2 1

PC UNDERGROUND

PRAXIS

Cg — C for Graphics

Leben im

Cg ist C fur Grafik. Damit lassen sich die Vertex- und Fragment-Shader der

neuen Grafikkarten

®

AUF CD 1

Die Quelltexte sowie die fertig ibersetzten
Routinen finden Sie im Verzeichnis Heft Add-
ons/Programmierung/PC Underground.

programmieren. Sparen Sie sich

den steinigen Weg Uber Low-Level-Assembler.

CARSTEN DACHSBACHER

or kurzem hat nVidia das Cg-
VTooIkit vorgestellt. Mit diesem

Werkzeug gelingt es, die Vertex-
und Fragment-(Pixel-)Shader der neue-
ren Grafikkarten in C zu programmie-
ren. Dieser Abstraktionsschritt von der
Hardware und der Assembler-Program-
mierung erlaubt es, schnell und vor allem
universell verwendbare Shader zu pro-
grammieren, ohne zu sehr auf die genaue
darunterliegende Hardware einzugehen.
Dabei ist Cg Uber OpenGL bzw. Di-
rectX angesiedelt und daher API-unab-
héngig.

Der tatséchliche Assembler-Code der
Vertex-Shader wird wéhrend der Lauf-
zeit erzeugt. Deshalb sind die Cg-Pro-
gramme plattform- und vor allem Hard-
ware-unabhangig. Momentan ist Cg
noch eine nVidia-Doméne, aber es ist zu
erwarten, dass auch weitere Grafikkar-
tenhersteller sich anschlieRen.

Obwohl die Cg-API unabhéngig ist,
unterscheiden sich die API-Interfaces,
um die Programme auf Cg-Basis zu ver-

Bezeichner Bedeutung

POSITION

Koordinate eines Vertex

BLENDWEIGHT

Vertex-Interpolationswert

COLORO, COLOR1 Farbwerte pro Vertex

NORMAL

Vertexnormale

TEXCOORDO..7

Texturkoordinaten

BINORMAL Vertex-Binormale, identisch mit
TEXCOORD6

TANGENT Vertex-Tangente, identisch mit
TEXCOORD7

TESSFACTOR Tesselierungsfaktor

PSIZE PunktgroRe fur GL_POINTS

ATTRO...15 Alternative Stream-Bezeichnung,

wie bei nVidia Vertex Programs

210 PC Magazin 12/2002

wenden. In dieser Ausgabe lernen Sie
das OpenGL-Interface kennen, um Cg-
Vertex-Shader zu programmieren.

Momentan unterstitzt Cg die Program-
mierung von Vertex- und Fragment-
Shadern fur die GeForce-2/3/4-Grafik-
karten unter DirectX und OpenGL und

ren wollte, misste jedoch unter Um-
standen die Konstanten- oder Register-
belegung modifizieren.

Sie bendtigen das nVidia SDK bzw. Cg-
Toolkit, das Sie auf der nVidia Home-

Vertex Indizes

tion —ﬁ-ﬁ jarbare _-__Rashﬂzar —p“—*
‘ T

poamoiedon, phlame Bulfse

Texturen Frame Buffer

DIE WEGE der Daten in einer Grafikkarte

die CineFX- und NV3x- Features. nVi-
dia hat die CineFX-Architektur dem
Cg-Toolkit in der Version Beta 2 schon
hinzugefiigt. Uber die nVidia-NV3x-
Architektur finden Sie Uber die Google-
Suchmaschine zahlreiche Eintrage wie:
www]l.sharkyextreme.com/hardware/
videocards/article.php/1434621

Zudem wird NV3x mit den neuesten
Grafikkartentreibern per Software emu-
liert, da die zugehdrige Hardware noch
nicht verfigbar ist.

