Buffer zur Verfuigung stellen.
i Dieser besitzt die gleiche Auflésung, al-
i so die gleiche Anzahl von Pixeln wie die
i andern beiden Buffer. Die Bit-Tiefe des
1 Stencil Buffer ist nicht fest vorgegeben.

! Unterschiedliche Hardware stellt un-
i terschiedliche Bitbreiten zur Verfiigung.
i Je nach Anwendung bendtigen Sie mehr
i oder weniger Bits pro Pixel. Sie kénnen
i mindestens ein Bit oder auch acht Bit
I Stencil Buffer anfordern. Fir den Stencil
| Buffer bendtigen Sie keine speziellen
| OpenGL-Erweiterungen (Extensions),
. weil ihn fast jede 3D-Hardware zur Ver-
i fligung stellt.

! In Ihrer Render-Pipeline kdnnen Sie
I den Stencil Buffer I16schen und beschrei-
i ben. Zunéachst missen Sie OpenGL aber
| mitteilen, dass Sie einen Stencil Buffer ©

1072002 PC Magazin 203

—®

o-E]

PC UNDERGROUND
PRAXIS

verwenden mdchten. Das erledigen Sie
dadurch, dass Sie das gewiinschte Pixel-
format beschreiben, wéhrend Sie den
Render-Kontext erzeugen. Ansonsten
unterscheidet sich die Initialisierung
nicht von der herkdbmmlichen. Den zu-
gehorigen Sourcecode finden Sie auf der
Heft CD. Zuséatzlich experimentieren
Sie mit dem vollstandigen Programm.

Stencil Buffers I6schen Sie, wie die an-
deren Buffers mit dem folgenden
OpenGL-Befehl:

» Der Stencil-Buffer-Test liefert ein po-
sitives Ergebnis, aber der Z-Buffer-Test
ein negatives.

e Beide Tests liefern ein positives Er-
gebnis.

Beachten Sie dabei, dass der Z-Buffer-
Testimmer als positivangenommen wird,
wenn das Z-Buffering deaktiviert ist.

Fir jeden dieser drei Falle gibt der gl-
StencilOp(...)-Befehl an, welche Opera-
tion durchgefiihrt werden soll. Diese
Operationen sind: Stencil-Buffer-Wert

Blickrichtung

Stencil Buifer

Stencil Buffer

Stencil Buffer

STENCIL-BUFFER-OPERATIONEN fir die Subtraktion und die Schnittmenge zweier Objekte

glClear
(GL_STENCIL_BUFFER_BIT);

Stencil Buffers beschreiben Sie mit Ren-
dering-Optionen, etwa denen fir Poly-
gone. Sie aktivieren den Aufruf mit
glEnable
(GL_STENCIL_TEST);

Jetzt fihrt OpenGL beim Setzen jedes
Pixels eine Vergleichsoperation durch,
die Sie mit dem Befehl

glStencilFunc(...)
festlegen.

Der erste Parameter gibt die Ver-
gleichsfunktion an. Diese legt fest, ob der
Wert im Stencil Buffer kleiner (gleich),
groRer (gleich) oder gleich einem Refe-
renzwert (der zweite Parameter) sein
muss, um ein positives Testresultat zu er-
halten. Sie kénnen auch festlegen, dass der
Test immer ein positives oder negatives
Ergebnis liefert, wenn Sie den Stencil Buf-
fer mit bestimmten Werten fillen wollen.

Mit dem dritten Parameter tbergeben
Sie eine Bitmaske. Fur den Wert aus dem
Stencil Buffer und dem Referenzwert
fuhrt OpenGL vor dem Vergleich eine
bitweise AND-Operation durch.

Mit der OpenGL Funktion glStencil-
Op(...) bestimmen Sie, was nach dem
Stencil-Test passieren soll: Setzt das Er-
gebnis ein Pixel oder nicht, verandert es
den Stencil-Buffer-Wert oder nicht? Sie
kdnnen unterschiedliche Operationen
flr drei denkbare Félle angeben, die da-
durch entstehen, dass auch das Ergebnis
des Z-Buffer-Tests relevant ist:

e Der Stencil-Buffer-Test liefert ein ne-
gatives Ergebnis.

208 PC Magazin 102002

unveréndert lassen, Wert auf Null set-
zen, auf den Referenz Wert (der glSten-
cilFunc(...)-Funktion) setzen, erhdhen,
erniedrigen oder bitweise invertieren.
Die Steuerung der Stencil-Buffer-Ope-
rationen gestattet viele verschiedene
Spezialeffekte.

