
P C U N D E R G R O U N D
P R A X I S

210 PC Magazin 12/2002

C A R S T E N D A C H S B A C H E R

Vor kurzem hat nVidia das Cg-
Toolkit vorgestellt. Mit diesem
Werkzeug gelingt es, die Vertex-

und Fragment-(Pixel-)Shader der neue-
ren Grafikkarten in C zu programmie-
ren. Dieser Abstraktionsschritt von der
Hardware und der Assembler-Program-
mierung erlaubt es, schnell und vor allem
universell verwendbare Shader zu pro-
grammieren, ohne zu sehr auf die genaue
darunterliegende Hardware einzugehen.
Dabei ist Cg über OpenGL bzw. Di-
rectX angesiedelt und daher API-unab-
hängig.

Der tatsächliche Assembler-Code der
Vertex-Shader wird während der Lauf-
zeit erzeugt. Deshalb sind die Cg-Pro-
gramme plattform- und vor allem Hard-
ware-unabhängig. Momentan ist Cg
noch eine nVidia-Domäne, aber es ist zu
erwarten, dass auch weitere Grafikkar-
tenhersteller sich anschließen.

Obwohl die Cg-API unabhängig ist,
unterscheiden sich die API-Interfaces,
um die Programme auf Cg-Basis zu ver-

wenden. In dieser Ausgabe lernen Sie
das OpenGL-Interface kennen, um Cg-
Vertex-Shader zu programmieren.

■ Fakten über Cg
Momentan unterstützt Cg die Program-
mierung von Vertex- und Fragment-
Shadern für die GeForce-2/3/4-Grafik-
karten unter DirectX und OpenGL und

die CineFX- und NV3x- Features. nVi-
dia hat die CineFX-Architektur dem
Cg-Toolkit in der Version Beta 2 schon
hinzugefügt. Über die nVidia-NV3x-
Architektur finden Sie über die Google-
Suchmaschine zahlreiche Einträge wie:
www1.sharkyextreme.com/hardware/
videocards/article.php/1434621

Zudem wird NV3x mit den neuesten
Grafikkartentreibern per Software emu-
liert, da die zugehörige Hardware noch
nicht verfügbar ist.

Da der Cg-Compiler aus dem Cg-
Quelltext beispielsweise die Vertex-Sha-
der erzeugt, bleibt die maximale Anzahl
(und damit Länge) von 128 Instruktio-
nen bestehen, weil dies die Hardware
bestimmt. Ist das Kompilat länger, muss
der Programmierer selbst Hand anlegen
und die Berechnungen vereinfachen
oder optimieren. Cg nimmt eine Ab-
straktion von der Assemblersprache und
somit der Register vor. Dadurch ist es
einfacher, zwei unabhängige Vertex-
Shader miteinander zu kombinieren.
Wer auf Assembler-Ebene programmie-

ren wollte, müsste jedoch unter Um-
ständen die Konstanten- oder Register-
belegung modifizieren.

■ Installation
des Cg-Toolkit
Sie benötigen das nVidia SDK bzw. Cg-
Toolkit, das Sie auf der nVidia Home-

page unter www.nvidia.com finden. Soll-
ten Sie schon eine ältere Version davon
besitzen, benötigen Sie trotzdem die ak-
tuelle Version, um die Beispiele zu die-
ser Ausgabe kompilieren zu können.
Bislang gibt es nur Betaversionen des
Compilers, was sich auch bei einigen
Programmcode-Konstellationen aus-
wirkt. Nach der Installation finden Sie
im Installationsordner das Unterver-
zeichnis msdev_syntax_highlighting.
Darin enthalten ist eine Datei mit Re-
gistry-Einträgen, damit das Syntax
Highlighting der Cg-Befehle in der Vi-
sual C++ IDE funktioniert. Außerdem
sollten Sie das bin-Unterverzeichnis zur
PATH-Systemvariable hinzunehmen.
Als letztes müssen Sie in Visual C++ un-
ter dem Menüpunkt Tools/Options/Di-
rectiories die Include- und Library-
Pfade der Cg-Dateien setzen. Zu Ihren
Programmen müssen Sie später die
cg.lib- und cgGL.lib-Dateien linken.

