
P C U N D E R G R O U N D
P R A X I S

10/2002 PC Magazin 203

C A R S T E N D A C H S B A C H E R

Lernen Sie die Booleschen Opera-
tionen für 3D-Körper kennen, die
eigentlich nicht für polygonal de-

finierte, sondern mathematisch be-
schriebenen Körper eingeführt wurden.
Die drei primären Booleschen Opera-
tionen sind:
• die Subtraktion,
• die Vereinigung
• und die Schnittberechnung.

Die letzteren beiden werden auch –
analog zur Mengenlehre – als Oder-
bzw. Und-Verknüpfung bezeichnet.

Die Subtraktion schneidet das Volumen
bzw. die Form eines Objekts aus einem
anderen Objekt heraus. Die Oder-Ope-
ration vereinigt die beiden Objekte. Die
Und-Operation resultiert in Volumen,
das von beiden Objekten belegt ist. Als
Schreibweise verwenden Sie A – B, A or
B oder A and B. CSG-Operationen
(Constructive Solid Geometry) finden
Sie in 3D-Modelling-Paketen, mit denen

sich Objekte intuitiv gestalten lassen,
oder dazu, um 3D-Grafik in Echtzeit
aufzubauen. Wir zeigen Ihnen den spie-
lerischen Einsatz, unterstützt von inter-
essanten Textur-Effekten.

■ Polygonale Techniken
Als ersten wollen wir die CSG-Operatio-
nen mit polygonalen Techniken durch-
führen, also die Dreiecke des einen Ob-
jekts mit den Dreiecken des anderen
schneiden und die richtigen Dreiecke aus-
wählen. Es sind die Dreiecke richtig, die
als Menge der Ausgangs- und durch
Schnittberechnungen entstandenen Drei-
ecke entstehen. Diese resultieren aus der

CSG-Operation. Ergebnisse liefern ver-
schiedene Ansätze. Für 3D-Modelling-
Programme gibt es zwei bekannte und
gute Referenzen.
• Der erste Ansatz verwendet die so ge-
nannten BSP-Trees (Binary Space Parti-
tioning). Er wird in Set Operations on
Polyhedra Using Binary Space Partitio-
ning Trees von Thibault und Naylor be-
schrieben.

• Die zweite Technik stellt das Arbeits-
papier Constructive Solid Geometry for
Polyhedral Objects vor. Beide Doku-
mente finden Sie im Internet, wobei
http://citeseer.com/ eine sehr gute
Ausgangslage bietet. Auch das Stan-
dardwerk der Computergrafik (Compu-
ter Graphics Principles and Practice)
widmet sich ausführlich diesen beiden
Techniken. Wenn Sie allerdings nur das
Rendering der CSG-Objekte behandeln
wollen, können Sie sich sehr viel Arbeit
sparen, indem Sie keine Polygonale-
sondern eine Render-Technik ver-
wenden.

■ Stencil-Buffer-Technik
Wenn Sie einfache konvexe Primitive
wie Kugeln, Quader, Kegel oder Zylin-
der einsetzen, lassen sich die CSG-Ope-
rationen durchführen, ohne deren Geo-
metrie bearbeiten zu müssen. Es handelt
sich dabei um ein Rendering-Verfahren
mit Tricks. Es bedient sich der Stencil
Buffers.
Stencil Buffering (vgl. PC Underground
in Heft 5/02 und 6/02) setzen Sie ein, um
Spiegelungen und Schatten in 3D-Sze-
nen zu rendern. In der Tat ist das im Fol-
genden vorgestellte Verfahren verwandt
mit den Stencil-Buffer-Schatten.

Mit einem Stencil Buffer steuern Sie
das Rendering auf Pixelbasis, also für
einzelne Pixel. Sie können das Setzen ei-
nes Pixels, abhängig vom Ergebnis von
bestimmten Vergleichsoperationen, ge-
statten oder verbieten. Zusätzlich zum
Frame- (bzw. Color-)Buffer und zum
Z-Buffer für Farb-/Alpha- und Tiefen-
information, die Sie zumeist beim Ren-
dering verwenden, können Grafikkarten
den Stencil Buffer zur Verfügung stellen.
Dieser besitzt die gleiche Auflösung, al-
so die gleiche Anzahl von Pixeln wie die
andern beiden Buffer. Die Bit-Tiefe des
Stencil Buffer ist nicht fest vorgegeben.

Unterschiedliche Hardware stellt un-
terschiedliche Bitbreiten zur Verfügung.
Je nach Anwendung benötigen Sie mehr
oder weniger Bits pro Pixel. Sie können
mindestens ein Bit oder auch acht Bit
Stencil Buffer anfordern. Für den Stencil
Buffer benötigen Sie keine speziellen
OpenGL-Erweiterungen (Extensions),
weil ihn fast jede 3D-Hardware zur Ver-
fügung stellt.