Da der Cg-Compiler aus dem Cg-
Quelltext beispielsweise die Vertex-Sha-
der erzeugt, bleibt die maximale Anzahl
(und damit Lénge) von 128 Instruktio-
nen bestehen, weil dies die Hardware
bestimmt. Ist das Kompilat langer, muss
der Programmierer selbst Hand anlegen
und die Berechnungen vereinfachen
oder optimieren. Cg nimmt eine Ab-
straktion von der Assemblersprache und
somit der Register vor. Dadurch ist es
einfacher, zwei unabhédngige Vertex-
Shader miteinander zu kombinieren.
Wer auf Assembler-Ebene programmie-

page unter www.nvidia.com finden. Soll-
ten Sie schon eine <ere Version davon
besitzen, bendétigen Sie trotzdem die ak-
tuelle Version, um die Beispiele zu die-
ser Ausgabe kompilieren zu kénnen.
Bislang gibt es nur Betaversionen des
Compilers, was sich auch bei einigen
Programmcode-Konstellationen aus-
wirkt. Nach der Installation finden Sie
im Installationsordner das Unterver-
zeichnis msdev_syntax_highlighting.
Darin enthalten ist eine Datei mit Re-
gistry-Eintrdgen, damit das Syntax
Highlighting der Cg-Befehle in der Vi-
sual C++ IDE funktioniert. AuRerdem
sollten Sie das bin-Unterverzeichnis zur
PATH-Systemvariable hinzunehmen.
Als letztes mussen Sie in Visual C++ un-
ter dem Menupunkt Tools/Options/Di-
rectiories die Include- und Library-
Pfade der Cg-Dateien setzen. Zu lhren
Programmen mdissen Sie spater die
cg.lib- und cgGL.lib-Dateien linken.
Damit konnen Sie bereits mit dem Cg-
Compiler (cgc.exe) Progamme kompi-
lieren und den Output in einer Textda-

tei betrachten. Im Folgenden werden
wir die OpenGL-Funktionen verwen-
den und die Cg-Programme zur Lauf-
zeit kompilieren.

Cg-Programme besitzen immer die
Dateiendung .cg. Cg-Programme kon-
nen Pixel- oder Fragment-Shader fir
verschiedene Grafik-Hardware darstel-
len. Diese werden in Cg mit Profilen un-
terschieden. Es gibt beispielsweise ein
Profil flr Vertex Programme und Frag-
ment-Shader fir GeForce-Karten und
ein Profil fur Vertex-Programme nach
der ARB-Vertex-Programm-Erweite-
rung.

Ein Cg-Vertex-Programm enthalt min-
destens eine Funktion, die, anders als

sind. Hinter jeder Variablen, getrennt

durch einen Doppelpunkt, wird das Bin-

ding Semantic, die Belegung der Varia-

blen, geschrieben. Damit legen Sie z.B.

fest, welche Variable welche Bedeutung

und somit welche Attribute enthélt:
struct myVaryinginput

float4 myPosition : POSITION;
float3 myNormal : NORMAL;
float4 myColor : COLORO;

I8

Eine Liste der definierten Datentypen
finden Sie in der Textbox Datentypen in
Cg auf Seite 212, der Binding Semantics
in den Tabellen Input- sowie Output Se-
mantic Bindings auf Seite 210/211. Ana-
log zu den Bezeichnern in den Tabellen

Weitere Cg-Shader wie diese inklusive Source Code finden Sie unter www.cgshaders.org .

bei C-Programmen, nicht main()
heilRen muss. Sie kénnen auch weitere
Subfunktionen deklarieren und ver-
wenden.

Ein Vertex-Programm wird fir jeden
Vertex, der die OpenGL-Pipeline pas-
siert, ausgefiihrt. Dabei ist es ausge-
schlossen, berechnete Werte von einer
Instanz des Vertex-Programms ans
ndchste zu Ubergeben.

Die Eingabedaten eines Vertex-Pro-
gramms sind zum einen die Varying
Inputs. Diese Daten stehen pro Vertex
zur Verfiigung, sind also in erster Linie
Koordinaten und Attribute wie Textur-
Koordinaten oder Farbwerte. Sie wer-
den in OpenGL mit den Immediate Mo-
de- oder den Streaming-Befehlen an die
OpenGL-Pipeline Gbergeben.

