
P C U N D E R G R O U N D
P R A X I S

11/2002 PC Magazin 217

C A R S T E N D A C H S B A C H E R

Das Rendering von Schatten in
3D-Engines und Computer-
spielen ist heutzutage schon fast

ein Muss. Die Leistungsfähigkeit mo-
derner 3D-Beschleu-
niger und CPUs stel-
len Ihnen die techni-
schen Werkzeuge zur
Verfügung. Einzige
Voraussetzung: Sie
müssen die Theorie
dahinter kennen –
dafür sorgt dieser Ar-
tikel.

Sie hatten sich be-
reits in PC Under-
ground 6/02, ab S.
196, mit einem Ver-
fahren vertraut ge-
macht, um in Echtzeit
Schatten zu rendern.
Dabei handelte es sich
um die Stencil-Buf-
fer-Schatten. Diese
Technik betrachtet
Schatten eines 3D-Objekts als polygo-
nales Volumen. Für jedes gerenderte
Bild mussten Sie dabei das Volumen be-
stimmen – das heißt, die Silhouette des
Objekts aus der Sicht der Lichtquelle be-
stimmen.

Dieses Verfahren ist mit Rechen- und
Speicheraufwand für die Adjazenz-Infor-
mation verbunden. Und es gibt weitere
Nachteile: Sie können beispielsweise kei-
nen korrekten Schatten rendern, wenn
Verfahren wie die PN-Triangles der neue-
ren ATI-Grafikkarten verwendet wer-

den. Die PN-Triangles bieten die Option,
mit einem Dreieck eine gewölbte Ober-
fläche darzustellen, ähnlich wie bei her-
kömmlichen parametrischen Flächen.

Lernen Sie die Shadow-Map-Technik
kennen, die Sie mit den Stencil Shadows
schon gestreift hatten.

muss die OpenGL-Kamera in die glei-
che Position wie das entsprechende
Spotlight rücken. Mit dieser Einstellung
rendern Sie die 3D-Szene aus der Sicht
der Lichtquelle. Von diesem gerender-
ten Bild benötigen Sie nur den Z-Buffer,
den Sie in die Depth Map kopieren. Mit
Z-Buffer heben Sie sich also lediglich die
Tiefeninformation auf.

Ein Beispiel sehen Sie im Bild links.
Diese Textur verwenden Sie dann beim
Rendering des fertigen Bildes wieder.
Dabei projizieren Sie die Textur mit der
OpenGL-Textur-Koordinaten-Gene-
rierung auf die Geometrie der 3D-
Objekte.

Die Koordinaten-Generierung stellen
Sie so ein, dass die Texturkoordinaten
eines Punktes den Vertexkoordinaten
des Punktes bezüglich der Lichtquelle
entsprechen. Diese Texturkoordinaten
sind mit (s, t, r) bezeichnet. Mit der ent-
sprechenden OpenGL-Erweiterung
können Sie die r-Komponente (also den
Abstand des Punktes von der Lichtquel-
le) mit der Tiefeninformation in der
Depth Map vergleichen. Kurz: Sie ver-
gleichen bei jedem Fragment (Pixel), das
gezeichnet wird, seinen tatsächlichen
Abstand zur Lichtquelle mit dem in der
Depth Map gespeicherten Abstand.

In der Depth Map sind durch das Z-
Buffering die jeweils kleinsten Abstände
zwischen der Lichtquelle und einer
Oberfläche gespeichert. Ist der tat-
sächliche Abstand r größer als der ge-
speicherte Wert im Texel der Depth
Map, liegt der betrachtete Pixel hinter ei-
ner Oberfläche, die von der Lichtquelle
aus sichtbar ist. Das bedeutet, er liegt im
Schatten.

