Shadow Depth Maps mit OpenGL

o

LY

Im Schein-

werfer

Mit wenigen OpenGL-Befehlen und etwas Theorie

entlocken Sie Ihrer modernen Grafikkarte
. Dabei kénnen sich die 3D-Objekte

auch selbst beschatten.

CARSTEN DACHSBACHER

as Rendering von Schatten in
3D-Engines und Computer-
spielen ist heutzutage schon fast

ein Muss. Die Leistungsfahigkeit mo-
derner 3D-Beschleu-

den. Die PN-Triangles bieten die Option,
mit einem Dreieck eine gewdlbte Ober-
flache darzustellen, ahnlich wie bei her-
kdmmlichen parametrischen Flachen.

Lernen Sie die Shadow-Map-Technik
kennen, die Sie mit den Stencil Shadows
schon gestreift hatten.

niger und CPUs stel-
len Ihnen die techni-
schen Werkzeuge zur
Verfiigung. Einzige
Voraussetzung: Sie
mussen die Theorie
dahinter kennen -
daflr sorgt dieser Ar-
tikel.

Sie hatten sich be-
reits in PC Under-
ground 6/02, ab S.
196, mit einem Ver-
fahren vertraut ge-
macht, um in Echtzeit
Schatten zu rendern.
Dabei handelte es sich
um die Stencil-Buf-
fer-Schatten. Diese
Technik betrachtet
Schatten eines 3D-Objekts als polygo-
nales Volumen. Fir jedes gerenderte
Bild mussten Sie dabei das Volumen be-
stimmen - das heif3t, die Silhouette des
Objekts aus der Sicht der Lichtquelle be-
stimmen.

Dieses Verfahren ist mit Rechen- und
Speicheraufwand fir die Adjazenz-Infor-
mation verbunden. Und es gibt weitere
Nachteile: Sie kdnnen beispielsweise kei-
nen korrekten Schatten rendern, wenn
Verfahren wie die PN-Triangles der neue-
ren ATI-Grafikkarten verwendet wer-

M

DER IN EINE TEXTUR KOPIERTE Z-Buffer zeigt dunklere Teile
nahe an der Lichtquelle, hellere weiter entfernt.

Bei den Shadow Maps verwenden Sie den
Z-Buffer und projektives Texture Map-
ping, um die Schatten zu rendern. Dieses
Verfahren ist fur Spotlights gedacht:
Lichtquellen, die einen begrenzten
Lichtkegel in eine Richtung abstrahlen.
Omnilights sind Lichtquellen, die in jede
Richtung gleichmé&Rig Licht aussenden.
Bei der Shadow-Mapping-Technik
transformieren Sie die 3D-Szene, die Sie
mit Schatten rendern wollen. Dabei

5%

~ PC UNDERGROUND

o

-
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
I
I
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

PRAXIS

AUF CD

Die Quelltexte sowie die fertig tbersetzten
Routinen finden Sie im Verzeichnis Heft Add-

<\~ ons/Programmierung/PC Underground.

muss die OpenGL-Kamera in die glei-
che Position wie das entsprechende
Spotlight riicken. Mit dieser Einstellung
rendern Sie die 3D-Szene aus der Sicht
der Lichtquelle. Von diesem gerender-
ten Bild bendtigen Sie nur den Z-Buffer,
den Sie in die Depth Map kopieren. Mit
Z-Buffer heben Sie sich also lediglich die
Tiefeninformation auf.

Ein Beispiel sehen Sie im Bild links.
Diese Textur verwenden Sie dann beim
Rendering des fertigen Bildes wieder.
Dabei projizieren Sie die Textur mit der
OpenGL-Textur-Koordinaten-Gene-
rierung auf die Geometrie der 3D-
Objekte.

