2

PC UNDERGROUND

PRAXIS

High Performance Rendering

‘o

o | Die Quelltexte sowie die fertig ibersetzten

AUF CD

Routinen finden Sie im Verzeichnis Heft Add-
ons/Programmierung/PC Underground.

Ein Bild wie der

Die Leistung moderner Grafikkarten ist beeindruckend — wird aber kaum ge-
nutzt. Bringen Sie lhre nVidia- oder ATI-Grafikkarte und OpenGL ans

CARSTEN DACHSBACHER

ie Leistung moderner Grafik-
D karten ist in den letzten Jahren

rapide gestiegen. Der Trend
wird sich voraussichtlich fortsetzen. Mit
den neuen Features und zunehmender
Leistung steigen auch die Anforderun-
gen an die Programmierer, diese auszu-
nutzen. In dieser Ausgabe lernen Sie, die
Performance-Engpésse eines OpenGL-
Programms zu identifizieren und der
Graphic Processing Unit (GPU) die
Geometriedaten optimal bereitzu-
stellen.

In der Grafik-Pipeline sind schematisch
die bendtigten Operationen fiur 3D-
Grafik aufgezeigt. Sie I&sst sich in drei
grof3e Bereiche aufteilen:

» die Geometrieverarbeitung (Geome-
try Processing), auch als Transform and

Lighting bezeichnet, ist fur die Koordi-
naten-Transformation, die Beleuch-
tungsberechnung und das Clipping zu-
standig und kann durch Vertex-Shader
ersetzt werden.

e In der zweiten Stufe namens Rasteri-
sierung (Rasterization) werden Drei-
ecke, Linien und Punkte gezeichnet.

* Den letzten Teil stellen die Fragment-
Operationen dar, bei denen es sich unter
anderem um Alpha-, Stencil- und Z-

Buffer-Tests handelt.

Um die Geschwindigkeit eines
OpenGL-Programms zu optimieren,
mass man die mdglichen Schwachstellen
kennen. Dazu betrachten Sie den Weg
der Grafikdaten durch die Grafik-Pipe-
line. Gehen Sie zunédchst von einem
Dreiecksnetz in der Shared-Vertex-
Struktur aus: Darin bestehen lhre Gra-
fikdaten zum einen aus der Geome-
trieinformation, den Vertices, eventuell

230 PC Magazin 1/2003

mit Normalen, Texturkoordinaten usw.
und zum anderen aus einer Indexliste, in
der fur jedes Dreieck die drei Indizes der
Eckpunkte gespeichert sind (Topologie-
Information).

Firs Rendering verarbeiten Sie
zundchst die Geometriedaten in der er-
sten Stufe der Pipeline. Die transfor-
mierten, beleuchteten Koordinaten wer-
den zusammen mit der Topologie-In-
formation fiir das Rasterizer Setup (dem
Vorbereiten des Rasterisierens) be-
notigt. Jetzt werden die Dreiecke ge-
zeichnet, und jeder Pixel durchlduft die
letzte Stufe der Pipeline. Statt Pixel fin-
den Sie in der Expertenliteratur haufiger
die Bezeichnung Fragment.

Ein weiterer Engpass liegt in der
Ubertragung der Geometriedaten zur
GPU selbst. Wenn die Geometriedaten
sich im Hauptspeicher des Rechners be-
finden, missen sie jedes Mal Uber den
AGP-Bus transferiert werden. Ange-
nommen, Sie verwenden pro Vertex Da-
ten mit Koordinate, Normal und zwei
Texturkoordinaten-Paaren (jeweils 32-
Bit-Float-Werte). Sie bendtigen 40 Byte
pro Vertex. Selbst bei der theoretischen
maximalen Transferleistung, beispiels-
weise des AGP-4x-Busses mit 1066
MByte/s, reicht diese Transferleistung
nicht aus, um die Geometrieverarbei-
tungsgeschwindigkeit einer GeForce 4
auszunutzen. Sie kénnen 1066*10242/40,

ModelView Transformation,
Lighting, Perspective
Transformation, Viewpart
Transformation & Clipping

-) Geometrie | | - | Fragment Frome
-Emm“} Erbeituﬂg (Ta Eas"ens'er”"a I Operationen I b[Buffer]

{Multl-JTexturing
Scan-Conversion,

Fogging

Alpha, Stencll, Depth,
Blending, Dither, Logic
und Scissor Operationen

DIE GRAFIK-PIPELINE zeigt die anfallenden Aufgaben beim Rendering.