Dieses Verfahren ist universell einsetz-
bar und sehr flexibel. Es lässt auch Selbst-
beschattung von 3D-Objekten zu. Ein
weiterer Vorteil ist, dass der Aufwand
des Schatten-Rendering nicht direkt von
der Komplexität der Geometrie abhängt.
Außerdem können Sie, um die Shadow
Depth Maps zu generieren, 3D-Objekte
mit reduzierten Details verwenden.

Bei diesem Screen-Space-Schattenver-
fahren hängt die Auflösung der Schatten
von der Auflösung der Depth Map ab.
Dabei sind unter Umständen Trepp-
cheneffekte an den Rändern der Schatten
zu erkennen.

■ Umsetzung in OpenGL
Nachdem Sie jetzt das Prinzip kennen, im-
plementieren Sie das Schatten- q Ren-

Shadow Depth Maps mit OpenGL

Im Schein-
werferlicht
Mit wenigen OpenGL-Befehlen und etwas Theorie
entlocken Sie Ihrer modernen Grafikkarte Schat-
teneffekte. Dabei können sich die 3D-Objekte
auch selbst beschatten.

AUF CD
Die Quelltexte sowie die fertig übersetzten

Routinen finden Sie im Verzeichnis Heft Add-
ons/Programmierung/PC Underground.

DER IN EINE TEXTUR KOPIERTE Z-Buffer zeigt dunklere Teile
nahe an der Lichtquelle, hellere weiter entfernt.

■ Shadow Depth Maps

Bei den Shadow Maps verwenden Sie den
Z-Buffer und projektives Texture Map-
ping, um die Schatten zu rendern. Dieses
Verfahren ist für Spotlights gedacht:
Lichtquellen, die einen begrenzten
Lichtkegel in eine Richtung abstrahlen.
Omnilights sind Lichtquellen, die in jede
Richtung gleichmäßig Licht aussenden.

Bei der Shadow-Mapping-Technik
transformieren Sie die 3D-Szene, die Sie
mit Schatten rendern wollen. Dabei

P C U N D E R G R O U N D
P R A X I S

218 PC Magazin 11/2002

dering. Zunächst müssen Sie sich um die
benötigten OpenGL-Extensions küm-
mern, da die Funktionalität der Depth-
Map-Vergleiche noch nicht Bestandteil ei-
ner OpenGL-Spezifikation ist. Außerdem
verwenden Sie Multitexturing, um nicht
nur Schatten zu rendern, sondern dem
Lichtkegel auch einen attraktiven Hellig-
keitsverlauf und den 3D-Objekten eine
normale Textur zu verpassen.

Für die Depth
Maps stehen Ihnen
entweder die GL_
SGIX_depth_texture
und GL_SGIX_sha-
dow-Extensions zur
Verfügung, oder Sie
verwenden die
GL_ARB_depth_tex-
ture und GL_
ARB_shadow-Exten-
tions. Ihre Wahl
hängt davon ab, was
die Treiber anbieten.

Bislang werden
diese beiden Erweite-
rungen hauptsächlich
von nVidia-Grafik-
karten unterstützt. Es
ist zu erwarten, dass
alle neuen Karten
nachziehen werden.
Die beiden Varianten
unterscheiden sich prinzipiell nicht, le-
diglich im Setup des Depth-Map-Ver-
gleichs müssen Sie die später erwähnten
Einzelheiten beachten. Die beiden Ex-
tensions definieren keine neuen
OpenGL-Funktionen, sondern nur
neue Tokens für die glTexParameter-
Befehle. Für das Multitexturing verwen-
den Sie in dieser Ausgabe den glActive-
TextureARB-Befehl, um die jeweils ak-
tive Texturing-Einheit zu wählen. Mit
dem glMultiTexCoord2fARB-Befehl
geben Sie die Texturkoordinaten an.