Damit können Sie bereits mit dem Cg-
Compiler (cgc.exe) Progamme kompi-
lieren und den Output in einer Textda-

Cg – C for Graphics

Leben im Fraktal
Cg ist C für Grafik. Damit lassen sich die Vertex- und Fragment-Shader der
neuen Grafikkarten mit einer Hochsprache programmieren. Sparen Sie sich
den steinigen Weg über Low-Level-Assembler.

AUF CD 1
Die Quelltexte sowie die fertig übersetzten

Routinen finden Sie im Verzeichnis Heft Add-
ons/Programmierung/PC Underground.

INPUT SEMANTIC BINDINGS –
UNTERSTÜTZT VON ALLEN
PROFILEN

Bezeichner Bedeutung
POSITION Koordinate eines Vertex
BLENDWEIGHT Vertex-Interpolationswert
COLOR0, COLOR1 Farbwerte pro Vertex
NORMAL Vertexnormale
TEXCOORD0..7 Texturkoordinaten
BINORMAL Vertex-Binormale, identisch mit

TEXCOORD6
TANGENT Vertex-Tangente, identisch mit

TEXCOORD7
TESSFACTOR Tesselierungsfaktor
PSIZE Punktgröße für GL_POINTS
ATTR0...15 Alternative Stream-Bezeichnung,

wie bei nVidia Vertex Programs

DIE WEGE der Daten in einer Grafikkarte

P C U N D E R G R O U N D
P R A X I S

12/2002 PC Magazin 211

tei betrachten. Im Folgenden werden
wir die OpenGL-Funktionen verwen-
den und die Cg-Programme zur Lauf-
zeit kompilieren.

Cg-Programme besitzen immer die
Dateiendung .cg. Cg-Programme kön-
nen Pixel- oder Fragment-Shader für
verschiedene Grafik-Hardware darstel-
len. Diese werden in Cg mit Profilen un-
terschieden. Es gibt beispielsweise ein
Profil für Vertex Programme und Frag-
ment-Shader für GeForce-Karten und
ein Profil für Vertex-Programme nach
der ARB-Vertex-Programm-Erweite-
rung.

■ Cg-Vertex-Shader
Ein Cg-Vertex-Programm enthält min-
destens eine Funktion, die, anders als

bei C-Programmen, nicht main()
heißen muss. Sie können auch weitere
Subfunktionen deklarieren und ver-
wenden.

Ein Vertex-Programm wird für jeden
Vertex, der die OpenGL-Pipeline pas-
siert, ausgeführt. Dabei ist es ausge-
schlossen, berechnete Werte von einer
Instanz des Vertex-Programms ans
nächste zu übergeben.

Die Eingabedaten eines Vertex-Pro-
gramms sind zum einen die Varying
Inputs. Diese Daten stehen pro Vertex
zur Verfügung, sind also in erster Linie
Koordinaten und Attribute wie Textur-
Koordinaten oder Farbwerte. Sie wer-
den in OpenGL mit den Immediate Mo-
de- oder den Streaming-Befehlen an die
OpenGL-Pipeline übergeben.

Im Cg-Programm müssen Sie ange-
ben, welche Varying Inputs Sie verwen-
den wollen und mit welchen Variablen-
namen Sie diese adressieren wollen. Da-
zu definieren Sie eine Struktur, in der al-
le Eingabedaten pro Vertex angegeben

sind. Hinter jeder Variablen, getrennt
durch einen Doppelpunkt, wird das Bin-
ding Semantic, die Belegung der Varia-
blen, geschrieben. Damit legen Sie z.B.
fest, welche Variable welche Bedeutung
und somit welche Attribute enthält:

struct myVaryingInput

{
float4 myPosition : POSITION;
float3 myNormal : NORMAL;
float4 myColor : COLOR0;

};

Eine Liste der definierten Datentypen
finden Sie in der Textbox Datentypen in
Cg auf Seite 212, der Binding Semantics
in den Tabellen Input- sowie Output Se-
mantic Bindings auf Seite 210/211. Ana-
log zu den Bezeichnern in den Tabellen

können die nVidia-Vertex-Programme
weitere Bezeichner verwenden. Dazu
gehören unter anderen HPOS, COL0,
COL1, BCOL0, BCOL1, TEX0-
TEX7, FOGC, PSIZ.

