
P C  U N D E R G R O U N D
P R A X I S

230 PC Magazin 1/2003

C A R S T E N D A C H S B A C H E R

Die Leistung moderner Grafik-
karten ist in den letzten Jahren
rapide gestiegen. Der Trend

wird sich voraussichtlich fortsetzen. Mit
den neuen Features und zunehmender
Leistung steigen auch die Anforderun-
gen an die Programmierer, diese auszu-
nutzen. In dieser Ausgabe lernen Sie, die
Performance-Engpässe eines OpenGL-
Programms zu identifizieren und der
Graphic Processing Unit (GPU) die
Geometriedaten optimal bereitzu-
stellen. 

■ Die Grafik-Pipeline
In der Grafik-Pipeline sind schematisch
die benötigten Operationen für 3D-
Grafik aufgezeigt. Sie lässt sich in drei
große Bereiche aufteilen: 
• die Geometrieverarbeitung (Geome-
try Processing), auch als Transform and
Lighting bezeichnet, ist für die Koordi-
naten-Transformation, die Beleuch-
tungsberechnung und das Clipping zu-
ständig und kann durch Vertex-Shader
ersetzt werden. 
• In der zweiten Stufe namens Rasteri-
sierung (Rasterization) werden Drei-
ecke, Linien und Punkte gezeichnet.
• Den letzten Teil stellen die Fragment-
Operationen dar, bei denen es sich unter
anderem um Alpha-, Stencil- und Z-
Buffer-Tests handelt.

Um die Geschwindigkeit eines
OpenGL-Programms zu optimieren,
mass man die möglichen Schwachstellen
kennen. Dazu betrachten Sie den Weg
der Grafikdaten durch die Grafik-Pipe-
line. Gehen Sie zunächst von einem
Dreiecksnetz in der Shared-Vertex-
Struktur aus: Darin bestehen Ihre Gra-
fikdaten zum einen aus der Geome-
trieinformation, den Vertices, eventuell

mit Normalen, Texturkoordinaten usw.
und zum anderen aus einer Indexliste, in
der für jedes Dreieck die drei Indizes der
Eckpunkte gespeichert sind (Topologie-
Information). 

Fürs Rendering verarbeiten Sie
zunächst die Geometriedaten in der er-
sten Stufe der Pipeline. Die transfor-
mierten, beleuchteten Koordinaten wer-
den zusammen mit der Topologie-In-
formation für das Rasterizer Setup (dem
Vorbereiten des Rasterisierens) be-
nötigt. Jetzt werden die Dreiecke ge-
zeichnet, und jeder Pixel durchläuft die
letzte Stufe der Pipeline. Statt Pixel fin-
den Sie in der Expertenliteratur häufiger
die Bezeichnung Fragment.

Die GPUs bieten nur begrenzte Re-
chenleistung für die Geometrieverarbei-
tung. Diese hängt von der Taktfrequenz
der GPUs und dem Modell der GPU ab.
Die Anzahl der Vertices, die verarbeitet
werden kann, sinkt auch, wenn komple-
xe Beleuchtungsberechnungen durchge-
führt werden oder die Anzahl der Licht-
quellen zunimmt. 

Als Anhaltspunkt für die reine Trans-
formationsleistung (ohne Beleuchtung)
können Sie für eine GeForce-3-GPU
mit 200 MHz etwa 40 Millionen, für ei-
ne GeForce-4-Ti4200 etwa 95 Millionen
Vertices pro Sekunde ansetzen. Eine
ATI Radeon 8500 mit 250 MHz erreicht
etwa bis zu 40 Millionen Vertices pro
Sekunde.