Bei CSG-Operationen handelt es sich
nur um einen Rendering-Trick. Das
Dreiecksnetz, welches das Ergebnis ei-
ner geometrisch durchgefihrten CSG-
Operation ware, wird nicht erzeugt. Sie
verwenden den Z-Buffer und den Sten-
cil Buffer, um Teile der Ausgangspri-
mitive zu rendern oder wegzu-
schneiden.

Die geometrischen Primitive im Bei-
spielprogramm erzeugen Sie mit den
OpenGL-Befehlen fir Quadriken. Das
Beispiel zeigt, wie Sie eine Display-Liste
fur eine texturierte Kugel generieren:

GLUquadric *sphere;

GLuint spherelList;

GLfloat mat[] =
{0.0f, 0.5f, 0.0f, 1.0f };

sphereList = glGenLists(1);
glNewList
(sphereList, GL_COMPILE);

sphere = gluNewQuadric();
gluQuadricTexture
(sphere, GL_TRUE);
glMaterialfv(
GL_FRONT_AND_BACK,
GL_AMBIENT_AND_DIFFUSE, mat);
gluSphere
(sphere, 20.0f, 64, 64);
glEndList();
Fir die spatere Verwendung kapseln Sie
den Aufruf zum Rendern einer Display-
liste in eine Funktion:

void drawSphere()

glPushMatrix();
/I event. Transformationen

éiCaIIList(sphereList);
glPopMatrix();
}

Die Oder-Verknipfung bzw. die Verei-
nigung kodnnen Sie einfach rendern. Da-
zu bendtigen Sie lediglich den Z-Buffer.
Die zwei Parameter der Funktion sind
Zeiger auf weitere Funktionen, die je-
weils das Rendern eines der geometri-
schen Primitive gekapselt haben:

void renderUnion(
void (*A)(), void (*B)())

glEnable(GL_DEPTH_TEST);
AQ);
BO;

}

Fur die Subtraktion und die Und-Ver-
knupfung definieren Sie zwei Hilfsfunk-
tionen, um den Uberblick tber die ein-
zelnen Render-Schritte zu behalten. Die
erste Funktion dient dazu, ein Objekt zu
rendern und dabei die Z-Buffer-Werte
zu schreiben. Sie deaktivieren dabei den
Z-Buffer-Test, den Stencil-Test und das
Schreiben der Farbwerte in den Frame-
buffer:

void fixZBuffer
(void (*A)())

Funktion Resultat

GL_NEVER immer negativ

GL_LESS positiv, wenn (ref & mask) < (stencil & mask).
GL_LEQUAL positiv, wenn (ref & mask) ? (stencil & mask).
GL_GREATER positiv, wenn (ref & mask) > (stencil & mask).
GL_GEQUAL positiv, wenn (ref & mask) ? (stencil & mask).
GL_EQUAL positiv, wenn (ref & mask) = (stencil & mask).
GL_NOTEQUAL positiv, wenn (ref & mask) /= (stencil & mask).
GL_ALWAYS immer positiva

UNSER BEISPIELPROGRAMM zeigt die drei CSG-Operationen.

glColorMask
(GL_FALSE, GL_FALSE,
GL_FALSE, GL_FALSE);
glEnable(GL_DEPTH_TEST);
glDisable(GL_STENCIL_TEST);
glDepthFunc(GL_ALWAYS);
A0

GL_KEEP, GL_KEEP, GL_DECR);
glCullFace(GL_FRONT);
BO:

Diese Operationen sehen Sie im Bild an
einem zweidimensionalen Beispiel: die
zwei Objekte (im Z-Buffer) vor der
Stencil-Operation nach dem In- und
nach dem Dekrementieren.

Im letzten Schritt unserer Funktion
zeichnen Sie den sichtbaren Teil des Ob-
jekts A (abhéngig vom Stencil-Test) in
den Framebuffer:

glDepthMask(GL_TRUE);
glColorMask(GL_TRUE, GL_TRUE,
GL_TRUE, GL_TRUE),

) gl%epthFunc(GL_LESS);
Die zweite Funktion ist das Herzstick
der CSG-Operationen. Hiermit rendern
Sie den Teil des Objekts A, der sich in-
nerhalb des Objekts B befindet. Um die
Funktion flexibel einsetzen zu kénnen,
geben weitere Parameter an, ob die In-
nen- oder Auflenseiten von A gerendert
werden, und wie der abschlielende
Stencil-Test durchgefuhrt werden soll. _

Als erstes rendern Sie die gewiinschte g:gﬁ{g;fg(“félfgzgeoj;l)

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

}

|

| glDisable(GL_DEPTH_TEST);
|
|

Seite von A, ohne Stencil-Test und ohne i AQ;