In Ihrer Render-Pipeline können Sie
den Stencil Buffer löschen und beschrei-
ben. Zunächst müssen Sie OpenGL aber
mitteilen, dass Sie einen Stencil Buffer q

Constructive Solid Geometry, Texturen in OpenGL

Glanz im
Strahlenkranz
Bringen Sie Ihrer Grafikkarte Boolesche Operatio-
nen bei und rendern Sie damit Constructive-So-
lid-Geometry-Objekte. Mit einfachen Textur-
Tricks erhalten Sie beeindruckende Lichteffekte!

AUF CD
Die Quelltexte sowie die fertig übersetzten

Routinen finden Sie im Verzeichnis Heft Add-
ons/Programmierung/PC Underground.

DIE BEI CONSTRUCTIVE SOLID GEOMETRY möglichen Operationen in zwei Dimensionen

P C U N D E R G R O U N D
P R A X I S

208 PC Magazin 10/2002

verwenden möchten. Das erledigen Sie
dadurch, dass Sie das gewünschte Pixel-
format beschreiben, während Sie den
Render-Kontext erzeugen. Ansonsten
unterscheidet sich die Initialisierung
nicht von der herkömmlichen. Den zu-
gehörigen Sourcecode finden Sie auf der
Heft CD. Zusätzlich experimentieren
Sie mit dem vollständigen Programm.

Stencil Buffers löschen Sie, wie die an-
deren Buffers mit dem folgenden
OpenGL-Befehl:

glClear
(GL_STENCIL_BUFFER_BIT);

Stencil Buffers beschreiben Sie mit Ren-
dering-Optionen, etwa denen für Poly-
gone. Sie aktivieren den Aufruf mit

glEnable
(GL_STENCIL_TEST);

Jetzt führt OpenGL beim Setzen jedes
Pixels eine Vergleichsoperation durch,
die Sie mit dem Befehl

glStencilFunc(...)

festlegen.
Der erste Parameter gibt die Ver-

gleichsfunktion an. Diese legt fest, ob der
Wert im Stencil Buffer kleiner (gleich),
größer (gleich) oder gleich einem Refe-
renzwert (der zweite Parameter) sein
muss, um ein positives Testresultat zu er-
halten. Sie können auch festlegen, dass der
Test immer ein positives oder negatives
Ergebnis liefert, wenn Sie den Stencil Buf-
fer mit bestimmten Werten füllen wollen.

Mit dem dritten Parameter übergeben
Sie eine Bitmaske. Für den Wert aus dem
Stencil Buffer und dem Referenzwert
führt OpenGL vor dem Vergleich eine
bitweise AND-Operation durch.

Mit der OpenGL Funktion glStencil-
Op(...) bestimmen Sie, was nach dem
Stencil-Test passieren soll: Setzt das Er-
gebnis ein Pixel oder nicht, verändert es
den Stencil-Buffer-Wert oder nicht? Sie
können unterschiedliche Operationen
für drei denkbare Fälle angeben, die da-
durch entstehen, dass auch das Ergebnis
des Z-Buffer-Tests relevant ist:
• Der Stencil-Buffer-Test liefert ein ne-
gatives Ergebnis.

• Der Stencil-Buffer-Test liefert ein po-
sitives Ergebnis, aber der Z-Buffer-Test
ein negatives.
• Beide Tests liefern ein positives Er-
gebnis.

Beachten Sie dabei, dass der Z-Buffer-
Test immer als positiv angenommen wird,
wenn das Z-Buffering deaktiviert ist.

Für jeden dieser drei Fälle gibt der gl-
StencilOp(...)-Befehl an, welche Opera-
tion durchgeführt werden soll. Diese
Operationen sind: Stencil-Buffer-Wert

unverändert lassen, Wert auf Null set-
zen, auf den Referenz Wert (der glSten-
cilFunc(...)-Funktion) setzen, erhöhen,
erniedrigen oder bitweise invertieren.
Die Steuerung der Stencil-Buffer-Ope-
rationen gestattet viele verschiedene
Spezialeffekte.

■ CSG-Operationen mit
Stencil Buffers
Bei CSG-Operationen handelt es sich
nur um einen Rendering-Trick. Das
Dreiecksnetz, welches das Ergebnis ei-
ner geometrisch durchgeführten CSG-
Operation wäre, wird nicht erzeugt. Sie
verwenden den Z-Buffer und den Sten-
cil Buffer, um Teile der Ausgangspri-
mitive zu rendern oder wegzu-
schneiden.