Die GPUs bieten nur begrenzte Re-
chenleistung fiir die Geometrieverarbei-
tung. Diese hangt von der Taktfrequenz
der GPUs und dem Modell der GPU ab.
Die Anzahl der Vertices, die verarbeitet
werden kann, sinkt auch, wenn komple-
xe Beleuchtungsberechnungen durchge-
fuhrt werden oder die Anzahl der Licht-
quellen zunimmt.

Als Anhaltspunkt fur die reine Trans-
formationsleistung (ohne Beleuchtung)
konnen Sie fir eine GeForce-3-GPU
mit 200 MHz etwa 40 Millionen, fir ei-
ne GeForce-4-Ti4200 etwa 95 Millionen
Vertices pro Sekunde ansetzen. Eine
ATI Radeon 8500 mit 250 MHz erreicht
etwa bis zu 40 Millionen Vertices pro
Sekunde.

also etwa 28 Millionen Vertices transfe-
rieren (theoritisches Maximum). Da es
sich bei diesem Punkt um eine kritische
Stelle der Grafik-Pipeline handelt, exis-
tieren OpenGL-Erweiterungen, die die-
sen Flaschenhals umgehen. Damit grei-
fen Sie auf die Geometriedaten direkt im
Speicher der Grafikkarte oder in einem
Speicherbereich zu, den Sie mittels Di-
rect Memory Access (DMA) Transfer,
also an der CPU vorbei, manipulieren
kdnnen.

Beim letzten wichtigen Punkt handelt
es sich um die begrenzte Rasterisie-
rungsleistung, oft als Fill Rate bezeich-
net. Diese ist ein Engpass auf Grund be-
grenzter Speicherbandbreite und GPU -
Geschwindigkeit. Diese interne Spei-

cherbandbreite, die bei heutigen Gene-
ral-Purpose-Grafikkarten im Bereich
von 7 GByte/s bis 12 GByte/s liegt, ist
von Bedeutung, da beim Rendering auf
Texturen, Frame und Z-Buffer usw. zu-
gegriffen werden muss.

Die GPU-Geschwindigkeit kommt
beim Verarbeiten dieser Informationen
zum Tragen. Beispielsweise sind ver-
schiedene Textur-Mapping-Techniken
unterschiedlich schnell. Ein- oder zwei-
dimensionale Texturen und Cube Maps
sind schnell, die Passthrough- oder Pi-
xel- Kill-Operationen der Texture-Sha-
der (nVidia) bzw. Pixel-Shader sind
schon langsamer. Noch aufwandiger
sind die Dependent Lookups oder die
Dot-Product-Operationen.

Wenn Sie wissen, wo sich die Perfor-
mance-Fallen verbergen, versuchen Sie,
diese zu umgehen, bzw in einer beste-
henden Implementation zu identifizie-
ren. Zunachst lernen Sie die Methoden
kennen, um die Geometriedaten in ei-
nem geeigneten Speicherbereich abzu-
legen und somit eine weit hdhere Leis-
tung zu erreichen, als dies mit Compi-
led Vertex Arrays (CVA) moglich ist.
Fur das spétere Rendering verwenden
Sie im Folgenden wie bei CVAs jeweils
Daten-Streams: ganze Arrays von Ver-
texdaten und -attributen bzw. Index-
listen. Diese kdnnen Sie mit dem gl-
DrawElements-Befehl von OpenGL
rendern.

Wie nicht anders zu erwarten war, ha-
ben Sie es, je nach Grafikkartenherstel-
ler, mit unterschiedlichen Extensions zu
tun. Hier stellen wir Thnen beide vor, be-
ginnend mit der nVidia Vertex Array
Range Extension (VAR). Diese bietet ei-
ne Funktion an, mit der Sie Speicher fur
Geometriedaten allokieren kénnen, der
entweder auf dem Grafikkarten-Spei-
cher liegt oder fir die Grafikkarte per
DMA-Zugriff erreichbar ist.