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

den Framebuffer zu beschreiben: }
void AinsideB Mit diesen beiden Routinen gestalten
(void(*A)(),void(*B)(), sich die CSG-Operationen Ubersichtli-

Glenum cullFace, GLenum test) cher, trotzdem benétigen Sie Vorstel-

lungskraft, um die Schritte nachzuvoll-
ziehen. Am Besten Sie fertigen Hand-
Skizzen an, in denen Sie die Einzel-
schritte einzeichnen. Fur die Und-Ver-
knuipfung, also die CSG-Schnittoperati-
on, rufen Sie folgende Funktionen auf:

glEnable(GL_DEPTH_TEST);
glColorMask
(GL_FALSE, GL_FALSE,
GL_FALSE, GL_FALSE);

glCullFace(cullFace);

AQ;
Anschliefend markieren Sie die Teile
des Bildes (bzw. des Stencil Buffers), an
denen sich ein Teil des Objekts A inner-
halb des Objekts B befindet. Dazu ren-
dern Sie die VVorderseite von B, mit dem
Z-Buffer-Test, ohne den Frame- oder
Z-Buffer zu beschreiben. Dabei inkre-
mentieren Sie den Stencil-Wert jedes Pi-
xels:

void renderintersection(
void (*A)(), void (*B)())

AinsideB
(A,B,GL_BACK,GL_NOTEQUAL);
fixZBuffer(B);

AinsideB
(B,A,GL_BACK,GL_NOTEQUAL);
glDisable(GL_STENCIL_TEST);

glDepthMask(GL_FALSE

glEnable(GL_STEN-
CIL_TEST);

glStencilFunc

(GL_ALWAYS, 0,0);
glStencilOp(
GL_KEEP, GL_KEEP,

GL_INCR);

glCullFace(GL_BACK

)
B();

Umgekehrt dekrementieren
Sie die Stencil-Buffer-Werte
dort, wo auch die Rickseite
von B den Z-Buffer-Test be-
steht:

DER RADIAL BLUR EFFEKT mit Luminanz

glStencilOp(

102002 PC Magazin 209

PC UNDERGROUND
PRAXIS

Im ersten Schritt zeichnen Sie
den Teil der Vorderseite des
Obijekts A, der sich innerhalb
des Objekts B befindet. Den
Teilbereich bestimmen Sie
durch die Paramter
GL_BACK und GL_NO-
TEQUAL. Als nachstes fi-
xieren Sie die Tiefeninforma-
tion auf das B-Objekt. Da-
durch kdnnen Sie jetzt den
Teil der B-Vorderseite ren-
dern, der sich in A befindet.

Bei der CSG-Substraktion
verwenden Sie leicht abgeén-
derte Parameter:

void renderSubstraction(

void (*A)(), void (*B)())

AinsideB
(A,B,GL_FRONT,GL_NOTEQUAL);
fixzBuffer(B);
AinsideB(B,A,GL_BACK,GL_EQUAL);
glDisable(GL_STENCIL_TEST);

Der Unterschied zur Und-Verknipfung
liegt beim zweiten Teil des Renderings.
Hier wird nichtder Teil von B gerendert,
der sich innerhalb vom Objekt A befin-
det, sondern genau das Gegenteil: durch
den GL_EQUAL-Test werden die nicht
im Inneren liegenden Teile gerendert.

Im Bild links oben sehen Sie Screen-
shots von unserem Beispielprogramm,
die die Vereinigung, Schnittmenge und
Subtraktion eines Wiirfels und einer Ku-
gel zeigen.

Im zweiten Teil dieses Artikels wollen
wir lhnen einen Textur-Effekt vorstel-
len, der aus technischer Sicht nichts mit
den CSG-Operationen oder dem Stencil
Buffering zu tun hat. Allerdings lassen
sich in Verbindung mit den CSG-Kor-
pern interessante Effekte erzeugen, wie
Sie im Bild oben kdnnen.

Der Effekt basiert darauf, Teile des
Bildes von der Mitte nach auf3en zu zie-
hen und zu verwaschen. Effekte dieser
Art nennt man auch Radial-Blur-Effek-
te. Radial, weil die VergroRerung des
Bildteile (nach auflen ziehen) kreisfor-

Operation Stencil-Buffer-Werte

GL_KEEP unverandert

GL_ZERO auf Null setzen
GL_REPLACE auf Referenzwert setzen
GL_INCR erhéhen, mit Sattigung
GL_DECR niedriger, nicht kleiner Null
GL_INVERT bitweise invertieren

210 PC Magazin 102002

DER RADIAL-BLUR-EFFEKT mit RGB-Farbwerten

mig um die Mitte stattfindet, und Blur,
weil die weiter aulRen liegenderen Teile
verwaschen erscheinen.