Ein weiterer Engpass liegt in der
Übertragung der Geometriedaten zur
GPU selbst. Wenn die Geometriedaten
sich im Hauptspeicher des Rechners be-
finden, müssen sie jedes Mal über den
AGP-Bus transferiert werden. Ange-
nommen, Sie verwenden pro Vertex Da-
ten mit Koordinate, Normal und zwei
Texturkoordinaten-Paaren (jeweils 32-
Bit-Float-Werte). Sie benötigen 40 Byte
pro Vertex. Selbst bei der theoretischen
maximalen Transferleistung, beispiels-
weise des AGP-4x-Busses mit 1066
MByte/s, reicht diese Transferleistung
nicht aus, um die Geometrieverarbei-
tungsgeschwindigkeit einer GeForce 4
auszunutzen. Sie können 1066*10242/40,

also etwa 28 Millionen Vertices transfe-
rieren (theoritisches Maximum). Da es
sich bei diesem Punkt um eine kritische
Stelle der Grafik-Pipeline handelt, exis-
tieren OpenGL-Erweiterungen, die die-
sen Flaschenhals umgehen. Damit grei-
fen Sie auf die Geometriedaten direkt im
Speicher der Grafikkarte oder in einem
Speicherbereich zu, den Sie mittels Di-
rect Memory Access (DMA) Transfer,
also an der CPU vorbei, manipulieren
können.

Beim letzten wichtigen Punkt handelt
es sich um die begrenzte Rasterisie-
rungsleistung, oft als Fill Rate bezeich-
net. Diese ist ein Engpass auf Grund be-
grenzter Speicherbandbreite und GPU -
Geschwindigkeit. Diese interne Spei-

High Performance Rendering

Ein Bild wie der Blitz
Die Leistung moderner Grafikkarten ist beeindruckend – wird aber kaum ge-
nutzt. Bringen Sie Ihre nVidia- oder ATI-Grafikkarte und OpenGL ans theore-
tische Leistungsmaximum.

AUF CD
Die Quelltexte sowie die fertig übersetzten

Routinen finden Sie im Verzeichnis Heft Add-
ons/Programmierung/PC Underground.

DIE GRAFIK-PIPELINE zeigt die anfallenden Aufgaben beim Rendering.



P C  U N D E R G R O U N D
P R A X I S

1/2003    PC Magazin 231

cherbandbreite, die bei heutigen Gene-
ral-Purpose-Grafikkarten im Bereich
von 7 GByte/s bis 12 GByte/s liegt, ist
von Bedeutung, da beim Rendering auf
Texturen, Frame und Z-Buffer usw. zu-
gegriffen werden muss. 

Die GPU-Geschwindigkeit kommt
beim Verarbeiten dieser Informationen
zum Tragen. Beispielsweise sind ver-
schiedene Textur-Mapping-Techniken
unterschiedlich schnell. Ein- oder zwei-
dimensionale Texturen und Cube Maps
sind schnell, die Passthrough- oder Pi-
xel- Kill-Operationen der Texture-Sha-
der (nVidia) bzw. Pixel-Shader sind
schon langsamer. Noch aufwändiger
sind die Dependent Lookups oder die
Dot-Product-Operationen.

■ Die Geometrie
Wenn Sie wissen, wo sich die Perfor-
mance-Fallen verbergen, versuchen Sie,
diese zu umgehen, bzw in einer beste-
henden Implementation zu identifizie-
ren. Zunächst lernen Sie die Methoden
kennen, um die Geometriedaten in ei-
nem geeigneten Speicherbereich abzu-
legen und somit eine weit höhere Leis-
tung zu erreichen, als dies mit Compi-
led Vertex Arrays (CVA) möglich ist.
Für das spätere Rendering verwenden
Sie im Folgenden wie bei CVAs jeweils
Daten-Streams: ganze Arrays von Ver-
texdaten und -attributen bzw. Index-
listen. Diese können Sie mit dem gl-
DrawElements-Befehl von OpenGL
rendern.

Wie nicht anders zu erwarten war, ha-
ben Sie es, je nach Grafikkartenherstel-
ler, mit unterschiedlichen Extensions zu
tun. Hier stellen wir Ihnen beide vor, be-
ginnend mit der nVidia Vertex Array
Range Extension (VAR). Diese bietet ei-
ne Funktion an, mit der Sie Speicher für
Geometriedaten allokieren können, der
entweder auf dem Grafikkarten-Spei-
cher liegt oder für die Grafikkarte per
DMA-Zugriff erreichbar ist. 