Im Cg-Programm missen Sie ange-
ben, welche Varying Inputs Sie verwen-
den wollen und mit welchen Variablen-
namen Sie diese adressieren wollen. Da-
zu definieren Sie eine Struktur, in der al-
le Eingabedaten pro Vertex angegeben

kdnnen die nVidia-Vertex-Programme
weitere Bezeichner verwenden. Dazu
gehdren unter anderen HPOS, COLUO,
COL1, BCOLO, BCOL1, TEXO0-
TEX7, FOGC, PSIZ.

Genauso wie die Varying Inputs defi-
nieren Sie die Varying Outputs, womit
Sie die Resultate Ihres VVertex-Shaders an
die Rasterizer-Einheit der Grafikkarte
Ubergeben. Wenn Sie beispielsweise ei-
nen einfachen Shader programmieren,
der die Beleuchtung berechnet, Uiberge-
ben Sie die transformierte Koordinate
und einen Farbwert:

struct myVaryingOutput

float4 myHPosition : POSITION;
float4 myOutputColor : COLORO;
I

Die zweite Form von Daten sind die
Uniform Inputs, die sich nicht fir jeden
Vertex andern und separat angegeben
werden. Typischerweise gehdren die
Transformationsmatrix oder andere pro
Frame bzw. 3D-Objekt konstante \Wer-

PC UNDERGROUND
PRAXIS

te dazu. Diese Daten geben Sie im Funk-
tionskopf der Hauptfunktion des Ver-
tex-Shaders an. Unser Beispiel Cg-Pro-
gramm soll cgMain heiBen und ist wie
folgt deklariert:

myVaryingOutput cgMain

(myVaryinglnput in,
uniform float4x4

(modelviewProjection)

b
Dies bedeutet, dass Sie — wie in norma-
lem C —eine Funktion haben, die als Pa-
rameter eine myVaryinglnput-Struktur
und eine Matrix bezeichnet, durch mo-
delviewProjection entgegen nimmt und
eine myVaryingOutput-Struktur zu-
rickliefert. Diese Funktion wird fur je-
den Vertex ausgefuhrt.

Bevor Sie ein spezielles Cg-Programm
entwickeln, sehen Sie zunéchst, wie Sie
solche Programme in OpenGL einbin-
den. Als erstes erzeugen Sie einen Cg-
Kontext. Dabei sollten Sie immer die
Fehlercodes abfragen, damit lhr Pro-
gramm, z.B. bei falsch geschriebenen
Variablennamen, nicht abstiirzt.

CgContext = cgCreateContext();

assert(CgContext '= NULL);
Wenn Sie den Kontext erfolgreich ange-
legt haben, kdnnen Sie anschliefend das
Cg-Programm per Quelltextdatei
schreiben und laden:

cgError errorCode;
errorCode =
cgAddProgramFromFile(
CgContext,
Jest.cg’,
cgVertexProfile, NULL);
assert(CgProgram != NULL);

cgProgramiter *CgProgram = NULL;

CgProgram =
cgProgramByName(CgContext,

~.cgMain“);

assert(CgProgram != NULL);
Als Parameter benétigen Sie jeweils den
Kontext. Mit cgVertexProfile geben Sie
das Compiler-Profil an. Das sagt, ob es
sich um einen Vertex- oder Fragment-
Shader handelt und welche GPU ange-
sprochen wird. Diese Konstanten defi-
nieren Sie in der cg.h-Datei. >

@«@

Bezeichner Bedeutung

POSITION Transformierte Vertexkoordinate
FOG Fog-Wert

COLORO, COLORI1 Farbwerte

PSIZE PunktgroBe fur GL_POINTS

TEXCOORDO..7 Texturkoordinaten

1272002 PC Magazin 21

o-E]