Die geometrischen Primitive im Bei-
spielprogramm erzeugen Sie mit den
OpenGL-Befehlen für Quadriken. Das
Beispiel zeigt, wie Sie eine Display-Liste
für eine texturierte Kugel generieren:

GLUquadric *sphere;

GLuint sphereList;

GLfloat mat[] =
{ 0.0f, 0.5f, 0.0f, 1.0f };

sphereList = glGenLists(1);
glNewList

(sphereList, GL_COMPILE);

sphere = gluNewQuadric();
gluQuadricTexture

(sphere, GL_TRUE);
glMaterialfv(

GL_FRONT_AND_BACK,
GL_AMBIENT_AND_DIFFUSE, mat);

gluSphere
(sphere, 20.0f, 64, 64);

glEndList();

Für die spätere Verwendung kapseln Sie
den Aufruf zum Rendern einer Display-
liste in eine Funktion:

void drawSphere()
{

glPushMatrix();
// event. Transformationen
...
glCallList(sphereList);
glPopMatrix();

}

Die Oder-Verknüpfung bzw. die Verei-
nigung können Sie einfach rendern. Da-
zu benötigen Sie lediglich den Z-Buffer.
Die zwei Parameter der Funktion sind
Zeiger auf weitere Funktionen, die je-
weils das Rendern eines der geometri-
schen Primitive gekapselt haben:

void renderUnion(
void (*A)(), void (*B)())

{
glEnable(GL_DEPTH_TEST);
A();
B();

}

Für die Subtraktion und die Und-Ver-
knüpfung definieren Sie zwei Hilfsfunk-
tionen, um den Überblick über die ein-
zelnen Render-Schritte zu behalten. Die
erste Funktion dient dazu, ein Objekt zu
rendern und dabei die Z-Buffer-Werte
zu schreiben. Sie deaktivieren dabei den
Z-Buffer-Test, den Stencil-Test und das
Schreiben der Farbwerte in den Frame-
buffer:

void fixZBuffer
(void (*A)())

{

GLSTENCILFUNC – STENCIL-BUFFER-VERGLEICHE

Funktion Resultat
GL_NEVER immer negativ
GL_LESS positiv, wenn (ref & mask) < (stencil & mask).
GL_LEQUAL positiv, wenn (ref & mask) ? (stencil & mask).
GL_GREATER positiv, wenn (ref & mask) > (stencil & mask).
GL_GEQUAL positiv, wenn (ref & mask) ? (stencil & mask).
GL_EQUAL positiv, wenn (ref & mask) = (stencil & mask).
GL_NOTEQUAL positiv, wenn (ref & mask) != (stencil & mask).
GL_ALWAYS immer positiva

STENCIL-BUFFER-OPERATIONEN für die Subtraktion und die Schnittmenge zweier Objekte

10/2002 PC Magazin 209

glColorMask
(GL_FALSE, GL_FALSE,
GL_FALSE, GL_FALSE);

glEnable(GL_DEPTH_TEST);
glDisable(GL_STENCIL_TEST);
glDepthFunc(GL_ALWAYS);
A();
glDepthFunc(GL_LESS);

}

Die zweite Funktion ist das Herzstück
der CSG-Operationen. Hiermit rendern
Sie den Teil des Objekts A, der sich in-
nerhalb des Objekts B befindet. Um die
Funktion flexibel einsetzen zu können,
geben weitere Parameter an, ob die In-
nen- oder Außenseiten von A gerendert
werden, und wie der abschließende
Stencil-Test durchgeführt werden soll.

Als erstes rendern Sie die gewünschte
Seite von A, ohne Stencil-Test und ohne
den Framebuffer zu beschreiben:

void AinsideB
(void(*A)(),void(*B)(),

GLenum cullFace, GLenum test)
{

glEnable(GL_DEPTH_TEST);
glColorMask

(GL_FALSE, GL_FALSE,
GL_FALSE, GL_FALSE);

glCullFace(cullFace);
A();

Anschließend markieren Sie die Teile
des Bildes (bzw. des Stencil Buffers), an
denen sich ein Teil des Objekts A inner-
halb des Objekts B befindet. Dazu ren-
dern Sie die Vorderseite von B, mit dem
Z-Buffer-Test, ohne den Frame- oder
Z-Buffer zu beschreiben. Dabei inkre-
mentieren Sie den Stencil-Wert jedes Pi-
xels:

glDepthMask(GL_FALSE
);

glEnable(GL_STEN-
CIL_TEST);

glStencilFunc
(GL_ALWAYS, 0, 0);

glStencilOp(
GL_KEEP, GL_KEEP,

GL_INCR);
glCullFace(GL_BACK

);
B();

Umgekehrt dekrementieren
Sie die Stencil-Buffer-Werte
dort, wo auch die Rückseite
von B den Z-Buffer-Test be-
steht:

glStencilOp(

GL_KEEP, GL_KEEP, GL_DECR);
glCullFace(GL_FRONT);
B();

Diese Operationen sehen Sie im Bild an
einem zweidimensionalen Beispiel: die
zwei Objekte (im Z-Buffer) vor der
Stencil-Operation nach dem In- und
nach dem Dekrementieren.