Genauso wie die Varying Inputs defi-
nieren Sie die Varying Outputs, womit
Sie die Resultate Ihres Vertex-Shaders an
die Rasterizer-Einheit der Grafikkarte
übergeben. Wenn Sie beispielsweise ei-
nen einfachen Shader programmieren,
der die Beleuchtung berechnet, überge-
ben Sie die transformierte Koordinate
und einen Farbwert:

struct myVaryingOutput
{

float4 myHPosition : POSITION;
float4 myOutputColor : COLOR0;

};

Die zweite Form von Daten sind die
Uniform Inputs, die sich nicht für jeden
Vertex ändern und separat angegeben
werden. Typischerweise gehören die
Transformationsmatrix oder andere pro
Frame bzw. 3D-Objekt konstante Wer-

te dazu. Diese Daten geben Sie im Funk-
tionskopf der Hauptfunktion des Ver-
tex-Shaders an. Unser Beispiel Cg-Pro-
gramm soll cgMain heißen und ist wie
folgt deklariert:

myVaryingOutput cgMain
(myVaryingInput in,

uniform float4x4
modelviewProjection)

{
...};

Dies bedeutet, dass Sie – wie in norma-
lem C – eine Funktion haben, die als Pa-
rameter eine myVaryingInput-Struktur
und eine Matrix bezeichnet, durch mo-
delviewProjection entgegen nimmt und
eine myVaryingOutput-Struktur zu-
rückliefert. Diese Funktion wird für je-
den Vertex ausgeführt.

■ Cg-Programm in OpenGL
Bevor Sie ein spezielles Cg-Programm
entwickeln, sehen Sie zunächst, wie Sie
solche Programme in OpenGL einbin-
den. Als erstes erzeugen Sie einen Cg-
Kontext. Dabei sollten Sie immer die
Fehlercodes abfragen, damit Ihr Pro-
gramm, z.B. bei falsch geschriebenen
Variablennamen, nicht abstürzt.

CgContext = cgCreateContext();
assert(CgContext != NULL);

Wenn Sie den Kontext erfolgreich ange-
legt haben, können Sie anschließend das
Cg-Programm per Quelltextdatei
schreiben und laden:

cgError errorCode;
errorCode =

cgAddProgramFromFile(
CgContext,
„test.cg“,
cgVertexProfile, NULL);

assert(CgProgram != NULL);

cgProgramIter *CgProgram = NULL;

CgProgram =
cgProgramByName(CgContext,

„cgMain“);
assert(CgProgram != NULL);

Als Parameter benötigen Sie jeweils den
Kontext. Mit cgVertexProfile geben Sie
das Compiler-Profil an. Das sagt, ob es
sich um einen Vertex- oder Fragment-
Shader handelt und welche GPU ange-
sprochen wird. Diese Konstanten defi-
nieren Sie in der cg.h-Datei. q

OUTPUT SEMANTIC BINDINGS

Bezeichner Bedeutung

POSITION Transformierte Vertexkoordinate

FOG Fog-Wert

COLOR0, COLOR1 Farbwerte

PSIZE Punktgröße für GL_POINTS

TEXCOORD0..7 Texturkoordinaten

WWeeiitteerree Cg-Shader wie diese inklusive Source Code finden Sie unter www.cgshaders.org .

P C U N D E R G R O U N D
P R A X I S

212 PC Magazin 12/2002

kann mit den glVertexPointer oder glIn-
terleavedArrays-Befehlen und glDra-
wArrays/glDrawElements-Befehlen ge-
schehen oder mit den Immediate Mode-
Befehlen wie glVertex3f(...). Nachdem
Sie die 3D-Objekte gezeichnet haben,
schalten Sie das Cg-Programm wieder ab:

cgGLDisableProgramType
(cgVertexProfile);

Am Ende Ihres Programms geben Sie
die Cg-Pointer wieder frei. Als erstes die
Variablen vom cgBindIter-Typ mit dem
Befehl:

cgFreeBindIter(...)