Die Koordinaten-Generierung stellen
Sie so ein, dass die Texturkoordinaten
eines Punktes den Vertexkoordinaten
des Punktes bezuglich der Lichtquelle
entsprechen. Diese Texturkoordinaten
sind mit (s, t, r) bezeichnet. Mit der ent-
sprechenden OpenGL-Erweiterung
kdnnen Sie die r-Komponente (also den
Abstand des Punktes von der Lichtquel-
le) mit der Tiefeninformation in der
Depth Map vergleichen. Kurz: Sie ver-
gleichen bei jedem Fragment (Pixel), das
gezeichnet wird, seinen tatsachlichen
Abstand zur Lichtquelle mit dem in der
Depth Map gespeicherten Abstand.

In der Depth Map sind durch das Z-
Buffering die jeweils kleinsten Abstande
zwischen der Lichtquelle und einer
Oberflache gespeichert. Ist der tat-
sachliche Abstand r groRer als der ge-
speicherte Wert im Texel der Depth
Map, liegt der betrachtete Pixel hinter ei-
ner Oberflache, die von der Lichtquelle
aus sichtbar ist. Das bedeutet, er liegt im
Schatten.

Dieses Verfahren ist universell einsetz-
bar und sehr flexibel. Es lasst auch Selbst-
beschattung von 3D-Objekten zu. Ein
weiterer Vorteil ist, dass der Aufwand
des Schatten-Rendering nicht direkt von
der Komplexitét der Geometrie abhangt.
Aullerdem konnen Sie, um die Shadow
Depth Maps zu generieren, 3D-Objekte
mit reduzierten Details verwenden.

Bei diesem Screen-Space-Schattenver-
fahren héngt die Auflésung der Schatten
von der Auflésung der Depth Map ab.
Dabei sind unter Umstanden Trepp-
cheneffekte an den Randern der Schatten
zu erkennen.

Nachdem Sie jetzt das Prinzip kennen, im-
plementieren Sie das Schatten- @ Ren-

11,2002 PC Magazin 217

o-E]

PC UNDERGROUND
PRAXIS

dering. Zunéchst missen Sie sich um die
bendtigten OpenGL-Extensions kim-
mern, da die Funktionalitat der Depth-
Map-Vergleiche noch nicht Bestandteil ei-
ner OpenGL-Spezifikation ist. AuRBerdem
verwenden Sie Multitexturing, um nicht
nur Schatten zu rendern, sondern dem
Lichtkegel auch einen attraktiven Hellig-
keitsverlauf und den 3D-Objekten eine
normale Textur zu verpassen.

Fir die Depth
Maps stehen lhnen
entweder die GL

SGIX_depth_texture
und GL_SGIX sha-
dow-Extensions zur
Verfligung, oder Sie
verwenden die
GL_ARB_depth_tex-
ture und GL_
ARB_shadow-Exten-
tions. lhre Wahl
héngt davon ab, was
die Treiber anbieten.

Bislang werden
diese beiden Erweite-
rungen hauptséchlich
von nVidia-Grafik-
karten unterstitzt. Es
ist zu erwarten, dass
alle neuen Karten
nachziehen werden.
Die beiden Varianten
unterscheiden sich prinzipiell nicht, le-
diglich im Setup des Depth-Map-Ver-
gleichs missen Sie die spéter erwéhnten
Einzelheiten beachten. Die beiden Ex-
tensions definieren keine neuen
OpenGL-Funktionen, sondern nur
neue Tokens fiir die glTexParameter-
Befehle. Fur das Multitexturing verwen-
den Sie in dieser Ausgabe den glActive-
TextureARB-Befehl, um die jeweils ak-
tive Texturing-Einheit zu wahlen. Mit
dem gIMultiTexCoord2fARB-Befehl
geben Sie die Texturkoordinaten an.