Im letzten Schritt unserer Funktion
zeichnen Sie den sichtbaren Teil des Ob-
jekts A (abhängig vom Stencil-Test) in
den Framebuffer:

glDepthMask(GL_TRUE);
glColorMask(GL_TRUE, GL_TRUE,

GL_TRUE, GL_TRUE);

glDisable(GL_DEPTH_TEST);
glStencilFunc(test, 0, 1);
glCullFace(cullFace);
A();

}

Mit diesen beiden Routinen gestalten
sich die CSG-Operationen übersichtli-
cher, trotzdem benötigen Sie Vorstel-
lungskraft, um die Schritte nachzuvoll-
ziehen. Am Besten Sie fertigen Hand-
Skizzen an, in denen Sie die Einzel-
schritte einzeichnen. Für die Und-Ver-
knüpfung, also die CSG-Schnittoperati-
on, rufen Sie folgende Funktionen auf:

void renderIntersection(
void (*A)(), void (*B)())

{
AinsideB

(A,B,GL_BACK,GL_NOTEQUAL);
fixZBuffer(B);
AinsideB

(B,A,GL_BACK,GL_NOTEQUAL);
glDisable(GL_STENCIL_TEST);

}

UNSER BEISPIELPROGRAMM zeigt die drei CSG-Operationen.

DER RADIAL BLUR EFFEKT mit Luminanz

q

P C U N D E R G R O U N D
P R A X I S

210 PC Magazin 10/2002

Im ersten Schritt zeichnen Sie
den Teil der Vorderseite des
Objekts A, der sich innerhalb
des Objekts B befindet. Den
Teilbereich bestimmen Sie
durch die Paramter
GL_BACK und GL_NO-
TEQUAL. Als nächstes fi-
xieren Sie die Tiefeninforma-
tion auf das B-Objekt. Da-
durch können Sie jetzt den
Teil der B-Vorderseite ren-
dern, der sich in A befindet.

Bei der CSG-Substraktion
verwenden Sie leicht abgeän-
derte Parameter:

void renderSubstraction(
void (*A)(), void (*B)())

{
AinsideB

(A,B,GL_FRONT,GL_NOTEQUAL);
fixZBuffer(B);

AinsideB(B,A,GL_BACK,GL_EQUAL);
glDisable(GL_STENCIL_TEST);

}

Der Unterschied zur Und-Verknüpfung
liegt beim zweiten Teil des Renderings.
Hier wird nicht der Teil von B gerendert,
der sich innerhalb vom Objekt A befin-
det, sondern genau das Gegenteil: durch
den GL_EQUAL-Test werden die nicht
im Inneren liegenden Teile gerendert.

Im Bild links oben sehen Sie Screen-
shots von unserem Beispielprogramm,
die die Vereinigung, Schnittmenge und
Subtraktion eines Würfels und einer Ku-
gel zeigen.

■ Radial-Blur-Effekte
Im zweiten Teil dieses Artikels wollen
wir Ihnen einen Textur-Effekt vorstel-
len, der aus technischer Sicht nichts mit
den CSG-Operationen oder dem Stencil
Buffering zu tun hat. Allerdings lassen
sich in Verbindung mit den CSG-Kör-
pern interessante Effekte erzeugen, wie
Sie im Bild oben können.

Der Effekt basiert darauf, Teile des
Bildes von der Mitte nach außen zu zie-
hen und zu verwaschen. Effekte dieser
Art nennt man auch Radial-Blur-Effek-
te. Radial, weil die Vergrößerung des
Bildteile (nach außen ziehen) kreisför-

mig um die Mitte stattfindet, und Blur,
weil die weiter außen liegenderen Teile
verwaschen erscheinen.

Für diesen Effekt benötigen Sie
zunächst eine OpenGL-Textur, die Sie
während der Initialisierungsphase des
Programms anlegen. Damit legen Sie die
Filter für die Textur-Skalierung fest. Mit
einer Konstante bestimmen Sie die
Größe der Textur für den späteren Ge-
brauch.