Das Programm mitsamt Kontext räu-
men Sie mit folgenden Befehlen auf:

cgFreeProgramIter(CgProgram);
cgFreeContext(CgContext);

cgCleanup();

■ Cg-Julia Fraktal
Ein etwas unkonventionelles Beispiel
stellen wir Ihnen im Folgenden vor. Sie
können Ihre Grafikkarte mit Hilfe eines
Cg-Vertex-Shaders dazu verwenden,
animierte Julia-Fraktalgebirge darzu-

stellen.
Dazu rendern Sie

später ein Polygon-
gitter, dessen x/z-Ko-
ordinaten als Start-
werte der Iteration
dienen. Den Höhen-
wert, die y-Koordi-
nate, lassen Sie vom
Cg-Vertex-Shader
berechnen. Die Be-
rechnung eines Julia
Fraktals erfolgt itera-
tiv, das Ergebnis dient
wiederum als Einga-
bewert, bis eine be-
stimmte Abbruchbe-
dingung erreicht

wurde. Als initialer Eingabewert dient
ein zweidimensionales Koordinatenpaar
(x, y). Sie berechnen das neue Paar (x’, y’)
wie folgt, wobei a und b zwei zeitab-
hängige Parameter sind, die das Fraktal
animieren:

x’ = x 2 - y 2 + a

y’ = 2xy + b

Die Abbruchbedingung ist erfüllt, wenn
x2+y2

größer als ein festgelegter Wert ist. In ei-
nem Vertex-Programm können Sie eini-
ge Iterationsschritte, die auf maximal
128 Instruktionen begrenzt sind, durch-
führen. Solange die Abbruchbedingung
nicht erfüllt ist, erhöhen Sie einen
Zähler. Diesen Zähler verwenden Sie als

Wenn Sie den erzeugten Vertex Sha-
der Assembler Code betrachten möch-
ten, können Sie sich diesen in einem
String übergeben lassen. Dazu verwen-
den Sie folgende Funktion:

char *vp = (char*)
cgGetProgramObjectCode

(CgProgram);

Wenn Sie diese Schritte durchgeführt
haben, müssen Sie nur noch auf die uni-
form-Variablen des Vertex Shaders zu-
greifen können. Diesen Zugriff erhalten
Sie über einen Zeiger auf eine cgBind-
Iter-Struktur. Die Struktur erhalten Sie,
wenn kein Fehler wie bei falschen Varia-
blennamen auftritt, mit:

cgBindIter
*CgBindModelviewProjection =

NULL;

CgBindModelviewProjection =
cgGetBindByName(CgProgram,

„modelViewProjection“);

Die Inhalte der entsprechenden Varia-
blen setzten Sie über die Zugriffsfunk-
tionen:
• Dazu gehören die cgGLBind-
Uniform4[f,d][v]-Befehle, mit denen Sie
einen float-Wert oder Vektor übergeben
können. Der erste Parameter ist dabei
immer das Cg-Programm, also vom Typ
cgProgramIter, der zweite Wert ist der
Variablen-Identifier, also vom Typ cg-
BindIter.
• Weiterhin gehören die cgGLBindUni-
formMatrix[c,r][f,d]-Befehle dazu, mit
denen Sie den Wert von uniform-Varia-
blen der Spalten- bzw. Zeilenmatrizen
darstellen und setzen.
• Der wichtigste Befehl ist cgGLBind-
UniformStateMatrix. Damit aktivieren
Sie das Matrix-Tracking wie bei den
nVidia-Vertex-Programmen: Eine Va-
riable eines Cg-Programms enthält im-

mer die aktuelle abgegebene Transfor-
mationsmatrix, also die Modelview, die
Projektion oder wie in unserem Beispiel
die Konkatenation (Verkettung von be-
nachbarten Symbolen) aus Modelview
und Projection Matrix. Außerdem kön-
nen Sie angeben, ob die Matrix über-
nommen oder invertiert werden soll:

cgGLBindUniformStateMatrix

(
CgProgram,
CgBindModelviewProjection,
cgGLModelViewProjectionMatrix,
cgGLMatrixIdentity