Fir diesen Effekt benétigen Sie
zundchst eine OpenGL-Textur, die Sie
wahrend der Initialisierungsphase des
Programms anlegen. Damit legen Sie die
Filter fir die Textur-Skalierung fest. Mit
einer Konstante bestimmen Sie die
GroRe der Textur fur den spateren Ge-
brauch.

#define BLURSIZE 256
GLuint blurTexture;

glGenTextures(1, &blurTexture);
glBindTexture(GL_TEXTURE_2D,
blurTexture);

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MIN_FILTER,
GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MAG_FILTER,
GL_LINEAR);

Vor dem Rendering des eigentlichen Bil-
des bzw. des CSG-Objekts rendern Sie
die Szene in dieser Blur-Textur. Diesen
Vorgang fassen Sie am Besten in einer
Funktion zusammen:

void render2Texture
(GLenum format)
{

/I Viewport: Texgrof3e +léschen
glViewport
(0,0,BLURSIZE,BLURSIZE);

glClearColor
(0.0f,0.0f,0.0f,0.5f);
glClear(GL_COLOR_BUFFER_BIT |
GL_DEPTH_BUFFER_BIT |
GL_STENCIL_BUFFER_BIT);

renderCSG();

/I Texture kopieren
glBindTexture(GL_TEXTURE_2D,
blurTexture);
glCopyTexlmage2D(GL_TEXTURE_2D,
0, format, O, O,
BLURSIZE, BLURSIZE, 0);

/I Viewport wieder restaurieren
glClearColor
(0.0f,0.0f,0.5f,0.5f);
glClear(GL_COLOR_BUFFER_BIT |
GL_DEPTH_BUFFER_BIT |
GL_STENCIL_BUFFER_BIT);

extern int windowX, windowY;
glViewport(0,0,windowX,windowY);

Fur den format-Parameter wahlen Sie
entweder GL_LUMINANCE oder
GL_RGB, je nachdem, welche Effekte
Sie bei den vorigen beiden Bildern erhal-
ten wollen.

In Ihrer Render-Pipeline erzeugen Sie
die Blur-Textur, zeichnen die 3D-Szene
und rendern den Radial-Blur-Effekt mit
der folgenden Funktion, die wir Ihnen
als Ausschnitt zeigen. Der weggelassene
Teil deaktiviert den Z-Buffer und die
Beleuchtungsberechnung und initiali-
siert die OpenGL-Matrizen, um eine or-
thogonale Abbildung zu bekommen.

Die Blur-Textur wird n-mal Gber das
Bild gezeichnet, wobei die Farb- oder
die Luminanz-Werte jedesmal leicht auf
das Bild addiert werden. Die Intensitat
bestimmen Sie Uber den Alphawert. Die
Starke des Zooms (wie die Textur in je-
dem Schritt vergroRert wird) geben Sie
mit dem zweiten Parameter an:

void renderBlur
(int n, float delta)

{
float texZoom = 0.0f;
float alpha = 0.15f;
glDisable(GL_DEPTH_TEST);
glEnable(GL_BLEND);
glBlendFunc
(GL_SRC_ALPHA, GL_ONE);
glBindTexture(GL_TEXTURE_2D,

blurTexture);

II'... Matrizen & Co ...
glBegin(GL_QUADS);
for (inti=0;i<n;i++)

{
glColor4f(1, 1, 1, alpha);
glTexCoord2f
(O+texZoom,1-texZoom);
glVertex2f(-1,1);
glTexCoord2f
(O+texZoom,0+texZoom);
glVertex2f(-1, -1);
glTexCoord2f
(1-texZoom,0+texZoom);
glVertex2f(1,-1);
glTexCoord2f
(1-texZoom,1-texZoom);
glVertex2f(1,1);
texZoom += delta;
alpha -= 0.15f / (float)n;

}
glEnd();

Sie erhalten schéne Resultate, wenn Sie
die Textur 50-mal vergroRern und zeich-
nen. Als Delta-Wert hat sich 0.01 be-
wahrt. Beachten Sie, dass die Grafikkar-
te den Framebuffer 50-mal beschreiben
muss. Das belastet die Hardware. @ ET

Literatur:

James D. Foley, Andries van Dam, Steven K. Feiner,
John F. Hughes: Computer Graphics Principles and
Practice, Addison Wesley Professional 1996, 1200
Seiten, 75 US-Dollar, ISBN 0-201-84840-6