#define BLURSIZE 256
GLuint blurTexture;

glGenTextures(1, &blurTexture);
glBindTexture(GL_TEXTURE_2D,

blurTexture);
glTexParameteri(GL_TEXTURE_2D,

GL_TEXTURE_MIN_FILTER,
GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MAG_FILTER,
GL_LINEAR);

Vor dem Rendering des eigentlichen Bil-
des bzw. des CSG-Objekts rendern Sie
die Szene in dieser Blur-Textur. Diesen
Vorgang fassen Sie am Besten in einer
Funktion zusammen:

void render2Texture
(GLenum format)

{
// Viewport: Texgröße +löschen
glViewport
(0,0,BLURSIZE,BLURSIZE);

glClearColor
(0.0f,0.0f,0.0f,0.5f);
glClear(GL_COLOR_BUFFER_BIT |

GL_DEPTH_BUFFER_BIT |
GL_STENCIL_BUFFER_BIT);

renderCSG();

// Texture kopieren
glBindTexture(GL_TEXTURE_2D,

blurTexture);
glCopyTexImage2D(GL_TEXTURE_2D,

0, format, 0, 0,
BLURSIZE, BLURSIZE, 0);

// Viewport wieder restaurieren
glClearColor
(0.0f,0.0f,0.5f,0.5f);
glClear(GL_COLOR_BUFFER_BIT |

GL_DEPTH_BUFFER_BIT |
GL_STENCIL_BUFFER_BIT);

extern int windowX, windowY;
glViewport(0,0,windowX,windowY);
}

Für den format-Parameter wählen Sie
entweder GL_LUMINANCE oder
GL_RGB, je nachdem, welche Effekte
Sie bei den vorigen beiden Bildern erhal-
ten wollen.

In Ihrer Render-Pipeline erzeugen Sie
die Blur-Textur, zeichnen die 3D-Szene
und rendern den Radial-Blur-Effekt mit
der folgenden Funktion, die wir Ihnen
als Ausschnitt zeigen. Der weggelassene
Teil deaktiviert den Z-Buffer und die
Beleuchtungsberechnung und initiali-
siert die OpenGL-Matrizen, um eine or-
thogonale Abbildung zu bekommen.

Die Blur-Textur wird n-mal über das
Bild gezeichnet, wobei die Farb- oder
die Luminanz-Werte jedesmal leicht auf
das Bild addiert werden. Die Intensität
bestimmen Sie über den Alphawert. Die
Stärke des Zooms (wie die Textur in je-
dem Schritt vergrößert wird) geben Sie
mit dem zweiten Parameter an:

void renderBlur
(int n, float delta)

{
float texZoom = 0.0f;
float alpha = 0.15f;
glDisable(GL_DEPTH_TEST);
glEnable(GL_BLEND);
glBlendFunc
(GL_SRC_ALPHA, GL_ONE);
glBindTexture(GL_TEXTURE_2D,

blurTexture);
// ... Matrizen & Co ...
glBegin(GL_QUADS);
for (int i = 0; i < n; i++)
{

glColor4f(1, 1, 1, alpha);
glTexCoord2f
(0+texZoom,1-texZoom);
glVertex2f(-1, 1);
glTexCoord2f
(0+texZoom,0+texZoom);
glVertex2f(-1, -1);
glTexCoord2f
(1-texZoom,0+texZoom);
glVertex2f(1, -1);
glTexCoord2f
(1-texZoom,1-texZoom);
glVertex2f(1, 1);
texZoom += delta;
alpha -= 0.15f / (float)n;

}
glEnd();

}

Sie erhalten schöne Resultate, wenn Sie
die Textur 50-mal vergrößern und zeich-
nen. Als Delta-Wert hat sich 0.01 be-
währt. Beachten Sie, dass die Grafikkar-
te den Framebuffer 50-mal beschreiben
muss. Das belastet die Hardware. s E T

STENCIL-BUFFER-
OPERATIONEN

Operation Stencil-Buffer-Werte
GL_KEEP unverändert
GL_ZERO auf Null setzen
GL_REPLACE auf Referenzwert setzen
GL_INCR erhöhen, mit Sättigung
GL_DECR niedriger, nicht kleiner Null
GL_INVERT bitweise invertieren

LLiitteerraattuurr::

James D. Foley, Andries van Dam, Steven K. Feiner,
John F. Hughes: Computer Graphics Principles and
Practice, Addison Wesley Professional 1996, 1200
Seiten, 75 US-Dollar, ISBN 0-201-84840-6

DER RADIAL-BLUR-EFFEKT mit RGB-Farbwerten