Beginnen Sie zunédchst damit, die
bendtigten Texturen anzulegen, allen
voran die Shadow Depth Map:

GLuint shadowDepthMap;

glGenTextures

(1, &shadowDepthMap);

glBindTexture(GL_TEXTURE_2D,
shadowDepthMap);

Als Format wahlen Sie GL_
DEPTH_COMPONENT. Damit stel-
len Sie sicher, dass fiir die Tiefeninfor-
mation in der Textur dieselbe Bit-Tiefe
wie fir den tatséchlichen Z-Buffer ver-
wendet wird (also nicht konvertiert wer-
den muss). Sie konnten die Bit-Tiefe
aber auch explizit angeben, wie mit

218 PC Magazin 11/2002

GL_DEPTH_COMPONENT16_SGI
X oder GL_DEPTH_COMPO-
NENT16_ARB fir 16 Bit. Die GroRe
der Depth Map berechnet sich nach der
Formel SHADOWSIZE x SHADOW-
SIZE:
glCopyTexlmage2D
(GL_TEXTURE_2D, 0,

GL_DEPTH_COMPONENT, 0, 0,
SHADOWSIZE, SHADOWSIZE, 0);

MIT DIESEM HELLIGKEITSVERLAUF schinden lhre Spotlights
Eindruck.

In der Regel geniigt eine GroRe der
Depth Map von 256 x 256 Pixeln. Weite-
re Textur-Parameter sind das Clamping
der Textur, was bedeutet, dass die Textur
sich nicht wiederholt. Das ist wichtig,
weil die Depth Map nur fur den sichtba-
ren Bereich der Lichtquelle gilt, aber
durch die Textur-Koordinatengenerie-
rung auch auf andere Stellen gemappt
wird. Aul3erdem stellen Sie die Vergoie-
rung/Verkleinerung der Textur auf bili-
neare Interpolation ochne Mipmaps:

Mit IntelliSense bezeichnet Microsoft das
Feature der Visual-C++- Entwicklungsum-
gebung, mit dem sich automatisch Be-
fehlsnamen vervollstandigen (uber [Strg-
Leertaste]) und Typ- und Parameter-Infor-
mationen per [Strg-t] oder [Strg-Shift-
Leertaste] abfragen lassen. Diese prakti-
sche Option steht zunachst nur fur die
Standardbefehle wie strdup(...) oder selbst
definierte Funktionen zur Verfugung. Bei
OpenGL-Befehlen kann dieses Feature
nicht eingesetzt werden, es sei denn, Sie
gaukeln der Entwicklungsumgebung vor,
Sie hatten jeden Befehl selbst definiert.

glTexParameteri
(GL_TEXTURE_2D,
GL_TEXTURE_MAG_FILTER,
GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MIN_FILTER,
GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_WRAP_S,
GL_CLAMP_TO_EDGE);

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_WRAP_T,
GL_CLAMP_TO_EDGE);

Jetzt kommt der wichtigste Teil des Tex-
tur-Setups: die Vergleichsoperation. Sie
vergleicht die r-Komponente der Tex-
turkoordinaten mit dem Tiefenwert in
der Depth Map. Als Resultat kann eine
0 oder eine 1 vorkommen, die Sie als Lu-
minanz (Helligkeitswert) der Textur-
Stage verwenden. Um die Helligkeit mit
anderen Textur-Stages zu kombinieren,
verwenden Sie GL_MODULATE fir
das Textur-Combining:
gITexEnvi(GL_TEXTURE_ENV,
GL_TEXTURE_ENV_MODE,
GL_MODULATE);
glTexParameteri(
GL_TEXTURE_2D,

GL_DEPTH_TEXTURE_MODE_ARB,
GL_LUMINANCE);

Den Depth-Map-Vergleich aktivieren
Sie je nach verwendeter Erweiterung so:

/I ARB Ext

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_COMPARE_MODE_ARB,
GL_COMPARE_R_TO_TEXTURE_ARB);

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_COMPARE_FUNC_ARB,
GL_LEQUAL);

/I SGIX Ext

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_COMPARE_SGIX,
GL_TRUE);

glTexParameteri(GL_TEXTURE_2D,

GL_TEXTURE_COMPARE_OPERATOR_SGIX,

GL_TEXTURE_LEQUAL_R_SGIX);
Den Helligkeitsverlauf des Spotlights la-
den Sie als einfache Graustufen-Textur.
Dafiir aktivieren Sie das Textur-Clam-
ping und GL_MODULATE.