Der Name der Erweiterung im
OpenGL Extension String lautet
GL_NV_vertex_array_range. Von den
benötigten Funktionen fordern Sie die
Adressen an:

void *wglAllocateMemoryNV( 
GLsizei size, 
GLfloat readFrequency,
GLfloat writeFrequency, 
GLfloat priority );

void wglFreeMemoryNV
( void *ptr );

void glVertexArrayRangeNV(
GLsizei size, 
const GLvoid *pointer );

Wenn Sie unter Linux arbeiten, lautet
das Namesprefix der obigen Befehle
nicht wgl, sondern glX. Mit der ersten
Funktion können Sie den Speicher mit
der Größe size (in Bytes) allokieren. Mit
readFrequency, writeFrequency und pri-
ority können Sie die Zugriffscharak-
teristik und die Priorität des Speicherbe-
reichs festlegen. 

Allerdings sind lediglich zwei Para-
meterkombinationen praxisrelevant.
Wenn Sie Speicher für DMA-/
AGP-Zugriffe allokieren wollen, ver-
wenden Sie 0.2 / 0.2 / 0.5 und für Vi-
deospeicher 0.2 / 0.2 / 1.0. Wenn der
Speicher in der gewünschten Größe ver-
fügbar ist, erhalten Sie als Rückgabewert
dessen Speicheradresse, sonst Null.

Anschließend teilen Sie dem Grafik-
kartentreiber mit, dass Sie diesen Spei-
cherbereich mit den Vertex Array Ran-
ge Extensions nutzen wollen. Dies ge-
schieht mit dem Befehl glVertexArray-
RangeNV, wobei die Größe und der
Zeiger auf den Speicherbereich die Para-
meter der Funktion sind. Wichtig für die
Performance ist, dass Sie nur einen Spei-
cherbereich so allokieren. 

Wenn Sie mehrere Arrays benötigen,
sollten Sie unbedingt diese in einen Spei-

cherbereich zusammenkopieren und ge-
gebenenfalls einen kleinen Speicherma-
nager schreiben. Mit der folgenden Me-
thode können Sie einen Speicherbereich
nach Wunsch ansprechen. Kann kein Vi-
deospeicher allokiert werden, wird je-
weils der nächst langsamere Speichertyp
angefordert, bis dies gelingt. Der Spei-
cherbereich sollte auf 64-Byte-Grenzen
aligned werden, weil dies für manche
Vertex-Datenformate wichtig ist:

void *allocateMemory(U32 size)
{

size += 64;

void *varMemory = NULL;

// Extension unterstützt ?
if ( supportVAR )
{

if ( memoryType == VIDEOMEMORY )
{

varMemory = wglAllocateMemoryNV
( size, .2, .2, 1 );

if ( varMemory == NULL )
memoryType = AGPMEMORY;

}

if ( memoryType == AGPMEMORY )
varMemory = wglAllocateMemoryNV

( size, .2, .2, .5 );

if ( varMemory == NULL )
{

memoryType = SYSTEMMEMORY;
varMemory=(void*)new char[size];

} else
glVertexArrayRangeNV(size, 

varMemory);

// Alignment auf 64 Byte
varMemory = 

(void*)
(((int)varMemory+64)&~63);

return varMemory;
}

Jetzt können Sie Ihre Vertex- und Attri-
but-Arrays erzeugen und in den gerade
allokierten Speicherbereich kopieren.
Diesen Speicher können Sie nutzen wie
jeden anderen. Sie müssen nur, wenn Sie
die Daten darin modifizieren, daran
denken, dass auch die Grafikkarte diesen
Speicherbereich liest; das heißt, für dy-
namische Vertexdaten sind Synchroni-
sationsmechanismen notwendig. Dazu
steht die Erweiterung GL_NV_fence
zur Verfügung. Der folgende Code zeigt
exemplarisch die Erzeugung der Arrays
für Vertices und Normale:

// 24 Byte pro Vertex
// Koordinate+Normale à 3Floats
VERTEX3D *memory = (VERTEX3D*)
allocateMemory(nVertices*24 );

VERTEX3D *varVertex, *varNormal;

varVertex = &varMemory[ 0 ];
varNormal = 

&varMemory[nVertices];

for ( i = 0; i < nVertices; i++)
{ q

DIESES 3D-MODELL besteht aus 1 087 716
Dreiecken. Eine GeForce-3 (200 MHz GPU)
schafft mit den Optimierungen dieses
Artikels etwa 17 Bilder pro Sekunde.