PC UNDERGROUND
PRAXIS

Wenn Sie den erzeugten Vertex Sha-
der Assembler Code betrachten méch-
ten, kdnnen Sie sich diesen in einem
String Ubergeben lassen. Dazu verwen-
den Sie folgende Funktion:

char *vp = (char*)

cgGetProgramObjectCode
(CgProgram);
Wenn Sie diese Schritte durchgefiihrt
haben, mussen Sie nur noch auf die uni-
form-Variablen des Vertex Shaders zu-
greifen kdnnen. Diesen Zugriff erhalten
Sie Uber einen Zeiger auf eine cgBind-
Iter-Struktur. Die Struktur erhalten Sie,
wenn kein Fehler wie bei falschen Varia-
blennamen auftritt, mit:
cgBinditer

*CgBindModelviewProjection =
NULL;

CgBindModelviewProjection =
cgGetBindByName(CgProgram,
~modelViewProjection*);
Die Inhalte der entsprechenden Varia-
blen setzten Sie Uber die Zugriffsfunk-
tionen:
eDazu gehdren die cgGLBind-
Uniform4[f,d][v]-Befehle, mit denen Sie
einen float-Wert oder Vektor tibergeben
koénnen. Der erste Parameter ist dabei
immer das Cg-Programm, also vom Typ
cgProgramlter, der zweite Wert ist der
Variablen-lIdentifier, also vom Typ cg-
Bindlter.
« Weiterhin gehéren die cgGLBindUni-
formMatrix[c,r][f,d]-Befehle dazu, mit
denen Sie den Wert von uniform-Varia-
blen der Spalten- bzw. Zeilenmatrizen
darstellen und setzen.
» Der wichtigste Befehl ist cgGLBind-
UniformStateMatrix. Damit aktivieren
Sie das Matrix-Tracking wie bei den
nVidia-Vertex-Programmen: Eine Va-
riable eines Cg-Programms enthalt im-

float 32 Bit IEEE Floating Point Zahl

half 16 Bit IEEE Floating Point Zahl
(nur far NV30 Fragment Sha-
der)

fixed 12 Bit Fixed Point Zahl (nur fur
NV30 Fragment Shader)

bool Boolsche Variable

Auf der Basis der obigen, einfachen Da-
tentypen sind Vektortypen definiert, wie
float4, float3, float2, float], bool4, bool3,
bool2 und booll. float3 ist ein dreidimen-
sionale Vektor, float4 wird fur homogene
Koordinaten verwendet. AuRerdem sind

212 PC Magazin 12/2002

mer die aktuelle abgegebene Transfor-
mationsmatrix, also die Modelview, die
Projektion oder wie in unserem Beispiel
die Konkatenation (Verkettung von be-
nachbarten Symbolen) aus Modelview
und Projection Matrix. AuRerdem kén-
nen Sie angeben, ob die Matrix Uber-
nommen oder invertiert werden soll:
cgGLBindUniformStateMatrix

(CgProgram,
CgBindModelviewProjection,
cgGLModelViewProjectionMatrix,
cgGLMatrixldentity

);

Um ein Cg-Programm fir das
Rendering zu verwenden, missen Sie es
selektieren und aktivieren. Zum Akti-
vieren mussen Sie wieder das Profil an-
geben, also in unserem Beispiel cgVer-
texProfile fiir einen GeForce 3 Vertex
Shader:
cgGLBindProgram(CgProgram);

cgGLEnableProgramType
(cgVertexProfile);

Jetzt kdnnen Sie die varying-Daten pro
Vertex an OpenGL (bergeben. Dies

DAS JULIA-FRAKTALGEBIRGE auf dem Cg-Vertex-Shader

Matrixdatentypen bis zur GréRe von 4x4
Matrizen definiert. Ihre Bezeichner sind
2.B. floatix], float2x3 oder float4x4.