Adam Medveczky hat dies getan und sei-
ne Header-Datei der OpenGL-Gemeinde
zur Verfugung gestellt. Diese Datei mus-
sen Sie in ein Visual-C++-Projekt tber den
Menupunkt Project/Add To Project/Files
einfugen. In der Header-Datei befinden
sich alle Funktionen als leer definiert —
mit einer nie erfillten #ifdef-Anweisung.
Dadurch werden die Funktionen fur die
Entwicklungsumgebung definiert, der
Compiler ignoriert sie aber — was er auch
tun muss — auf Grund der #ifdef-Anwei-
sung. Sie finden die Header-Datei auf der
Heft-CD.

Nach den Initialisierungen rendern Sie
die einzelnen Frames. Im Folgenden ge-
hen wir — der Ubersichtlichkeit halber —
davon aus, dass es eine Funktion draw-
Scene() gibt, die die vollstdndige 3D-Sze-
ne an OpenGL Ubergibt. Fir jeden
Frame rendern Sie zunéchst die Depth
Map. Dabei missen Sie die OpenGL-
Kamera passend positionieren und aus-
richten und den OpenGL-Viewport
ginstellen. Den Offnungswinkel des
Spotlights stellen Sie in der Projektions-
Matrix, die Position und Richtung mit
gluLookAt(...) in der Modelview-Matrix
von OpenGL ein:

glViewport(0, O,
SHADOWSIZE, SHADOWSIZE);

UNSER BEISPIELPROGRAMM in Aktion

glClear(GL_COLOR_BUFFER_BIT |
GL_DEPTH_BUFFER_BIT);

gIMatrixMode(GL_PROJECTION);
glLoadldentity();

gluPerspective(SPOT_ANGLE,
1.0f, 1.0f, 500.0f);

gIMatrixMode(GL_MODELVIEW);
glPushMatrix();

glLoadldentity();

gluLookAt(
lightPosition[0],
lightPosition[1],
lightPosition[2],
0,0,0,
0,1,0);

Verwenden Sie glPolygonOffset(...), um
die gerenderten Dreiecke in der Depth

Map zu verschieben. Somit vermeiden Sie
Artefakte (Bildfehler) durch Ungenauig-

PC UNDERGROUND
PRAXIS

keiten bei den Schatten. AufRerdem kén-
nen Sie die OpenGL-Beleuchtungsbe-
rechnung und das Beschreiben des Co-
lorbuffers abschalten. Somit ersparen Sie
lhrer Grafikkarte unnétigen Aufwand,
denn nur der Z-Buffer ist interessant:

glDisable(GL_LIGHTING);
glColorMask(GL_FALSE, GL_FALSE,
GL_FALSE, GL_FALSE);

glPolygonOffset(2, 2);
glEnable
(GL_POLYGON_OFFSET_FILL);

Jetzt zeichnen Sie die 3D-Szene und

kopieren den Z-Buffer in die Depth Map:
drawScene();

glBindTexture(GL_TEXTURE_2D,
shadowDepthMap);
glCopyTexSublmage2D(
GL_TEXTURE_2D, 0, 0,0, 0, 0,
SHADOWSIZE, SHADOWSIZE);

Um eine Graustufen-Bitmap des Z-
Buffers auszuwerten, kénnen Sie die

Daten so erhalten:
unsigned char depthMap
[256 * 256];
glReadPixels(0, 0, 256, 256,
GL_DEPTH_COMPONENT,
GL_UNSIGNED_BYTE, depthMap);
Anschliel3end stellen Sie die vorherigen
Renderstates und OpenGL-Matrizen
wieder her und sind fertig mit der Depth
Map.