P C  U N D E R G R O U N D
P R A X I S

232 PC Magazin 1/2003

glArrayObjectATI(
GL_VERTEX_ARRAY, 3,GL_FLOAT,24,
atiVertexObject, 0 );

glDrawElements
(GL_TRIANGLES,nFaces*3,

GL_UNSIGNED_INT, pIndexList );

glDisableClientState
(GL_VERTEX_ARRAY);

glDisableClientState
(GL_NORMAL_ARRAY);

Wenn Sie die Indexliste ebenfalls in ei-
nem Array Object gespeichert haben,
fügen Sie die folgenden Befehle hinzu
und ersetzen den glDrawElements-Auf-
ruf durch eine neue Funktion der ATI-
Erweiterung:

glEnableClientState
( GL_ELEMENT_ARRAY_ATI );

...   
glArrayObjectATI( 

GL_ELEMENT_ARRAY_ATI, 1, 
GL_UNSIGNED_INT, 0, 
atiArrayElement, 0 );

...   
glDrawElementArrayATI

( GL_TRIANGLES, nFaces * 3 );
...   
glDisableClientState

( GL_ELEMENT_ARRAY_ATI );

Damit haben Sie endgültig die Probleme
der Geometrie-Speicherbandbreite ge-
löst. Das ist die Voraussetzung für hoch-
performantes Rendering mit vielen bzw.
komplexen 3D-Objekten.

■ Triangle Strips und 
Cache-Optimierung
Verwenden Sie Triangle Strips ausgie-
big. Wenn Sie Triangle Strips aus belie-
bigen 3D-Objekten anlegen, gibt es eini-
ges zu beachten. Moderne GPUs verfü-
gen unter anderem über zwei Caches: 
Der eine speichert untransformierte
Vertexdaten, um die Geometrieband-
breite zu schonen. 

Diese hat eine Größe von mehreren
Kilobyte. Viel kritischer für die Perfor-
mance ist aber der Cache für bereits
transformierte und beleuchtete Vertices.
Er fasst bei GeForce-1/2-Karten bei-
spielsweise 16, für GeForce-3 schon 24
Vertices. Triangle Strips können Sie so
anlegen, dass möglichst Vertices, die be-
reits im Cache liegen, zur Fortführung
des Strips verwendet werden. Glückli-
cherweise bietet nVidia die NvTriStrip
Library (inklusive Quelltext) zum
Download an, die die Aufgabe der Tri-
angle-Strip-Generierung übernimmt.
Im Sourcecode zu dieser Ausgabe befin-
det sich eine leicht modifizierte Variante
(um 32 Bit Indizes verwenden zu kön-
nen), deren Benutzung Ihnen die folgen-
den Quellcode-Fragmente verdeutli-
chen.

varVertex[ i ] = ...;
varNormal[ i ] = ...;

}

Das Rendering selbst erfolgt genauso,
wie Sie es von den Arrays von OpenGL
her kennen; abgesehen davon, dass Sie
die Erweiterung VAR zuvor aktivieren:

glEnableClientState
( GL_VERTEX_ARRAY_RANGE_NV );

glVertexPointer( 3, GL_FLOAT, 
0, varVertex );

glNormalPointer( GL_FLOAT, 0, 
varNormal );

glEnable( GL_VERTEX_ARRAY );
glEnable( GL_NORMAL_ARRAY );

// Indexliste pIndexList mit 3
// Indizes für ‘nFaces’ Dreiecke
glDrawElements( 

GL_TRIANGLES, nFaces * 3, 
GL_UNSIGNED_INT, pIndexList );

glDisableClientState
( GL_VERTEX_ARRAY );

glDisableClientState
( GL_NORMAL_ARRAY );

glDisableClientState
( GL_VERTEX_ARRAY_RANGE_NV );

Am Ende Ihres Programms müssen Sie
nur noch den Speicher freigeben. Sollten
Sie ihn mit dem VAR-Befehlen allokiert
haben, verwenden Sie wglFreeMe-
moryNV.