Strukturen kénnen Sie in Cg wie von C be-

kannt definieren und verwenden:
struct myStruct{

2

myStruct s;
Auch Arrays kénnen Sie wie in C-Code
deklarieren, allerdings mussen Sie Unter-
schiede beachten: Cg unterstutzt keine
Pointer. Deshalb ist die Verwendung von
Arrays eingeschrankt: zum einen in der
Deklaration, zum anderen bei Aufrufen
von Subfunktionen: Dabei werden Arrays
kopiert und nicht die Referenz ubergeben.

kann mit den glVertexPointer oder glin-
terleavedArrays-Befehlen und glDra-
wArrays/glDrawElements-Befehlen ge-
schehen oder mit den Immediate Mode-
Befehlen wie glVertex3f(...). Nachdem
Sie die 3D-Objekte gezeichnet haben,
schalten Sie das Cg-Programm wieder ab:

cgGLDisableProgramType

(cgVertexProfile);

Am Ende lhres Programms geben Sie

ie Cg-Pointer wieder frei. Als erstes die
Variablen vom cgBindlter-Typ mit dem
Befehl:

cgFreeBindlter(...)
Das Programm mitsamt Kontext réu-
men Sie mit folgenden Befehlen auf:

cgFreeProgramlter(CgProgram);
cgFreeContext(CgContext);
cgCleanup();

Ein etwas unkonventionelles Beispiel
stellen wir Ihnen im Folgenden vor. Sie
kodnnen lhre Grafikkarte mit Hilfe eines
Cg-Vertex-Shaders dazu verwenden,
animierte Julia-Fraktalgebirge darzu-
stellen.

Dazu rendern Sie
spater ein Polygon-
gitter, dessen x/z-Ko-
ordinaten als Start-
werte der Iteration
dienen. Den Hohen-
wert, die y-Koordi-
nate, lassen Sie vom
Cg-Vertex-Shader
berechnen. Die Be-
rechnung eines Julia
Fraktals erfolgt itera-
tiv, das Ergebnis dient
wiederum als Einga-
bewert, bis eine be-
stimmte Abbruchbe-
dingung erreicht
wurde. Als initialer Eingabewert dient
ein zweidimensionales Koordinatenpaar
(X, y). Sie berechnen das neue Paar (X, y’)
wie folgt, wobei a und b zwei zeitab-
héngige Parameter sind, die das Fraktal
animieren;
2 2 +a

X' =X -y

y'=2xy+b
Die Abbruchbedingung ist erfullt, wenn
x2+y2
grofer als ein festgelegter Wert ist. In ei-
nem Vertex-Programm kdnnen Sie eini-
ge lterationsschritte, die auf maximal
128 Instruktionen begrenzt sind, durch-
fuhren. Solange die Abbruchbedingung
nicht erfallt ist, erhéhen Sie einen
Zahler. Diesen Zahler verwenden Sie als

Hoheninformation, um das Fraktalge-
birge zu rendern.

Sie kdnnen die Berechnung etwas ver-
einfachen und umstellen und in einem
Cg-Programm mit folgenden Variablen
umsetzen:

float x, y, x2, y2, counter;

I/ Initialisierung

x0 = in.myPaosition.x;
y0 = in.myPosition.z;
X2 =X*X;

y2=y*y;

counter = 0.0;

incr =1.0;

Ein Iterationsschritt sieht dann wie folgt
aus:

y=20*x*y+b;

X=X2-y2+a;

X2 =X*X;

y2=y*y;

Incr =

(x2+y2?4.0)?0.0 1 1.0;

counter += iter;
Eine Schwéche der Betaversion des Cg-
Compilers: Wenn Sie diesen Iterations-
schritt mehrfach ausfiihren, werden die
Register des Vertex-Shaders nicht genu-
gen. Der Grund dafir ist, dass der Com-
piler die Zwischenergebnisse des Ver-
gleichs (bei incr) speichert und die Regi-
ster nicht wieder Uberschreibt. Bei einem
handoptimierten Vertex-Programm wa-
re nur die Programmlange ein begren-
zender Faktor. Eine Weg waére, die Be-
rechnung zu optimieren und die obige

zu ersetzen. Dazu le-
gen Sie folgende Va-
riablen an:

float4 f1 =
floatd(

in.myPosition.x,

in.myPosition.z,
0.0,
-in.myPosition.z

);

floatd f2 =

float4(a, 0.0,

0.5*b, -0.5%b);
Ein Iterationsschritt
lasst sich mit den Swi-

zzle-Operatoren

PC UNDERGROUND
PRAXIS

(komponentenweise
vertauschen/erset-
zen) in zwei Zeilen
ausdrucken. Vollzie-
henSie folgende Berechnung, die aus ei-
nem nVidia-Dokument stammt, auf ei-
nem Blatt Papier nach:

float4 temp;

temp = f1.xyxx * f1l.xyyw + 2;

fl.xyzw = temp.xzww - temp.ywwz;
Dieser Vergleich lasst sich wie folgt for-
mulieren:

incr = (float)

(dot(r0.xyzz, r0.xyzz)
> 4.0f);

So kénnen Sie Register einsparen und
mehrere lterationsschritte ausfihren.