Jetzt konnen Sie die 3D-Szene mit
Schatten rendern. Sie mussen lediglich
die Textur Stages und die Texturkoordi-
naten-Generierung einstellen. Dieser
Vorgang ist fur die ersten beiden Textur
Stages gleich. Eine verwendet die Spot-
light Textur, die andere die Depth ©

11,2002 PC Magazin 219

@«@

o-E]

PC UNDERGROUND
PRAXIS

Map. Welche Textur auf welcher Stage
liegt, ist egal: Durch das GL_MODU
LATE ist die Reihenfolge hinféllig. Die
jeweils aktive Textur Stage wahlen Sie
mit glActiveTextureARB(GL_TEXTU
REi_ARB). Dann stellen Sie die Textur-
Matrix ein. Diese setzt sich aus drei
Schritten zusammen. Die einzelnen Ma-
trixtransformationen werden in umge-
kehrter Reihenfolge zu der im Pro-
gramm ausgefuhrt.

Als erstes geben Sie an, dass Sie zur
Texturkoordinaten-Generierung alle
vier Vertex-Komponenten (also homo-
gene Koordinaten) direkt verwenden
wollen. Direkt heif’t, sie werden nicht
weiter transformiert, und deshalb ist in

SOLCHE TREPPCHENEFFEKTE treten bei zu
geringer Auflésung der Depth Map auf.

gensS, genT, genR und genQ eine 4x4-
Einheitsmatrix gespeichert. Sie setzen
die GL_EYE_LINEAR-Option folgen-
dermal3en ein:

glActiveTextureARB
(GL_TEXTUREO_ARB);

float genS[]={1.0,0.0,0.0,0.0};
float genT[]={0.0,1.0,0.0,0.0};
float genR[]={0.0,0.0,1.0,0.0};
float genQ[]={0.0,0.0,0.0,1.0};

glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
glEnable(GL_TEXTURE_GEN_R);
glEnable(GL_TEXTURE_GEN_Q);

glTexGenfv
(GL_S,GL_EYE_PLANE,genS);

glTexGenfv
(GL_S,GL_EYE_PLANE,genR);

220 PC Magazin 11,2002

glTexGenfv
(GL_S,GL_EYE_PLANE,genT);

glTexGenfv
(GL_S,GL_EYE_PLANE,genQ);

glTexGeni(GL_S,
GL_TEXTURE_GEN_MODE,
GL_EYE_LINEAR);
glTexGeni(GL_T,
GL_TEXTURE_GEN_MODE,
GL_EYE_LINEAR);
glTexGeni(GL_R,
GL_TEXTURE_GEN_MODE,
GL_EYE_LINEAR);
glTexGeni(GL_Q,
GL_TEXTURE_GEN_MODE,
GL_EYE_LINEAR);

Die nur durchgereichten (durch die Tex-
turkoordinaten-Generierung) Vertex-
koordinaten werden mit der Textur-Ma-
trix transformiert. Die erste Transforma-
tion in der Ausfuhrungsreihenfolge posi-
tioniert die Lichtquelle und richtet sie
aus. Alle Tranformationen werden mit
denselben Parametern wie beim Rende-
ring der Depth Map ausgefuhrt. Als
néchstes wird die Projektionsabbildung
durchgefiihrt, mit der Sie den Offnungs-
winkel des Spotlights bestimmt haben.
Zuletzt mussen Sie die nach der Pro-
jektion erhaltenen Koordinaten im Wer-
tebereich [-1;1] x [-1;1] auf einen brauch-
baren Bereich fir die Texturen mit
Clamping transformieren, also auf [0;1] x
[0;1]. Zusammengefasst sieht das so aus:

glMatrixMode(GL_TEXTURE);
glLoadldentity();