Der Grafikkarten-
hersteller ATI bietet
für seine Radeon-
GPUs die ATI_ver-
tex_array_object-Ex-
tension an, die auch
der Optimierung
dient, aber eine ande-
re Syntax und Seman-
tik besitzt. Diese er-
laubt es zunächst, so
genannte Array Ob-
jects zu allokieren.
Dabei handelt es sich um Speicherberei-
che, in denen die Arrays für die Vertex-
oder Normalendaten liegen. Wenn zu-
sätzlich die ATI_element_array-Exten-
sion unterstützt wird, lassen sich die In-
dexlisten auch in einem Array Object ab-
legen. Dieses erzeugen Sie mit folgender
Funktion. Zuvor müssen Sie deren
Adresse, wie die anderen OpenGL-Ex-
tension-Funktionen laden:

GLuint glNewObjectBufferATI(
GLsizei size, 
const GLvoid *pointer, 
GLenum usage );

Dabei ist size die Größe des Speicherbe-
reichs, pointer der Zeiger auf Ihre Daten
im Speicher und usage ist entweder
GL_STATIC_ATI oder GL_DYNA-

MIC_ATI für eher statische oder dyna-
mische Daten. Auch statische Daten
können Sie im Nachhinein modifizieren,
aber dabei an Performance verlieren.
Der Rückgabewert ist entweder Null,
wenn der Aufruf fehlgeschlagen ist, oder
ein Integer als Identifier, den Sie für den
späteren Gebrauch speichern müssen.

Erzeugen Sie für all Ihre Daten, und
wenn die ATI_element_array-Extensi-
on unterstützt wird, auch für die Index-
liste solche Array Objects. Jetzt sind Sie
schon an der Stelle angelangt, an der es
zum Rendering geht. Um die Array Ob-
jects an OpenGL als Daten-Arrays zu
übergeben, gibt es folgenden Befehl:

void glArrayObjectATI(
GLenum array, GLint size, 
GLenum type, GLsizei stride, 
GLuint buffer, GLuint offset );

Array gibt an, welchem OpenGL-Array
ein Array Object zugewiesen werden
soll. Parameter ist beispielsweise
GL_VERTEX_ARRAY. Die Größe ei-
nes Elements übergeben Sie in size, das
Datenformat in type. Der stride-Wert ist
Null, wenn die Daten dicht gepackt im
Speicher liegen. Wenn Sie z.B. jeweils
pro Vertex alle Attribute in Folge spei-
chern, gibt der Stride-Wert die Größe
der Datenstruktur an. Der buffer-Para-

meter enthält den Identifier des Array-
Object, und der offset-Wert gibt an, wo
die entsprechenden Daten in diesem
Buffer starten. Das folgende Beispiel
verdeutlicht die Aufrufe:

// Daten pro Vertex: 24 Byte
// typedef struct {
//   // Koordinate
//   float x, y, z;
//   // Normale
//   float nx, ny, nz; };

glEnableClientState
( GL_VERTEX_ARRAY );

glEnableClientState
( GL_NORMAL_ARRAY );

// Array Objects
glArrayObjectATI(
GL_NORMAL_ARRAY, 3, GL_FLOAT,24,

atiVertexObject, 
sizeof(float)*3);

DIESE DIALOG-BOX des Beispielprogramms gibt Auskunft über
den Renderer, die Daten und deren Lage im Speicher.