Dieser Bug durfte in den nachsten Com-
pilerversionen behoben sein.

Mathematische Funktion Bedeutung
abs(x) Betrag von x

sin(x), cos(x)

Trigonometrische Funktionen

acos(x), asin(x), atan(x), atan(y,x)

Arcus Funktionen

sinh(x), cosh(x)

Hyperbolikus-Funktionen

ceil(x), floor(x)

wiein C

clamp(x, a, b)

Bereichsbeschrankung von x auf [a;b]

cross(a,b) Kreuzprodukt zweier float4
dot(a,b) Skalarprodukt zweier float4
mul(v,M) Zeilenvektor mal Matrix
mul(M,v) Matrix mal Spaltenvektor

exp(x), exp2(x), log(x), log2(x), log1O(x)

Exponential- und Logarithmus-Funktionen

min(a,b), max(a,b)

Minimum-/Maximum-Funktion

pow(xy) Xy

sign(x) Signum-Funktion

frac(x) Nachkomma-Anteil von x

round(x) x gerundet

lerp(a,b,f) (1-f)*a+b*f fur Float oder Vektorvariablen
sqrt(x) Quadratwurzel von x

distance(ptl,pt2) Euklidischer Abstand zweier Punkte
faceforward(N,|,Ng) Resultat ist N, wenn dot(Ng,1)<0 sonst -N
length(v) Lange des Vektors v

normalize(v) Normalisierter Vektor zu v

reflect(in) Reflexionsvektor zu i an n, fur float3
refract(i,n,eta) Refraktionsvektor zu i an n mit Brechzahl eta

UNSER BEISPIELPROGRAMM kann auch Mandelbrotmengen
berechnen.

Jetzt muss Ihr Vertex Shader nur noch
die Ausgabewerte an die Fragment-Ab-
teilung der Grafikkarte Gbergeben. Da-
zu definieren Sie in der cgMain-Funkti-
on eine myVaryingOutput-Struktur, die
Sie ausfillen, indem Sie die Hohenver-
schiebung aus der Anzahl der Iteratio-
nen vor dem Abbruchkriterium berech-
nen und den Farbwert setzen:

myVaryingOutput out;

/I verschobene Vertexkoordinate

float4 newPos = in.myPosition;
newPos.y = clamp
(counter *0.1, -1.0, 1.0);

/I und Transformieren

out.position = mul
(modelViewProjection, newPos);
/I Graustufen Farbwert

out.color0 = counter.xxxx * 0.1;
return out;

Ein Fraktalgebirge erhalten Sie, indem
Sie ein genuligend fein aufgel©stes Poly-
gongitter in Form eines Quadrates (in
Ihrem OpenGL Programm) zeichnen:

#define STEP 0.02f
for (float j = -2.0f;
j<2.0f,j+= STEP)

glBegin(GL_TRIANGLE_STRIP);
for (floati =-2.0f;
i<2.0f;i+=STEP)

glVertex3f(i, 0,);
glVertex3f(i, 0, j+STEP);

}
glEnd();

Dieses Beispiel ist ein eher untypischer
Verwendungszweck flr Vertex-Shader,
aber es zeigt auch, wie vielfaltig Sie mit
wenig C-Code interessante Effekte
schnell und einfach testen. Eine Uber-
sicht Uber einen Teil der Befehle, die in
der Cg-Standard-Library vorhanden
sind, zeigt die Tabelle links. ET

12/2002 PC Magazin 213

@«@