/1 [-1;1]x[-1;1]->[0;1]x[0;1]
glTranslatef(0.5f, 0.5f, 0.5f);
glScalef(0.5f, 0.5f, 0.5f);

/I Projektion
gluPerspective(
SPOT_ANGLE, 1.0f,1.0f,500.0f);

/I Position/Richtung
gluLookAt(
lightPosition[0],
lightPosition[1],
lightPosition[2],
0,0,0,
0,1,0);
Mit diesen eingestellten Parametern
kdnnen Sie die Szene mit Schatten ren-
dern, sobald Sie das Texture Mapping
angeschaltet und die Spotlight- oder
Depth-Map-Textur mit gIBind(...) akti-
viert haben. Schalten Sie aber vorher
noch die OpenGL-Beleuchtungsbe-
rechnung ein und platzieren Sie die
Lichtquelle an der richtigen Stelle: an der
Position, die Sie auch bei gluLookAt(...)
angegeben haben.

Durch dieses Verfahren zum Schatten-
Rendering sind zwei Texture Stages be-
legt. Bei modernen Grafikkarten stehen

Ihnen mindestens noch zwei weitere
Texture Stages fir andere Texture Maps
zur Verfugung. Wenn lhnen das nicht
reicht, kdnnen Sie auf die Spotlight-Tex-
tur verzichten. Diese ist nur eine optische
Verschonerung, die Sie fiir die Schatten-
berechnung nicht unbedingt brauchen.

Wenn Sie die Spotlight Textur beibe-
halten wollen, gehen Sie wie folgt vor: Zu
Beginn eines Frames erzeugen Sie die
Depth Map. Beim Rendering der eigent-
lichen Kameraansicht rendern Sie ohne
die Schattenberechnung, aber mit
OpenGL-Beleuchtungsberechnung und
Texturen. Damit haben Sie alle Textur
Stages Ihrer Grafikkarte zur Verflgung.

In einem zweiten Renderpass der Sze-
ne deaktivieren Sie alle Features und ver-
wenden das Schatten-Rendering. Zu-
satzlich aktivieren Sie das Blending, um
die Farben im Colorbuffer mit den Hel-
ligkeitswerten aus der Schattenberech-
nung zu modulieren. Das erledigen Sie
zum Beispiel mit:

glEnable(GL_BLEND);

glBlendFunc

(GL_ZERO, GL_SRC_COLOR);

Wenn Sie mit den verbleibenden Textur
Stages auskommen, mussen Sie darauf
achten, dass als erste Stage GL_TEX-
TURE2_ARB frei ist. Die Ausgabe der
beiden darunter liegenden Stages ist,
wenn Sie sie wie im Beispielprogramm
konfigurieren, die mit der Helligkeit
modulierte Grundfarbe des OpenGL-
Materials. Das bedeutet, Sie selektieren
flr die Textur auf der Stage 2 (Z&hlung
beginnt bei Null) wieder Env Mode
GL_MODULATE:

glActiveTextureARB

(GL_TEXTURE2_ARB);
glEnable
(GL_TEXTURE_2D);
glBindTexture
(GL_TEXTURE_2D, tex);
glTexEnvi
(GL_TEXTURE_ENV,
GL_TEXTURE_ENV_MODE,
GL_MODULATE);

Die Texturkoordinaten miissen Sie dann
mit den glMultiTexCoord2fARB(...)-
Befehlen angeben, deren Funktions-
Pointer Sie Uber die wglGetProcAd-
dress(...)-Methode erhalten.

Achten Sie beim Einsatz von Multi-
texturing immer darauf, dass die Grafik-
Hardware geniigend Textur Stages zur
Verfligung stellt. Die unterstiitzte An-
zahl erfragen Sie von OpenGL:

GLint maxTexelUnits;

glGetintegerv

(GL_MAX_TEXTURE_UNITS_ARB,
&maxTexelUnits);

ET