P C  U N D E R G R O U N D
P R A X I S

1/2003    PC Magazin 233

Fürs Stripping benötigen Sie lediglich
die Indexliste der Shared-Vertex- Struk-
tur. Damit füllen Sie die folgende Struk-
tur aus:

#include „nvtristrip.h“

PrimitiveGroup triangles;

triangles.type = PT_LIST;
triangles.numIndices = nFaces*3;
triangles.indices = 

new unsigned int[ nFaces*3 ];

// Indizes für jedes Dreieck

for ( int i = 0; i < nFaces;i++)
{
triangles.indices[ i*3+0 ] =...;
triangles.indices[ i*3+1 ] =...;
triangles.indices[ i*3+2 ] =...;
}

Jetzt legen Sie die Cache-Größe fest, die
bei der Generierung berücksichtigt wer-
den soll, und teilen mit, dass Sie einen
großen Triangle Strip (und nicht mehre-
re) wollen:

SetCacheSize
( CACHESIZE_GEFORCE3 );

SetStitchStrips( true );

Damit können Sie die Strips erzeugen
lassen, wobei der nGroups-Parameter 1
sein wird, weil nur ein Strip erzeugt
wird:

PrimitiveGroup *strip;

strip = new PrimitiveGroup;
unsigned short nGroups;

GenerateStrips( 
triangles.indices, 
triangles.numIndices, 
&strip, &nGroups );

Zugriff auf die Indizes erhalten Sie mit
strip->indices, wobei es sich um strip-
>numIndices handelt. Der Vorteil der
Triangle Strips ist, dass Sie es meist mit
weniger Indizes als bei der Shared-Ver-

tex-Darstellung zu tun haben. Vor allem
werden die Caches ausgenutzt und der
Clipping-Aufwand reduziert. 

Diese Funktionalen, die Sie in Ihre ei-
genen Programme zur Beschleunigung
einbauen können, finden Sie in unseren
Beispielprogrammen zu dieser Ausgabe. 

■ Analyse 
weiterer Engpässe
Wenn Sie trotz der obigen Optimierun-
gen mit Ihren Programmen noch nicht
nahe an die maximale theoretische Lei-
stungsfähigkeit Ihrer Grafikkarte
stoßen, stellen Sie mit einfachen Tests
fest, ob und wo der begrenzende Faktor
in der Grafik-Pipeline liegt. Denken Sie
daran, dass die Render-Performance der
meisten Spiele und Demos durch die
CPU (bzw. eine nicht optimale Umset-
zung der Renderloops) oder so genann-
te Stalls (erzwungene Synchronisatio-
nen zwischen CPU und Grafikkarte)
beschränkt ist.

Ob die Performance durch die Trans-
form-and-Lighting-Berechnung be-
grenzt ist, können Sie einfach feststellen,

indem Sie die Anzahl
der Lichtquellen er-
höhen oder reduzie-
ren. Sollte sich die
Geschwindigkeit
beim Rendering än-
dern, ist das ein Indiz
dafür. Ähnlich ver-
hält es sich, wenn Sie
Vertex-Shader ver-
wenden. Deren Aus-
führungszeit ist pro-
portional zu ihrer
Länge. Durch Hinzu-
fügen oder Entfernen

von Instruktionen können Sie feststel-
len, ob es sich hierbei um einen Fla-
schenhals handelt. Aber beachten Sie,
dass offensichtlich unnötige Operatio-
nen in Vertex-Shadern meist automa-
tisch eliminiert werden. Für die künstli-
che Verlängerung der Shader addieren
Sie am besten eine Null aus dem Kon-
stantenspeicher auf ein Ausgaberegister.

Die Geometrie-Bandbreite können
Sie testen, indem Sie unbenutzte Attri-
bute wie weitere Texturkoordinaten
mitübertragen. Wenn die Geschwindig-
keit sinkt, befinden Sie sich an der Gren-
ze dieser Bandbreite. 

Die Füllrate können Sie in vielerlei
Hinsicht untersuchen. Zum einen ist un-
terschiedliche Performance bei geänder-
ter Bildschirmauflösung bzw. Fenster-
größe ein Indiz. Zum anderen sollten Sie
aufwändige Blending-Operationen und
Multitexturing-Teile Ihres Programmes
untersuchen. s E T

Infos zu Grafikkarten und zum Artikel finden Sie
unter folgenden Web-Adressen:
www.nvidia.com
www.ati.org
www.dachsbacher.de/pcu

DIESE BILD VERDEUTLICH wie fein aufgelöst die Beispiels-Drei-
ecksnetze sind.