Der Name der Erweiterung im
OpenGL Extension String lautet
GL_NV_vertex_array_range. Von den
bendtigten Funktionen fordern Sie die
Adressen an:

void *wglAllocateMemoryNV/(
GLsizei size,
GLfloat readFrequency,
GLfloat writeFrequency,
GLfloat priority);

void wglFreeMemoryNV
(void *ptr);

void glVertexArrayRangeNV/(
GLsizei size,
const GLvoid *pointer);

Wenn Sie unter Linux arbeiten, lautet
das Namesprefix der obigen Befehle
nicht wgl, sondern glX. Mit der ersten
Funktion kénnen Sie den Speicher mit
der Grofie size (in Bytes) allokieren. Mit
readFrequency, writeFrequency und pri-
ority kdnnen Sie die Zugriffscharak-
teristik und die Prioritét des Speicherbe-
reichs festlegen.

Allerdings sind lediglich zwei Para-
meterkombinationen praxisrelevant.
Wenn Sie Speicher fur DMA-/
AGP-Zugriffe allokieren wollen, ver-
wenden Sie 0.2 / 0.2 / 0.5 und fur Vi-
deospeicher 0.2 / 0.2 / 1.0. Wenn der
Speicher in der gewlinschten Grofie ver-
flgbar ist, erhalten Sie als Riickgabewert
dessen Speicheradresse, sonst Null.

DIESES 3D-MODELL besteht aus 1087716
Dreiecken. Eine GeForce-3 (200 MHz GPU)
schafft mit den Optimierungen dieses
Artikels etwa 17 Bilder pro Sekunde.

AnschlieRend teilen Sie dem Grafik-
kartentreiber mit, dass Sie diesen Spei-
cherbereich mit den Vertex Array Ran-
ge Extensions nutzen wollen. Dies ge-
schieht mit dem Befehl glVVertexArray-
RangeNV, wobei die GrolRe und der
Zeiger auf den Speicherbereich die Para-
meter der Funktion sind. Wichtig fir die
Performance ist, dass Sie nur einen Spei-
cherbereich so allokieren.

Wenn Sie mehrere Arrays bendtigen,
sollten Sie unbedingt diese in einen Spei-

PC UNDERGROUND
PRAXIS

cherbereich zusammenkopieren und ge-
gebenenfalls einen Kkleinen Speicherma-
nager schreiben. Mit der folgenden Me-
thode kdnnen Sie einen Speicherbereich
nach Wunsch ansprechen. Kann kein Vi-
deospeicher allokiert werden, wird je-
weils der n&chst langsamere Speichertyp
angefordert, bis dies gelingt. Der Spei-
cherbereich sollte auf 64-Byte-Grenzen
aligned werden, weil dies fiir manche
Vertex-Datenformate wichtig ist:
void *allocateMemory(U32 size)

size += 64;
void *varMemory = NULL;

/I Extension unterstiitzt ?
if (supportVAR)

{
if (memoryType == VIDEOMEMORY)

varMemory = wglAllocateMemoryNV
(size, .2,.2,1);
if (varMemory == NULL)
memoryType = AGPMEMORY;

if (memoryType == AGPMEMORY)
varMemory = wglAllocateMemoryNV
(size, .2, .2,.5);
if (varMemory == NULL)
{
memoryType = SYSTEMMEMORY;
varMemory=(void*)new char[size];
} else
glVertexArrayRangeNV(size,
varMemory);

/I Alignment auf 64 Byte
varMemory =
(void*®)
(((int)varMemory+64)&~63);

return varMemory;

}

Jetzt kdnnen Sie lhre Vertex- und Attri-
but-Arrays erzeugen und in den gerade
allokierten Speicherbereich kopieren.
Diesen Speicher kdnnen Sie nutzen wie
jeden anderen. Sie mussen nur, wenn Sie
die Daten darin modifizieren, daran
denken, dass auch die Grafikkarte diesen
Speicherbereich liest; das heif3t, fur dy-
namische Vertexdaten sind Synchroni-
sationsmechanismen notwendig. Dazu
steht die Erweiterung GL_NV_fence
zur Verfugung. Der folgende Code zeigt
exemplarisch die Erzeugung der Arrays
fur Vertices und Normale:

/I 24 Byte pro Vertex

/I Koordinate+Normale a 3Floats

VERTEX3D *memory = (VERTEX3D*)
allocateMemory(nVertices*24);

VERTEX3D *varVertex, *varNormal;

varVertex = &varMemory[0 ;

varNormal =
&varMemory[nVertices];

for (i =0;i<nVertices; i++)

{ >

172003 PC Magazin 231

@«@

o-E]

PC UNDERGROUND
PRAXIS

varVertex[i]=..;
varNormal[i]=...;

Das Rendering selbst erfolgt genauso,
wie Sie es von den Arrays von OpenGL
her kennen; abgesehen davon, dass Sie
die Erweiterung VAR zuvor aktivieren:

glEnableClientState
(GL_VERTEX_ARRAY_RANGE_NV);

glVertexPointer(3, GL_FLOAT,
0, varVertex);
gINormalPointer(GL_FLOAT, 0,
varNormal);

glEnable(GL_VERTEX_ARRAY);
glEnable(GL_NORMAL_ARRAY);

/I Indexliste pIndexList mit 3
/I Indizes fir ‘nFaces’ Dreiecke
glDrawElements(
GL_TRIANGLES, nFaces * 3,
GL_UNSIGNED_INT, pindexList);

glDisableClientState
(GL_VERTEX_ARRAY);

glDisableClientState
(GL_NORMAL_ARRAY);

glDisableClientState
(GL_VERTEX_ARRAY_RANGE_NV);

Am Ende lhres Programms mdissen Sie
nur noch den Speicher freigeben. Sollten
Sie ihn mit dem VAR-Befehlen allokiert
haben, verwenden Sie wglFreeMe-
moryNV.

Der Grafikkarten-

MIC_ATI fur eher statische oder dyna-
mische Daten. Auch statische Daten
konnen Sie im Nachhinein modifizieren,
aber dabei an Performance verlieren.
Der Ruckgabewert ist entweder Null,
wenn der Aufruf fehlgeschlagen ist, oder
ein Integer als Identifier, den Sie fir den
spateren Gebrauch speichern mussen.

Erzeugen Sie fur all Ihre Daten, und
wenn die ATI_element_array-Extensi-
on unterstitzt wird, auch fiir die Index-
liste solche Array Objects. Jetzt sind Sie
schon an der Stelle angelangt, an der es
zum Rendering geht. Um die Array Ob-
jects an OpenGL als Daten-Arrays zu
Uibergeben, gibt es folgenden Befehl:

void glArrayObjectATI(

GLenum array, GLint size,

GLenum type, GLsizei stride,
GLuint buffer, GLuint offset);

Array gibt an, welchem OpenGL-Array
ein Array Object zugewiesen werden
soll. Parameter ist beispielsweise
GL_VERTEX_ARRAY. Die GroRe ei-
nes Elements Uibergeben Sie in size, das
Datenformat in type. Der stride-Wert ist
Null, wenn die Daten dicht gepackt im
Speicher liegen. Wenn Sie z.B. jeweils
pro Vertex alle Attribute in Folge spei-
chern, gibt der Stride-Wert die GroRe
der Datenstruktur an. Der buffer-Para-

hersteller ATI bietet
fir seine Radeon-
GPUs die ATI ver-
tex_array_object-Ex-
tension an, die auch
der Optimierung
dient, aber eine ande-
re Syntax und Seman-

High Performance Rendering For ATI and MYIDIA GPUs
wisit v, dachsbacher, defpcu

Mesh 'bunny' consits of 35947 vertices and 62451 triangles,
Rendering with GeForce3f AGPI30MNCYW ! using cache optimized triangle strips.
Mesh data resists in video memory,

x|

tik besitzt. Diese er-
laubt es zunachst, so
genannte Array Ob-
jects zu allokieren.
Dabei handelt es sich um Speicherberei-
che, in denen die Arrays fir die Vertex-
oder Normalendaten liegen. Wenn zu-
sétzlich die ATI_element_array-Exten-
sion unterstltzt wird, lassen sich die In-
dexlisten auch ineinem Array Object ab-
legen. Dieses erzeugen Sie mit folgender
Funktion. Zuvor mussen Sie deren
Adresse, wie die anderen OpenGL-Ex-
tension-Funktionen laden:
GLuint gINewObjectBufferATI(
GLsizei size,

const GLvoid *pointer,
GLenum usage);