Beginnen Sie zunächst damit, die
benötigten Texturen anzulegen, allen
voran die Shadow Depth Map:

GLuint shadowDepthMap;
glGenTextures

(1, &shadowDepthMap);
glBindTexture(GL_TEXTURE_2D,

shadowDepthMap);

Als Format wählen Sie GL_
DEPTH_COMPONENT. Damit stel-
len Sie sicher, dass für die Tiefeninfor-
mation in der Textur dieselbe Bit-Tiefe
wie für den tatsächlichen Z-Buffer ver-
wendet wird (also nicht konvertiert wer-
den muss). Sie könnten die Bit-Tiefe
aber auch explizit angeben, wie mit

GL_DEPTH_COMPONENT16_SGI
X oder GL_DEPTH_COMPO-
NENT16_ARB für 16 Bit. Die Größe
der Depth Map berechnet sich nach der
Formel SHADOWSIZE x SHADOW-
SIZE:

glCopyTexImage2D
(GL_TEXTURE_2D, 0,

GL_DEPTH_COMPONENT, 0, 0,
SHADOWSIZE, SHADOWSIZE, 0);

In der Regel genügt eine Größe der
Depth Map von 256 x 256 Pixeln. Weite-
re Textur-Parameter sind das Clamping
der Textur, was bedeutet, dass die Textur
sich nicht wiederholt. Das ist wichtig,
weil die Depth Map nur für den sichtba-
ren Bereich der Lichtquelle gilt, aber
durch die Textur-Koordinatengenerie-
rung auch auf andere Stellen gemappt
wird. Außerdem stellen Sie die Vergöße-
rung/Verkleinerung der Textur auf bili-
neare Interpolation ohne Mipmaps:

glTexParameteri
(GL_TEXTURE_2D,
GL_TEXTURE_MAG_FILTER,
GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MIN_FILTER,
GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_WRAP_S,
GL_CLAMP_TO_EDGE);

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_WRAP_T,
GL_CLAMP_TO_EDGE);

Jetzt kommt der wichtigste Teil des Tex-
tur-Setups: die Vergleichsoperation. Sie
vergleicht die r-Komponente der Tex-
turkoordinaten mit dem Tiefenwert in
der Depth Map. Als Resultat kann eine
0 oder eine 1 vorkommen, die Sie als Lu-
minanz (Helligkeitswert) der Textur-
Stage verwenden. Um die Helligkeit mit
anderen Textur-Stages zu kombinieren,
verwenden Sie GL_MODULATE für
das Textur-Combining:

glTexEnvi(GL_TEXTURE_ENV,
GL_TEXTURE_ENV_MODE,
GL_MODULATE);

glTexParameteri(
GL_TEXTURE_2D,
GL_DEPTH_TEXTURE_MODE_ARB,
GL_LUMINANCE);

Den Depth-Map-Vergleich aktivieren
Sie je nach verwendeter Erweiterung so:

// ARB Ext
glTexParameteri(GL_TEXTURE_2D,

GL_TEXTURE_COMPARE_MODE_ARB,
GL_COMPARE_R_TO_TEXTURE_ARB);

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_COMPARE_FUNC_ARB,
GL_LEQUAL);

// SGIX Ext
glTexParameteri(GL_TEXTURE_2D,

GL_TEXTURE_COMPARE_SGIX,
GL_TRUE);

glTexParameteri(GL_TEXTURE_2D,

GL_TEXTURE_COMPARE_OPERATOR_SGIX,
GL_TEXTURE_LEQUAL_R_SGIX);

Den Helligkeitsverlauf des Spotlights la-
den Sie als einfache Graustufen-Textur.
Dafür aktivieren Sie das Textur-Clam-
ping und GL_MODULATE.

Mit IntelliSense bezeichnet Microsoft das
Feature der Visual-C++- Entwicklungsum-
gebung, mit dem sich automatisch Be-
fehlsnamen vervollständigen (über [Strg-
Leertaste]) und Typ- und Parameter-Infor-
mationen per [Strg-t] oder [Strg-Shift-
Leertaste] abfragen lassen. Diese prakti-
sche Option steht zunächst nur für die
Standardbefehle wie strdup(...) oder selbst
definierte Funktionen zur Verfügung. Bei
OpenGL-Befehlen kann dieses Feature
nicht eingesetzt werden, es sei denn, Sie
gaukeln der Entwicklungsumgebung vor,
Sie hätten jeden Befehl selbst definiert.