);

Um ein Cg-Programm für das
Rendering zu verwenden, müssen Sie es
selektieren und aktivieren. Zum Akti-
vieren müssen Sie wieder das Profil an-
geben, also in unserem Beispiel cgVer-
texProfile für einen GeForce 3 Vertex
Shader:

cgGLBindProgram(CgProgram);
cgGLEnableProgramType

(cgVertexProfile);

Jetzt können Sie die varying-Daten pro
Vertex an OpenGL übergeben. Dies

Auf der Basis der obigen, einfachen Da-
tentypen sind Vektortypen definiert, wie
float4, float3, float2, float1, bool4, bool3,
bool2 und bool1. float3 ist ein dreidimen-
sionale Vektor, float4 wird für homogene
Koordinaten verwendet. Außerdem sind

Matrixdatentypen bis zur Größe von 4x4
Matrizen definiert. Ihre Bezeichner sind
z.B. float1x1, float2x3 oder float4x4.
Strukturen können Sie in Cg wie von C be-
kannt definieren und verwenden:

struct myStruct{
...
};

myStruct s;

Auch Arrays können Sie wie in C-Code
deklarieren, allerdings müssen Sie Unter-

schiede beachten: Cg unterstützt keine
Pointer. Deshalb ist die Verwendung von
Arrays eingeschränkt: zum einen in der
Deklaration, zum anderen bei Aufrufen
von Subfunktionen: Dabei werden Arrays
kopiert und nicht die Referenz übergeben.

DATENTYPEN IN CG

Name Daten
float 32 Bit IEEE Floating Point Zahl
half 16 Bit IEEE Floating Point Zahl

(nur für NV30 Fragment Sha-
der)

fixed 12 Bit Fixed Point Zahl (nur für
NV30 Fragment Shader)

bool Boolsche Variable

DAS JULIA-FRAKTALGEBIRGE auf dem Cg-Vertex-Shader

P C U N D E R G R O U N D
P R A X I S

12/2002 PC Magazin 213

Höheninformation, um das Fraktalge-
birge zu rendern.

Sie können die Berechnung etwas ver-
einfachen und umstellen und in einem
Cg-Programm mit folgenden Variablen
umsetzen:

float x, y, x2, y2, counter;

// Initialisierung
x0 = in.myPosition.x;
y0 = in.myPosition.z;
x2 = x * x;
y2 = y * y;
counter = 0.0;
incr = 1.0;

Ein Iterationsschritt sieht dann wie folgt
aus:

y = 2.0 * x * y + b;
x = x2 - y2 + a;
x2 = x * x;
y2 = y * y;
incr =

(x2 + y2 > 4.0) ? 0.0 : 1.0;
counter += iter;

Eine Schwäche der Betaversion des Cg-
Compilers: Wenn Sie diesen Iterations-
schritt mehrfach ausführen, werden die
Register des Vertex-Shaders nicht genü-
gen. Der Grund dafür ist, dass der Com-
piler die Zwischenergebnisse des Ver-
gleichs (bei incr) speichert und die Regi-
ster nicht wieder überschreibt. Bei einem
handoptimierten Vertex-Programm wä-
re nur die Programmlänge ein begren-
zender Faktor. Eine Weg wäre, die Be-
rechnung zu optimieren und die obige

zu ersetzen. Dazu le-
gen Sie folgende Va-
riablen an:

float4 f1 =
float4(

in.myPosition.x,

in.myPosition.z,
0.0,
-in.myPosition.z
);
float4 f2 =
float4(a, 0.0,
0.5*b, -0.5*b);