Dabei ist size die Grolie des Speicherbe-
reichs, pointer der Zeiger auf Ihre Daten
im Speicher und usage ist entweder
GL_STATIC_ATI oder GL_DYNA-

232 PC Magazin 1/2003

DIESE DIALOG-BOX des Beispielprogramms gibt Auskunft tber
den Renderer, die Daten und deren Lage im Speicher.

meter enthalt den Identifier des Array-
Object, und der offset-Wert gibt an, wo
die entsprechenden Daten in diesem
Buffer starten. Das folgende Beispiel
verdeutlicht die Aufrufe:

/I Daten pro Vertex: 24 Byte
1/ typedef struct {

/I Il Koordinate

/I float x,y, z;

/I 1l Normale

/I float nx, ny, nz; };

glEnableClientState

(GL_VERTEX_ARRAY);
glEnableClientState

(GL_NORMAL_ARRAY);

/I Array Objects
glArrayObjectATI(
GL_NORMAL_ARRAY, 3, GL_FLOAT,24,
atiVertexObject,
sizeof(float)*3);

glArrayObjectATI(
GL_VERTEX_ARRAY, 3,GL_FLOAT,24,
atiVertexObject, 0);

glDrawElements
(GL_TRIANGLES,nFaces*3,
GL_UNSIGNED_INT, pIndexList);

glDisableClientState
(GL_VERTEX_ARRAY);
glDisableClientState
(GL_NORMAL_ARRAY);
Wenn Sie die Indexliste ebenfalls in ei-
nem Array Object gespeichert haben,
flgen Sie die folgenden Befehle hinzu
und ersetzen den glDrawElements-Auf-
ruf durch eine neue Funktion der ATI-
Erweiterung:

glEnableClientState
(GL_ELEMENT_ARRAY_ATI);

glArrayObjectATI(
GL_ELEMENT_ARRAY_ATI, 1,
GL_UNSIGNED_INT, 0,
atiArrayElement, 0);

éiDrawEIementArrayATl
(GL_TRIANGLES, nFaces * 3);

éiDisabIeCIientState
(GL_ELEMENT_ARRAY_ATI);
Damit haben Sie endgliltig die Probleme
der Geometrie-Speicherbandbreite ge-
16st. Das ist die Voraussetzung fur hoch-
performantes Rendering mit vielen bzw.
komplexen 3D-Objekten.

Verwenden Sie Triangle Strips ausgie-
big. Wenn Sie Triangle Strips aus belie-
bigen 3D-Objekten anlegen, gibt es eini-
ges zu beachten. Moderne GPUs verfi-
gen unter anderem Uber zwei Caches:
Der eine speichert untransformierte
Vertexdaten, um die Geometrieband-
breite zu schonen.

Diese hat eine GrofRe von mehreren
Kilobyte. Viel kritischer fur die Perfor-
mance ist aber der Cache fiir bereits
transformierte und beleuchtete Vertices.
Er fasst bei GeForce-1/2-Karten bei-
spielsweise 16, fur GeForce-3 schon 24
Vertices. Triangle Strips kdnnen Sie so
anlegen, dass moglichst Vertices, die be-
reits im Cache liegen, zur Fortfuhrung
des Strips verwendet werden. Gluckli-
cherweise bietet nVidia die NvTriStrip
Library (inklusive Quelltext) zum
Download an, die die Aufgabe der Tri-
angle-Strip-Generierung Ubernimmt.
Im Sourcecode zu dieser Ausgabe befin-
det sich eine leicht modifizierte Variante
(um 32 Bit Indizes verwenden zu kén-
nen), deren Benutzung Ihnen die folgen-
den Quellcode-Fragmente verdeutli-
chen.