Adam Medveczky hat dies getan und sei-
ne Header-Datei der OpenGL-Gemeinde
zur Verfügung gestellt. Diese Datei müs-
sen Sie in ein Visual-C++-Projekt über den
Menüpunkt Project/Add To Project/Files
einfügen. In der Header-Datei befinden
sich alle Funktionen als leer definiert –
mit einer nie erfüllten #ifdef-Anweisung.
Dadurch werden die Funktionen für die
Entwicklungsumgebung definiert, der
Compiler ignoriert sie aber – was er auch
tun muss – auf Grund der #ifdef-Anwei-
sung. Sie finden die Header-Datei auf der
Heft-CD.

INTELLISENSE FÜR OPENGL-BEFEHLE

MIT DIESEM HELLIGKEITSVERLAUF schinden Ihre Spotlights
Eindruck.

P C U N D E R G R O U N D
P R A X I S

keiten bei den Schatten. Außerdem kön-
nen Sie die OpenGL-Beleuchtungsbe-
rechnung und das Beschreiben des Co-
lorbuffers abschalten. Somit ersparen Sie
Ihrer Grafikkarte unnötigen Aufwand,
denn nur der Z-Buffer ist interessant:

glDisable(GL_LIGHTING);
glColorMask(GL_FALSE, GL_FALSE,

GL_FALSE, GL_FALSE);

glPolygonOffset(2, 2);
glEnable

(GL_POLYGON_OFFSET_FILL);

Jetzt zeichnen Sie die 3D-Szene und
kopieren den Z-Buffer in die Depth Map:

drawScene();

glBindTexture(GL_TEXTURE_2D,
shadowDepthMap);

glCopyTexSubImage2D(
GL_TEXTURE_2D, 0, 0, 0, 0, 0,
SHADOWSIZE, SHADOWSIZE);

Um eine Graustufen-Bitmap des Z-
Buffers auszuwerten, können Sie die
Daten so erhalten:

unsigned char depthMap
[256 * 256];

glReadPixels(0, 0, 256, 256,
GL_DEPTH_COMPONENT,
GL_UNSIGNED_BYTE, depthMap);

Anschließend stellen Sie die vorherigen
Renderstates und OpenGL-Matrizen
wieder her und sind fertig mit der Depth
Map.

■ Mit der Depth Map
rendern
Jetzt können Sie die 3D-Szene mit
Schatten rendern. Sie müssen lediglich
die Textur Stages und die Texturkoordi-
naten-Generierung einstellen. Dieser
Vorgang ist für die ersten beiden Textur
Stages gleich. Eine verwendet die Spot-
light Textur, die andere die Depth q

11/2002 PC Magazin 219

■ Depth Map rendern

Nach den Initialisierungen rendern Sie
die einzelnen Frames. Im Folgenden ge-
hen wir – der Übersichtlichkeit halber –
davon aus, dass es eine Funktion draw-
Scene() gibt, die die vollständige 3D-Sze-
ne an OpenGL übergibt. Für jeden
Frame rendern Sie zunächst die Depth
Map. Dabei müssen Sie die OpenGL-
Kamera passend positionieren und aus-
richten und den OpenGL-Viewport
einstellen. Den Öffnungswinkel des
Spotlights stellen Sie in der Projektions-
Matrix, die Position und Richtung mit
gluLookAt(...) in der Modelview-Matrix
von OpenGL ein:

glViewport(0, 0,
SHADOWSIZE, SHADOWSIZE);

glClear(GL_COLOR_BUFFER_BIT |
GL_DEPTH_BUFFER_BIT);

glMatrixMode(GL_PROJECTION);
glLoadIdentity();

gluPerspective(SPOT_ANGLE,
1.0f, 1.0f, 500.0f);

glMatrixMode(GL_MODELVIEW);
glPushMatrix();

glLoadIdentity();

gluLookAt(
lightPosition[0],
lightPosition[1],
lightPosition[2],
0, 0, 0,
0, 1, 0);