Ein Iterationsschritt
lässt sich mit den Swi-
zzle-Operatoren
(komponentenweise
vertauschen/erset-
zen) in zwei Zeilen
ausdrücken. Vollzie-
henSie folgende Berechnung, die aus ei-
nem nVidia-Dokument stammt, auf ei-
nem Blatt Papier nach:

float4 temp;
temp = f1.xyxx * f1.xyyw + f2;
f1.xyzw = temp.xzww - temp.ywwz;

Dieser Vergleich lässt sich wie folgt for-
mulieren:

incr = (float)
(dot(r0.xyzz, r0.xyzz)

> 4.0f);

So können Sie Register einsparen und
mehrere Iterationsschritte ausführen.
Dieser Bug dürfte in den nächsten Com-
pilerversionen behoben sein.

Jetzt muss Ihr Vertex Shader nur noch
die Ausgabewerte an die Fragment-Ab-
teilung der Grafikkarte übergeben. Da-
zu definieren Sie in der cgMain-Funkti-
on eine myVaryingOutput-Struktur, die
Sie ausfüllen, indem Sie die Höhenver-
schiebung aus der Anzahl der Iteratio-
nen vor dem Abbruchkriterium berech-
nen und den Farbwert setzen:

myVaryingOutput out;

// verschobene Vertexkoordinate

float4 newPos = in.myPosition;
newPos.y = clamp

(counter * 0.1, -1.0, 1.0);

// und Transformieren

out.position = mul
(modelViewProjection, newPos);
// Graustufen Farbwert

out.color0 = counter.xxxx * 0.1;
return out;

Ein Fraktalgebirge erhalten Sie, indem
Sie ein genügend fein aufgelöstes Poly-
gongitter in Form eines Quadrates (in
Ihrem OpenGL Programm) zeichnen:

#define STEP 0.02f
for (float j = -2.0f;

j < 2.0f; j += STEP)
{

glBegin(GL_TRIANGLE_STRIP);
for (float i = -2.0f;

i < 2.0f; i += STEP)
{

glVertex3f(i, 0, j);
glVertex3f(i, 0, j+STEP);

}
glEnd();

}

Dieses Beispiel ist ein eher untypischer
Verwendungszweck für Vertex-Shader,
aber es zeigt auch, wie vielfältig Sie mit
wenig C-Code interessante Effekte
schnell und einfach testen. Eine Über-
sicht über einen Teil der Befehle, die in
der Cg-Standard-Library vorhanden
sind, zeigt die Tabelle links. s E T

CG-STANDARD-LIBRARY-FUNKTIONEN

Mathematische Funktion Bedeutung
abs(x) Betrag von x
sin(x), cos(x) Trigonometrische Funktionen
acos(x), asin(x), atan(x), atan(y,x) Arcus Funktionen
sinh(x), cosh(x) Hyperbolikus-Funktionen
ceil(x), floor(x) wie in C
clamp(x, a, b) Bereichsbeschränkung von x auf [a;b]
cross(a,b) Kreuzprodukt zweier float4
dot(a,b) Skalarprodukt zweier float4
mul(v,M) Zeilenvektor mal Matrix
mul(M,v) Matrix mal Spaltenvektor
exp(x), exp2(x), log(x), log2(x), log10(x) Exponential- und Logarithmus-Funktionen
min(a,b), max(a,b) Minimum-/Maximum-Funktion
pow(x,y) x^y
sign(x) Signum-Funktion
frac(x) Nachkomma-Anteil von x
round(x) x gerundet
lerp(a,b,f) (1-f)*a+b*f für Float oder Vektorvariablen
sqrt(x) Quadratwurzel von x
Geometrische Funktion Bedeutung
distance(pt1,pt2) Euklidischer Abstand zweier Punkte
faceforward(N,I,Ng) Resultat ist N, wenn dot(Ng,I)<0 sonst -N
length(v) Länge des Vektors v
normalize(v) Normalisierter Vektor zu v
reflect(i,n) Reflexionsvektor zu i an n, für float3
refract(i,n,eta) Refraktionsvektor zu i an n mit Brechzahl eta

UNSER BEISPIELPROGRAMM kann auch Mandelbrotmengen
berechnen.