Furs Stripping bendtigen Sie lediglich
die Indexliste der Shared-Vertex- Struk-
tur. Damit fullen Sie die folgende Struk-
tur aus:

#include ,nvtristrip.h“

PrimitiveGroup triangles;

triangles.type = PT_LIST;
triangles.numindices = nFaces*3;
triangles.indices =

new unsigned int[nFaces*3];

/I Indizes fir jedes Dreieck

for (inti=0; i< nFaces;i++)
{

triangles.indices[i*3+0] =
triangles.indices[i*3+1] =...;
triangles.indices[i*3+2] =

Jetzt legen Sie die Cache-GroRe fest, die
bei der Generierung bertcksichtigt wer-
den soll, und teilen mit, dass Sie einen
grofien Triangle Strip (und nicht mehre-
re) wollen:

SetCacheSize
(CACHESIZE_GEFORCES3);
SetStitchStrips(true);

Damit kdnnen Sie die Strips erzeugen
lassen, wobei der nGroups-Parameter 1

sein wird, weil nur ein Strip erzeugt
wird:

PrimitiveGroup *strip;

strip = new PrimitiveGroup;
unsigned short nGroups;

GenerateStrips(
triangles.indices,
triangles.numindices,
&strip, &nGroups);

Zugriff auf die Indizes erhalten Sie mit
strip->indices, wobei es sich um strip-
>numlindices handelt. Der Vorteil der
Triangle Strips ist, dass Sie es meist mit
weniger Indizes als bei der Shared-Ver-

PC UNDERGROUND
PRAXIS

indem Sie die Anzahl
der Lichtquellen er-
hohen oder reduzie-
ren. Sollte sich die
Geschwindigkeit

beim Rendering &n-
dern, ist das ein Indiz
daftr. Ahnlich ver-
halt es sich, wenn Sie
Vertex-Shader ver-
wenden. Deren Aus-

DIESE BILD VERDEUTLICH wie fein aufgelost die Beispiels-Drei-

ecksnetze sind.

tex-Darstellung zu tun haben. Vor allem
werden die Caches ausgenutzt und der
Clipping-Aufwand reduziert.

Diese Funktionalen, die Sie in Ihre ei-
genen Programme zur Beschleunigung
einbauen konnen, finden Sie in unseren
Beispielprogrammen zu dieser Ausgabe.

Wenn Sie trotz der obigen Optimierun-
gen mit lhren Programmen noch nicht
nahe an die maximale theoretische Lei-
stungsfahigkeit lhrer Grafikkarte
stofRen, stellen Sie mit einfachen Tests
fest, ob und wo der begrenzende Faktor
in der Grafik-Pipeline liegt. Denken Sie
daran, dass die Render-Performance der
meisten Spiele und Demos durch die
CPU (bzw. eine nicht optimale Umset-
zung der Renderloops) oder so genann-
te Stalls (erzwungene Synchronisatio-
nen zwischen CPU und Grafikkarte)
beschrénkt ist.

Ob die Performance durch die Trans-
form-and-Lighting-Berechnung be-
grenzt ist, kdnnen Sie einfach feststellen,

flhrungszeit ist pro-
portional zu ihrer
Lange. Durch Hinzu-
fligen oder Entfernen
von Instruktionen kénnen Sie feststel-
len, ob es sich hierbei um einen Fla-
schenhals handelt. Aber beachten Sie,
dass offensichtlich unnétige Operatio-
nen in Vertex-Shadern meist automa-
tisch eliminiert werden. Fir die kinstli-
che Verlangerung der Shader addieren
Sie am besten eine Null aus dem Kon-
stantenspeicher auf ein Ausgaberegister.

Die Geometrie-Bandbreite kdnnen
Sie testen, indem Sie unbenutzte Attri-
bute wie weitere Texturkoordinaten
mitibertragen. Wenn die Geschwindig-
keit sinkt, befinden Sie sich an der Gren-
ze dieser Bandbreite.

Die Fillrate kénnen Sie in vielerlei
Hinsicht untersuchen. Zum einen ist un-
terschiedliche Performance bei gednder-
ter Bildschirmauflésung bzw. Fenster-
grofe ein Indiz. Zum anderen sollten Sie
aufwéndige Blending-Operationen und
Multitexturing-Teile Ihres Programmes
untersuchen. ET

Infos zu Grafikkarten und zum Artikel finden Sie
unter folgenden Web-Adressen:

www.ati.org
www.dachsbacher.de/pcu

172003 PC Magazin 233

@«@