Verwenden Sie glPolygonOffset(...), um
die gerenderten Dreiecke in der Depth
Map zu verschieben. Somit vermeiden Sie
Artefakte (Bildfehler) durch Ungenauig-

UNSER BEISPIELPROGRAMM in Aktion

P C U N D E R G R O U N D
P R A X I S

220 PC Magazin 11/2002

Map. Welche Textur auf welcher Stage
liegt, ist egal: Durch das GL_MODU
LATE ist die Reihenfolge hinfällig. Die
jeweils aktive Textur Stage wählen Sie
mit glActiveTextureARB(GL_TEXTU
REi_ARB). Dann stellen Sie die Textur-
Matrix ein. Diese setzt sich aus drei
Schritten zusammen. Die einzelnen Ma-
trixtransformationen werden in umge-
kehrter Reihenfolge zu der im Pro-
gramm ausgeführt.

Als erstes geben Sie an, dass Sie zur
Texturkoordinaten-Generierung alle
vier Vertex-Komponenten (also homo-
gene Koordinaten) direkt verwenden
wollen. Direkt heißt, sie werden nicht
weiter transformiert, und deshalb ist in

genS, genT, genR und genQ eine 4x4-
Einheitsmatrix gespeichert. Sie setzen
die GL_EYE_LINEAR-Option folgen-
dermaßen ein:

glActiveTextureARB
(GL_TEXTURE0_ARB);

float genS[]={1.0,0.0,0.0,0.0};
float genT[]={0.0,1.0,0.0,0.0};
float genR[]={0.0,0.0,1.0,0.0};
float genQ[]={0.0,0.0,0.0,1.0};

glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
glEnable(GL_TEXTURE_GEN_R);
glEnable(GL_TEXTURE_GEN_Q);

glTexGenfv
(GL_S,GL_EYE_PLANE,genS);

glTexGenfv
(GL_S,GL_EYE_PLANE,genR);

glTexGenfv
(GL_S,GL_EYE_PLANE,genT);

glTexGenfv
(GL_S,GL_EYE_PLANE,genQ);

glTexGeni(GL_S,
GL_TEXTURE_GEN_MODE,
GL_EYE_LINEAR);

glTexGeni(GL_T,
GL_TEXTURE_GEN_MODE,
GL_EYE_LINEAR);

glTexGeni(GL_R,
GL_TEXTURE_GEN_MODE,
GL_EYE_LINEAR);

glTexGeni(GL_Q,
GL_TEXTURE_GEN_MODE,
GL_EYE_LINEAR);

Die nur durchgereichten (durch die Tex-
turkoordinaten-Generierung) Vertex-
koordinaten werden mit der Textur-Ma-
trix transformiert. Die erste Transforma-
tion in der Ausführungsreihenfolge posi-
tioniert die Lichtquelle und richtet sie
aus. Alle Tranformationen werden mit
denselben Parametern wie beim Rende-
ring der Depth Map ausgeführt. Als
nächstes wird die Projektionsabbildung
durchgeführt, mit der Sie den Öffnungs-
winkel des Spotlights bestimmt haben.

Zuletzt müssen Sie die nach der Pro-
jektion erhaltenen Koordinaten im Wer-
tebereich [-1;1] x [-1;1] auf einen brauch-
baren Bereich für die Texturen mit
Clamping transformieren, also auf [0;1] x
[0;1]. Zusammengefasst sieht das so aus:

glMatrixMode(GL_TEXTURE);
glLoadIdentity();
// [-1;1]x[-1;1]->[0;1]x[0;1]
glTranslatef(0.5f, 0.5f, 0.5f);
glScalef(0.5f, 0.5f, 0.5f);

// Projektion
gluPerspective(

SPOT_ANGLE, 1.0f,1.0f,500.0f);

// Position/Richtung
gluLookAt(

lightPosition[0],
lightPosition[1],
lightPosition[2],
0, 0, 0,
0, 1, 0);

Mit diesen eingestellten Parametern
können Sie die Szene mit Schatten ren-
dern, sobald Sie das Texture Mapping
angeschaltet und die Spotlight- oder
Depth-Map-Textur mit glBind(...) akti-
viert haben. Schalten Sie aber vorher
noch die OpenGL-Beleuchtungsbe-
rechnung ein und platzieren Sie die
Lichtquelle an der richtigen Stelle: an der
Position, die Sie auch bei gluLookAt(...)
angegeben haben.

■ Texture Mapping und
Shadow Depth Maps
Durch dieses Verfahren zum Schatten-
Rendering sind zwei Texture Stages be-
legt. Bei modernen Grafikkarten stehen

Ihnen mindestens noch zwei weitere
Texture Stages für andere Texture Maps
zur Verfügung. Wenn Ihnen das nicht
reicht, können Sie auf die Spotlight-Tex-
tur verzichten. Diese ist nur eine optische
Verschönerung, die Sie für die Schatten-
berechnung nicht unbedingt brauchen.

Wenn Sie die Spotlight Textur beibe-
halten wollen, gehen Sie wie folgt vor: Zu
Beginn eines Frames erzeugen Sie die
Depth Map. Beim Rendering der eigent-
lichen Kameraansicht rendern Sie ohne
die Schattenberechnung, aber mit
OpenGL-Beleuchtungsberechnung und
Texturen. Damit haben Sie alle Textur
Stages Ihrer Grafikkarte zur Verfügung.

In einem zweiten Renderpass der Sze-
ne deaktivieren Sie alle Features und ver-
wenden das Schatten-Rendering. Zu-
sätzlich aktivieren Sie das Blending, um
die Farben im Colorbuffer mit den Hel-
ligkeitswerten aus der Schattenberech-
nung zu modulieren. Das erledigen Sie
zum Beispiel mit:

glEnable(GL_BLEND);
glBlendFunc

(GL_ZERO, GL_SRC_COLOR);

Wenn Sie mit den verbleibenden Textur
Stages auskommen, müssen Sie darauf
achten, dass als erste Stage GL_TEX-
TURE2_ARB frei ist. Die Ausgabe der
beiden darunter liegenden Stages ist,
wenn Sie sie wie im Beispielprogramm
konfigurieren, die mit der Helligkeit
modulierte Grundfarbe des OpenGL-
Materials. Das bedeutet, Sie selektieren
für die Textur auf der Stage 2 (Zählung
beginnt bei Null) wieder Env Mode
GL_MODULATE:

glActiveTextureARB
(GL_TEXTURE2_ARB);

glEnable
(GL_TEXTURE_2D);

glBindTexture
(GL_TEXTURE_2D, tex);

glTexEnvi
(GL_TEXTURE_ENV,

GL_TEXTURE_ENV_MODE,
GL_MODULATE);

Die Texturkoordinaten müssen Sie dann
mit den glMultiTexCoord2fARB(...)-
Befehlen angeben, deren Funktions-
Pointer Sie über die wglGetProcAd-
dress(...)-Methode erhalten.

Achten Sie beim Einsatz von Multi-
texturing immer darauf, dass die Grafik-
Hardware genügend Textur Stages zur
Verfügung stellt. Die unterstützte An-
zahl erfragen Sie von OpenGL:

GLint maxTexelUnits;
glGetIntegerv

(GL_MAX_TEXTURE_UNITS_ARB,
&maxTexelUnits);

s E T

SOLCHE TREPPCHENEFFEKTE treten bei zu
geringer Auflösung der Depth Map auf.

